
Convex Programming Upper Bounds on the
Capacity of 2-D Constraints∗

Ido Tal, Member, IEEE and Ron M. Roth, Fellow, IEEE

Abstract—The capacity of 1-D constraints is given by the
entropy of a corresponding stationary maxentropic Markov
chain. Namely, the entropy is maximized over a set of probability
distributions, which is defined by some linear equalities and
inequalities. In this paper, certain aspects of this characterization
are extended to 2-D constraints. The result is a method for
calculating an upper bound on the capacity of 2-D constraints.

The key steps are as follows. The maxentropic stationary
probability distribution on square configurations is considered;
a set of linear equalities and inequalities is derived from this
stationarity; the result is then a convex program, which can be
easily solved numerically. Our method improves upon previous
upper bounds for the capacity of the 2-D “no isolated bits”
constraint, as well as certain 2-D RLL constraints.

Index Terms—Concave function maximization, Convex pro-
gramming, Runlength-limited constraints, No isolated bits con-
straint, Two-dimensional constraints.

I. INTRODUCTION

Let Σ be a finite alphabet. A one-dimensional (1-D) con-
straint is a set S of words over Σ. For the set S to be called a
1-D constraint, there must exist an edge-labeled graph G with
the following property: a word w = w0w2 . . . wn−1 is in S iff
there exists a path in G for which the successive edge labels
are w0, w2, . . . , wn−1 (see [1]).

A two dimensional (2-D) constraint over Σ is a general-
ization of a 1-D constraint. However, let us first define a
configuration, the 2-D generalization of a word. Denote the
set of integers by Z. A 2-D index set U ⊆ Z2 is a set of
integer pairs. A 2-D configuration over Σ with index set U
is a function w : U → Σ. We denote such a configuration
as w = (wi,j)(i,j)∈U, where for all (i, j) ∈ U, we have that
wi,j ∈ Σ. A configuration w : B → Σ is rectangular if B is
rectangular. Namely, there exist integers α1 < α2 and β1 < β2

such that

B = {(i, j) : α1 ≤ i < α2 , β1 ≤ j < β2} .

∗ This work was presented in part at the IEEE International Symposium on
Information Theory (ISIT2009), Seoul, Korea, (June 2009), pp. 1060–1064 in
the proceedings.
I. Tal is with the Information Theory and Applications (ITA) Center and is
affiliated with the Center for Magnetic Recording Research (CMRR), both at
the University of California at San Diego, La Jolla, CA 92093-0401, USA.
This work was done while he was with the Computer Science Department,
Technion, Haifa 32000, Israel (email: idotal@ieee.org).
R. M. Roth is with the Computer Science Department, Technion, Haifa 32000,
Israel (email: ronny@cs.technion.ac.il).
This work was supported in part by grant No. 2008258 from the United-
States–Israel Binational Science Foundation (BSF), Jerusalem, Israel. The
work of Ido Tal was also supported by University of California Lab Fees
Research Program, Award No. 09-LR-06-118620-SIEP.

A 2-D constraint is a set S of rectangular configurations
over Σ and is defined through a pair of vertex-labeled
graphs (Grow, Gcol), where Grow = (V,Erow, L) and Gcol =
(V,Ecol, L). Namely, both graphs share the same vertex set
and the same vertex labeling function L : V → Σ. The con-
straint S = S(Grow, Gcol) consists of all rectangular configu-
rations (wi,j)(i,j)∈B over Σ with the following property: There
exists a configuration (ui,j)(i,j)∈B over the vertex set V such
that (a) for each (i, j) ∈ B we have wi,j = L(ui,j); (b) each
row in (ui,j) is a path in Grow; (c) each column in (ui,j) is a
path in Gcol. Examples of 2-D constraints include the square
constraint [2], 2-D runlength-limited (RLL) constraints [3], 2-
D symmetric runlength-limited (SRLL) constraints [4], and the
“no isolated bits” (n.i.b.) constraint [5].

Let S be a given 2-D constraint over a finite alphabet Σ.
For positive integers M,N > 0, denote by SM,N all the
configurations in S with index set

BM,N = {(i, j) : 0 ≤ i < M , 0 ≤ j < N} .

Also, let

BM = BM,M and SM = SM,M .

The capacity of S is defined as

cap(S) = lim
M→∞

1

M2
· log2 |SM | . (1)

In this paper, we show a method for calculating an upper
bound on cap(S). Two other methods for calculating an upper
bound on the capacity of a 2-D constraint are as follows. The
first method is the so called “stripe method,” in which we fix
a positive integer N and bound cap(S) by

cap(S) ≤ lim
M→∞

1

M ·N
· log2 |SM,N | . (2)

Namely, we consider only stripes of width N , and essentially
get a 1-D constraint (since we may regard each of the possible
row values as a symbol in an auxiliary alphabet). The RHS
of (2) is easily calculated for modest values of N : Let G be
the edge-labeled graph corresponding to the 1-D constraint,
and let AG be the adjacency matrix of G. Denote by λ(AG)
the Perron eigenvalue of AG. By [1, §3.2], the RHS of (2)
is equal to λ(AG). The second method for bounding cap(S)
from above is the generalization presented by Forchhammer
and Justesen [6] to the method of Calkin and Wilf [7].

The capacity of a given 1-D constraint is known to be
equal to the value of an optimization program, where the
optimization is on the entropy of a certain stationary Markov

chain, and is carried out over the conditional probabilities of
that chain (see [1, Section 3.2.3]). We try to extend certain
aspects of this characterization of capacity to 2-D constraints.
What results is a (generally non-tight) upper bound on cap(S).

The structure of this paper is as follows. In Section II,
we set up some notation. Then, in Section III, we show
the existence of a certain stationary random variable taking
values on SM and having entropy approaching the capacity
of S, as M → ∞. We then consider a relatively small sub-
configuration of that random variable, and denote it by X(M).
The section concludes with an upper bound on the capacity
of S, which is a function of the probability distribution of
X(M). In Section IV, we derive a set of linear equations which
hold on the probability distribution of X(M). In Section V,
we argue as follows: The bound derived in Section III is
a function of the probability distribution of X(M), which
we do not know how to calculate; however, by Section IV
we know that this probability distribution is subject to a
set of linear requirements (equalities and inequalities). Thus,
we formalize an optimization problem, where the unknown
probability distribution is replaced by a set of variables, subject
to the above-mentioned linear requirements. The maximum of
this optimization problem is an upper bound on the capacity
of S. We then show that this optimization problem is easily
solved, since it is an instance of convex programming. In
Section VI, we show our computational results. Finally, in
Section VII we present an asymptotic analysis of our method.

We note at this point that although this paper deals with 2-D
constraints, our method can be easily generalized to higher
dimensions as well.

II. NOTATION

This section is devoted to setting up some notation.

A. Shifts and restrictions

In this paper, index sets will always be denoted by upper-
case Greek letters or upper-case Roman letters in the sans-serif
font. For integers α, β we denote the shifting of an index set
U by (α, β) as

σα,β(U) = {(i+ α, j + β) : (i, j) ∈ U} .

Let (wi,j)(i,j)∈U be a configuration with index set U. By abuse
of notation, let σα,β(w) be the shifted configuration (with
index set σ(U)):

σα,β(w)i+α,j+β = wi,j .

For a configuration w with index set U, and an index set V ⊆
U, denote the restriction of w to V by w[V] = (w[V]i,j)(i,j)∈V;
namely,

w[V]i,j = wi,j , where (i, j) ∈ V .

We denote the restriction of S to U by S[U]:

S[U] = {w : there exists w′ ∈ S such that w′[U] = w} . (3)

B. Strict total order

A strict total order ≺ is a relation on Z2 × Z2, satisfying
the following conditions for all (i1, j1), (i2, j2), (i3, j3) ∈ Z2.
• If (i1, j1) 6= (i2, j2), then either (i1, j1) ≺ (i2, j2) or

(i2, j2) ≺ (i1, j1), but not both.
• If (i1, j1) = (i2, j2), then neither (i1, j1) ≺ (i2, j2) nor

(i2, j2) ≺ (i1, j1).
• If (i1, j1) ≺ (i2, j2) and (i2, j2) ≺ (i3, j3), then

(i1, j1) ≺ (i3, j3).
For (i, j) ∈ Z2, define T

(≺)
i,j as all the indexes preceding (i, j).

Namely,

T
(≺)
i,j =

{
(i′, j′) ∈ Z2 : (i′, j′) ≺ (i, j)

}
.

C. Entropy

Let X and Y be two random variables. Denote

px = Prob(X = x) .

and

py|x = Prob(X = x, Y = y)/Prob(X = x) .

The entropy of X is denoted by H(X) and is equal to

H(X) =
∑
x

px log px ,

where the sum is on all x for which Prob(X = x) is positive.
Similarly, we define the conditional entropy H(Y |X) as

H(Y |X) =
∑
x

px
∑
y

py|x log py|x ,

where we sum on all x for which px is positive and all y for
which py|x is positive.

III. A PRELIMINARY UPPER BOUND ON cap(S)

Let M be a positive integer and let W be a random variable
taking values on SM . We say that W is stationary if for all
U ⊆ BM , all α, β ∈ Z such that σα,β(U) ⊆ BM , and all
w′ ∈ S[U], we have that

Prob(W [U] = w′) = Prob(W [σα,β(U)] = σα,β(w′)) .

The following is a corollary of [8, Theorem 1.4]. The proof
is given in Appendix A.

Theorem 1: There exists a series of random variables
(W (M))∞M=1 with the following properties: (i) Each W (M)

takes values on SM . (ii) The probability distribution of W (M)

is stationary. (iii) The normalized entropy of W (M) approaches
cap(S),

cap(S) = lim
M→∞

1

M2
·H(W (M)) . (4)

We now proceed towards deriving Lemma 2 below, which
gives an upper bound on cap(S), and makes use of the
stationarity property. We note in advance that this bound is
not actually meant to be calculated. Thus, its utility will be
made clear in the following sections. In order to enhance the
exposition, we accompany the derivation with two running
examples.

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

≺lex

1 2 3 4 5
16 17 18 19 20
6 7 8 9 10
21 22 23 24 25
11 12 13 14 15

≺irs

Fig. 1. An entry labeled i in the left (right) configuration precedes an entry
labeled j according to ≺lex (≺irs) iff i < j.

Running Example I: Define the lexicographic order ≺lex

as follows: (i1, j1) ≺lex (i2, j2) iff
• i1 < i2, or
• (i1 = i2 and j1 < j2).
Running Example II: Define the “interleaved raster scan”

order ≺irs as follows: (i1, j1) ≺irs (i2, j2) iff
• i1 ≡ 0 (mod 2) and i2 ≡ 1 (mod 2), or
• i1 ≡ i2 (mod 2) and i1 < i2, or
• i1 = i2 and j1 < j2.

(See Figure 1 for both examples.)
For the rest of this section, fix positive integers r and s, and

define the index set
Λ = Br,s .

We will refer to Λ as “the patch.” The bound we derive in
Lemma 2 will be a function of the following:
• the strict total order ≺,
• the integers r and s, which determine the order r × s of

the patch Λ,
• an integer c, which will denote the number of “colors”

we encounter,
• a coloring function f : Z2 → {1, 2, . . . , c}, mapping each

point in Z2 to one of c colors,
• c indexes, (aγ , bγ)cγ=1, such that for all 1 ≤ γ ≤ c,

(aγ , bγ) ∈ Λ

(namely, each color γ has a designated point in the patch,
which may or may not be of color γ).

The function f must satisfy two requirements, which we
now elaborate on. Our first requirement is: for all 1 ≤ γ ≤ c,

lim
M→∞

|{(i, j) ∈ BM : f(i, j) = γ}|
M2

=
1

c
. (5)

Namely, as the orders of W (M) tend to infinity, each color
appears with the same frequency1. Our second requirement is
as follows: there exist index sets Ψ1,Ψ2, . . . ,Ψc ⊆ Λ such
that for all indexes (i, j) ∈ Z2,

σi′,j′(Ψγ) = T
(≺)
i,j ∩ σi′,j′(Λ) , (6)

where γ = f(i, j), i′ = i− aγ , and j′ = j − bγ . Namely, let
(i, j) be such that f(i, j) = γ, and shift Λ such that (aγ , bγ)

1In fact, it is possible to generalize (5) and require only that the limit exists
for all γ. We have not found this generalization useful.

• •

•

lex irs

(a) (b)

γ = 1

γ = 2

Fig. 2. The left (right) column corresponds to Running Example I (II). The
configurations are of order r×s and represent the index set Λ. The • symbol
is in position (aγ , bγ). The shaded part is Ψγ .

is shifted to (i, j). Now, consider the set of all indexes in the
shifted Λ which precede (i, j): this set must be equal to the
correspondingly shifted Ψγ .

Running Example I: Take r = 4 and s = 7 as the patch
orders. Let the number of colors be c = 1. Thus, we must
define f = flex as follows: for all (i, j) ∈ Z2, flex(i, j) = 1.
Take the point corresponding to the single color as (a1 =
3, b1 = 5). See also Figure 2(a).

Running Example II: As in the previous example, take
r = 4 and s = 7 as the patch orders. Let the number of colors
be c = 2. Define f = firs as follows:

firs(i, j) =

{
1 i ≡ 0 (mod 2)

2 i ≡ 1 (mod 2)
.

Take (a1 = 3, b1 = 5) and (a2 = 2, b2 = 4). See also
Figure 2(b).

Lemma 2: Let (W (M))∞M=1 be as in Theorem 1 and
define

X(M) = W (M)[Λ] .

Let ≺, r, s, c, f , (Ψγ)cγ=1, and (aγ , bγ)cγ=1 be given. For
1 ≤ γ ≤ c, define

Υγ = {(aγ , bγ)} ∪Ψγ .

Let
Yγ = X(M)[Υγ] and Zγ = X(M)[Ψγ]

(note that Yγ and Zγ are functions of M). Then,

cap(S) ≤ lim inf
M→∞

1

c

c∑
γ=1

H(Yγ |Zγ) .

Proof: Let X , W and Ti,j be shorthand for X(M), W (M)

and T
(≺)
i,j , respectively. First note that

Yγ = W [Υγ] and Zγ = W [Ψγ] .

We show that

lim
M→∞

1

M2
H(W) ≤ lim inf

M→∞

1

c

c∑
γ=1

H(Yγ |Zγ) .

Once this is proved, the claim follows from (4).
By the chain rule [9, Theorem 2.5.1], we have

H(W) =
∑

(i,j)∈BM

H(Wi,j |W [Ti,j ∩ BM]) .

We now recall (6) and define the index set ∂̄ to be the largest
subset of BM for which the following condition holds: for all
(i, j) ∈ ∂̄, we have that

σi′,j′(Ψγ) ⊆ BM , (7)

where hereafter in the proof, γ = f(i, j), i′ = i − aγ , and
j′ = j − bγ . Define ∂ = BM \ ∂̄. Note that since r and s are
constant, and Ψ1,Ψ2, . . . ,Ψc ⊆ Λ, then

|∂|
M2

= O(1/M) .

Thus, on the one hand, we have
1

M2

∑
(i,j)∈∂

H(Wi,j |W [Ti,j ∩ BM]) ≤ log2 |Σ| ·O(1/M) .

On the other hand, from (6) and (7) we have for all (i, j) ∈ ∂̄,

σi′,j′(Ψγ) ⊆ Ti,j ∩ BM .

Hence, since conditioning reduces entropy [9, Theorem 2.6.5],

1

M2

∑
(i,j)∈∂̄

H(Wi,j |W [Ti,j ∩ BM])

≤ 1

M2

∑
(i,j)∈∂̄

H(Wi,j |W [σi′,j′(Ψγ)])

=
1

M2

∑
(i,j)∈∂̄

H(W [{(i, j)} ∪ σi′,j′(Ψγ)]|W [σi′,j′(Ψγ)])

=
1

M2

∑
(i,j)∈∂̄

H(Yγ |Zγ) ,

where the last step follows from the stationarity of W (M).
Recalling (5), the proof follows.

The following is a simple corollary of Lemma 2.
Corollary 3: Let (W (M))∞M=1 be as in Theorem 1 and

define
X(M) = W (M)[Λ] .

Fix positive integers r and s. Let ` be a positive integer, and
let (ρ〈k〉)`k=1 be non-negative reals such that

∑`
k=1 ρ

〈k〉 = 1.
For every 1 ≤ k ≤ `, let ≺〈k〉, c = c〈k〉, f 〈k〉, (Ψ

〈k〉
γ)cγ=1, and

(a
〈k〉
γ , b

〈k〉
γ)cγ=1 be given. Also, for 1 ≤ γ ≤ c〈k〉, let

Υ〈k〉γ = {(a〈k〉γ , b〈k〉γ)} ∪Ψ〈k〉γ .

Define

Y 〈k〉γ = X(M)[Υ〈k〉γ] and Z〈k〉γ = X(M)[Ψ〈k〉γ]

(note that Y 〈k〉γ and Z〈k〉γ are functions of M). Then,

cap(S) ≤ lim inf
M→∞

∑̀
k=1

ρ〈k〉

c〈k〉

c〈k〉∑
γ=1

H(Y 〈k〉γ |Z〈k〉γ) .

Corollary 3 is the most general way we have found to
state our results. This generality will indeed help us later on.
However, almost none of the intuition is lost if the reader has
in mind the much simpler case of

` = 1 , ρ〈1〉 = 1 , c〈1〉 = 1 , ≺〈1〉=≺lex ,

(a
〈1〉
1 , b

〈1〉
1) = (r−1, t) , and Ψ

〈1〉
1 = Λ ∩ T

(a
〈1〉
1 ,b

〈1〉
1)

, (8)

where 0 ≤ t < s. This simpler case was demonstrated in
Running Example I.

IV. LINEAR REQUIREMENTS

Recall that X(M) = W (M)[Λ] is an r× s sub-configuration
of W (M), and thus stationary as well. In this section, we for-
mulate a set of linear requirements (equalities and inequalities)
on the probability distribution of X(M). For the rest of this
section, let M be fixed and let X be shorthand for X(M).

A. Linear requirements from stationarity

In this subsection, we formulate a set of linear requirements
that follow from the stationarity of X(M). Let x ∈ S[Λ] be a
realization of X . Denote

px = Prob(X = x) .

We start with the trivial requirements. Obviously, we must
have for all x ∈ S[Λ] that

px ≥ 0 .

Also, ∑
x∈S[Λ]

px = 1 .

Next, we show how we can use stationarity to get more
linear equations on (px)x∈S[Λ]. Let

Λ′ = {(i, j) : 0 ≤ i < r − 1 , 0 ≤ j < s} .

For x′ ∈ S[Λ′] we must have by stationarity that

Prob(X[Λ′] = x′) = Prob(X[σ1,0(Λ′)] = σ1,0(x′)) . (9)

As a concrete example, suppose that r = s = 3. We claim
that

Prob

(
X =

1 0 0
0 0 1
∗ ∗ ∗

)
= Prob

(
X =

∗ ∗ ∗
1 0 0
0 0 1

)
,

where ∗ denotes “don’t care.”
Both the left-hand and right-hand sides of (9) are marginal-

izations of (px)x. Thus, we get a set of linear equations on
(px)x, namely, for all x′ ∈ S[Λ′],∑

x : x[Λ′]=x′

px =
∑

x : x[σ1,0(Λ′)]=σ1,0(x′)

px .

To get more equations, we now apply the same rationale
horizontally, instead of vertically. Let

Λ′′ = {(i, j) : 0 ≤ i < r , 0 ≤ j < s− 1} .

for all x′′ ∈ S[Λ′′],∑
x : x[Λ′′]=x′′

px =
∑

x : x[σ0,1(Λ′′)]=σ0,1(x′′)

px .

B. Linear equations from reflection, transposition, and com-
plementation

We now show that if S is reflection, transposition, or
complementation invariant (defined below), then we can derive
yet more linear equations.

Define vM (·) (hM (·)) as the vertical (horizontal) reflec-
tion of a rectangular configuration with M rows (columns).
Namely,

(vM (w))i,j = wM−1−i,j , and (hM (w))i,j = wi,M−1−j .

Define τ as the transposition of a configuration. Namely,

τ(w)i,j = wj,i .

For Σ = {0, 1}, denote by comp(w) the bitwise comple-
ment of a configuration w. Namely,

comp(w)i,j =

{
1 if wi,j = 0

0 otherwise .

We state three similar lemmas, and prove the first. The
proofs of the other two is similar.

Lemma 4: Suppose that S is such that for all M > 0 and
w ∈ ΣM×M ,

w ∈ S ⇐⇒ hM (w) ∈ S ⇐⇒ vM (w) ∈ S .

Then, w.l.o.g., the probability distribution of W is such that
for all w ∈ SM ,

Prob(W = w) =

Prob(W = hM (w)) = Prob(W = vM (w)) . (10)

Lemma 5: Suppose that S is such that for all M > 0 and
w ∈ ΣM×M ,

w ∈ S ⇐⇒ τ(w) ∈ S .

Then, w.l.o.g., W is such that for all w ∈ SM ,

Prob(W = w) = Prob(W = τ(w)) . (11)

Lemma 6: Suppose that Σ = {0, 1} and S is such that
for all M > 0 and w ∈ ΣM×M ,

w ∈ S ⇐⇒ comp(w) ∈ S .

Then, w.l.o.g., W is such that for all w ∈ SM ,

Prob(W = w) = Prob(W = comp(w)) . (12)

Proof of Lemma 4: Let h and v be shorthand for hM
and vM , respectively. For M fixed, we define a new random

variable W new taking values on SM , with the following
distribution: for all w ∈ SM ,

Prob(W new=w) =
1

4

∑
w′∈

{w,h(w),v(w),h(v(w))}

Prob(W=w′) .

Since h(h(w)) = v(v(w)) = w and h(v(w)) = v(h(w)) we
get that (10) holds for W new. Moreover, by the concavity of
the entropy function,

H(W) ≤ H(W new) .

Also, it is easily proved that

H(W new) ≤ H(W) + 2

(to see this, define an auxiliary random variable indicating
which one of the 4 equally likely reflections was “chosen”).
Thus, the properties defined in Theorem 1 hold for W new.

If the condition of Lemma 4 holds, then we get the following
equations by stationarity. For all x ∈ S[Λ],

px = pvr(x) = phs(x) .

If the condition of Lemma 5 holds, then we have the
following. Assume w.l.o.g. that r ≤ s, and let

Λ̃ = {(i, j) : 0 ≤ i, j < r} .

For all χ ∈ S[Λ̃], ∑
x : x[Λ̃]=χ

px =
∑

x : x[Λ̃]=τ(χ)

px .

If the condition of Lemma 6 holds, then we have the
following. For all x ∈ S[Λ],

px = pcomp(x) .

V. AN UPPER BOUND ON cap(S)

For the rest of this section, let r, s, `, ρ〈k〉, ≺〈k〉, c〈k〉, f 〈k〉,
Ψ
〈k〉
γ , and (a

〈k〉
γ , b

〈k〉
γ) be given as in Corollary 3. Recall from

Corollary 3 that we are interested in H(Y
〈k〉
γ |Z〈k〉γ), in order

to bound cap(S) from above.
As a first step, we fix M and express H(Y

〈k〉
γ |Z〈k〉γ) in terms

of the probabilities (px)x of the random variable X(M). For
given 1 ≤ k ≤ ` and 1 ≤ γ ≤ c〈k〉, let

y ∈ S[Υ〈k〉γ] and z ∈ S[Ψ〈k〉γ]

be realizations of Y 〈k〉γ and Z〈k〉γ , respectively. Let

p〈k〉γ,y = Prob(Y 〈k〉γ = y) and p〈k〉γ,z = Prob(Z〈k〉γ = z)

(p〈k〉γ,y and p〈k〉γ,z are functions of M). From here onward, let py
and pz be shorthand for p〈k〉γ,y and p

〈k〉
γ,z , respectively. Both py

and pz are marginalizations of (px)x, namely,

py =
∑

x∈S[Λ] : x[Υ
〈k〉
γ]=y

px , pz =
∑

x∈S[Λ] : x[Ψ
〈k〉
γ]=z

px .

Thus, for given γ and k,

H(Y 〈k〉γ |Z〈k〉γ) =
∑

y∈S[Υ
〈k〉
γ]

−py log2 py +
∑

z∈S[Ψ
〈k〉
γ]

pz log2 pz

is a function of the probabilities (px)x of X(M).
Our next step will be to reason as follows: We have

found linear requirements that the px’s satisfy and expressed
H(Y

〈k〉
γ |Z〈k〉γ) as a function of (px)x. However, we do not

know of a way to actually calculate (px)x. So, instead of the
probabilities (px)x, consider the variables (p̄x)x. From this
line of thought we get our main theorem.

Theorem 7: The value of the optimization program given
in Figure 3 is an upper bound on cap(S).

Proof: First, notice that if we take p̄x = px, then (by
Section IV) all the requirements which the p̄x’s are subject to
indeed hold, and the objective function is equal to

∑̀
k=1

ρ〈k〉

c〈k〉

c〈k〉∑
γ=1

H(Y 〈k〉γ |Z〈k〉γ) .

So, the maximum is an upper bound on the above equation.
Next, by compactness, a maximum indeed exists. Since the
maximum is not a function of M , the claim now follows from
Corollary 3.

We now proceed to show that the optimization problem
in Figure 3 is an instance of convex programming2 [10, p.
137, Equation (4.16)], and thus easily calculated. Since the
requirements that the variables (p̄x)x are subject to are linear,
this reduces to showing that the objective function is concave
in (p̄x)x.

Lemma 8: The objective function in Figure 3 is concave
in the variables (p̄x)x∈S[Λ], subject to them being non-negative.

Proof: Recall that for all 1 ≤ k ≤ ` we have that ρ〈k〉

c〈k〉
is

non-negative. Thus, it suffices to prove that for all 1 ≤ k ≤ `
and 1 ≤ γ ≤ c〈k〉, the function Ξ(k, γ) is concave in the
variables (p̄x)x. So, let k and γ be fixed, and let p̄y and p̄z
be shorthand for p̄〈k〉γ,y and p̄〈k〉γ,z , respectively.

Recalling the definition of p̄〈k〉γ,y and p̄〈k〉γ,z in Figure 3 and the
fact that Ψ

〈k〉
γ ⊆ Υ

〈k〉
γ , we get that

Ξ(k, γ) =
∑

y∈S[Υ〈k〉
γ]

z=y[Ψ〈k〉
γ]

−p̄y log2

p̄y
p̄z

.

Thus, it suffices to show that each summand is concave in
(p̄x)x. This is indeed the case: let (p̄

(1)
x)x∈S[Λ] and (p̄

(2)
x)x∈S[Λ]

be non-negative. Let 0 ≤ ξ ≤ 1 be given, and define
(p̄

(3)
x)x∈S[Λ] as

p̄(3)
x = ξp̄(1)

x + (1− ξ)p̄(2)
x , x ∈ S[Λ] .

For t = 1, 2, 3, denote by p̄
(t)
y and p̄

(t)
z the marginalizations

corresponding to (p̄
(t)
x)x. Obviously,

p̄(3)
y = ξp̄(1)

y + (1− ξ)p̄(2)
y , y ∈ S[Υ〈k〉γ] .

2Although the objective function is concave, the standard terminology
seems to be convex programming

maximize ∑̀
k=1

ρ〈k〉

c〈k〉

c〈k〉∑
γ=1

Ξ(k, γ)

over the variables (p̄x)x∈S[Λ], where for

1 ≤ k ≤ ` , 1 ≤ γ ≤ c〈k〉 , y ∈ S[Υ〈k〉γ] , z ∈ S[Ψ〈k〉γ] ,

we define

p̄〈k〉γ,y ,
∑

x∈S[Λ] : x[Υ
〈k〉
γ]=y

p̄x , p̄〈k〉γ,z ,
∑

x∈S[Λ] : x[Ψ
〈k〉
γ]=z

p̄x ,

Ξ(k, γ) , −
∑

y∈S[Υ
〈k〉
γ]

p̄〈k〉γ,y log2 p̄
〈k〉
γ,y +

∑
z∈S[Ψ

〈k〉
γ]

p̄〈k〉γ,z log2 p̄
〈k〉
γ,z ,

and the variables p̄x are subject to the following requirements:

(i)
∑
x∈S[Λ]

p̄x = 1 .

(ii) For all x ∈ S[Λ],
p̄x ≥ 0 .

(iii) For all x′ ∈ S[Λ′],∑
x : x[Λ′]=x′

p̄x =
∑

x : x[σ1,0(Λ′)]=σ1,0(x′)

p̄x .

(iv) For all x′′ ∈ S[Λ′′],∑
x : x[Λ′′]=x′′

p̄x =
∑

x : x[σ0,1(Λ′′)]=σ0,1(x′′)

p̄x .

(v) (If S is reflection (resp. complementation) invariant) For
all x ∈ S[Λ],

p̄x = p̄vr(x) = p̄hs(x) (resp. p̄x = p̄comp(x)) .

(vi) (If S is transposition invariant) For all χ ∈ S[Λ̃],∑
x : x[Λ̃]=χ

p̄x =
∑

x : x[Λ̃]=τ(χ)

p̄x .

Fig. 3. Optimization program over the variables p̄x (assuming w.l.o.g. that
r ≤ s). The optimum is an upper bound on cap(S).

and
p̄(3)
z = ξp̄(1)

z + (1− ξ)p̄(2)
z , z ∈ S[Ψ〈k〉γ] .

We must show that for all y ∈ S[Υ
〈k〉
γ], z = y[Ψ

〈k〉
γ]

p̄(3)
y log2

p̄
(3)
y

p̄
(3)
z

≤ ξp̄(1)
y log2

p̄
(1)
y

p̄
(1)
z

+ (1− ξ)p̄(2)
y log2

p̄
(2)
y

p̄
(2)
z

.

This is indeed the case, by the log sum inequality [9, p. 29].

We make the following observations in passing. Suppose
that all the parameters that define the optimization problem
in Figure 3 have already been set, apart from the values of
ρ〈k〉, 1 ≤ k ≤ `. Of course, we would like to set (ρ〈k〉)`k=1

such that our bound is as tight as possible. Namely, we would
like to find the value of (ρ〈k〉)`k=1 which minimizes the value
computed in Figure 3. By [10, Section 3.2.3], this is a convex
optimization problem. In fact, more is true: By [10, Exercise
5.25], instead of searching for the (ρ〈k〉)`k=1 that minimizes
the maximization over all valid probability distributions (min-
max), we could instead — for the sake of argument — switch
the optimization order (max-min).

As can be seen in Appendix B, there are cases in which it
is advantageous to have (ρ〈k〉)`k=1 contain more than one non-
zero entry. Intuitively, this stems from the following: Consider
two indices 1 ≤ k1 < k2 ≤ `, and assume for simplicity
of notation that c〈k1〉 = c〈k2〉 = 1. Suppose that we were
to take ρ〈k1〉 equal to 1, and all other entries of ρ equal
to 0. In that case, by definition, the probability distribution
(p̄x)x∈S[Λ] calculated in Figure 3 would be the one that
maximizes Ξ(k1, 1). Intuitively speaking, it might be the case
that the calculated probability distribution (p̄x)x∈S[Λ] manages
to give the measured entropy function Ξ(k1, 1) the largest
possible value, by giving the unmeasured entropy function
Ξ(k2, 1) an unrealistically small value. Indeed, we might very
well have Ξ(k2, 1) < cap(S) (compare with Lemma 2). This
anomaly can be fixed by properly representing both Ξ(k1, 1)
and Ξ(k2, 1) in the objective function. That is, by giving both
ρ〈k1〉 and ρ〈k2〉 sufficiently large values.

VI. COMPUTATIONAL RESULTS

At this point, we have formulated a concave optimization
problem, and wish to solve it. There are quite a few programs,
termed solvers, that enable one to do so. Many such solvers
— most of them proprietary — are hosted on the servers of
the NEOS project [11][12][13], and the public may submit
moderately sized optimization problems to them. We have
coded our optimization problems in the AMPL modeling
language [14], and submitted them to NEOS.

Essentially, a solver starts with some initial guess as to the
optimizing value of (p̄x)x∈S[Λ], and then iteratively improves
the value of the objective function. This process is terminated
when the solver decides that it is “close enough” to the
optimum. Denote by p̃ = (p̃x)x∈S[Λ] this “close enough”
assignment to the variables. Of course, we must supply an
upper bound on cap(S), not an approximation to one. Thus,
let f̃ and

g̃ = (g̃x)x , x ∈ S[Λ] ,

be the value of the objective function and its gradient at p̃,
respectively. Obviously, f̃ is a lower bound on the value of
our optimization problem. For an upper bound3, we replace
the objective function in Figure 3 by

maximize

f̃ +
∑
x∈S[Λ]

g̃x · (p̄x − p̃x)

 ,

3We remark in passing that if we had chosen to optimize the dual problem
[10, p. 215], then the “dual of” f̃ would already have been an upper bound.
However, we have not managed to state the dual problem in closed form.

1 5 2 6 3 7 4
8 12 9 13 10 14 11
15 19 16 20 17 21 18

≺skip

Fig. 4. An entry labeled i in the configuration precedes an entry labeled j
according to ≺skip iff i < j.

and get a linear program (the value of which can be calculated
exactly). By concavity, the value of this linear program is
indeed an upper bound. So, we use NEOS yet again to
solve it. For the sake of double-checking, we submitted the
above optimization problems to two solvers: IPOPT [15] and
MOSEK.

Before stating our computational results, let us first define
one more strict total order, which we have termed the “skip”
order, ≺skip (see Figure 4). We have that (i1, j1) ≺skip (i2, j2)
iff
• i1 < i2, or
• (i1 = i2 and j1 ≡ 0 (mod 2) and j2 ≡ 1 (mod 2)), or
• (i1 = i2 and j1 ≡ j2 (mod 2) and j1 < j2)
Our computational results appear in Table I. To the best of

our knowledge, they are presently the tightest. The penultimate
column contains upper bounds obtained by the method de-
scribed in [6]. When available, these compared-to bounds are
taken from previously published work, as indicated to the right
of them. The rest are the result of our implementation of [6].
For reference, the last column contains corresponding lower
bounds. We note that the indexes (a

〈k〉
γ , b

〈k〉
γ) and coefficients

ρ〈k〉 used for each constraint were optimized by hand, through
trial and error. Also, we note that when applying our method
to the 2-D (1,∞)-RLL constraint, our bound was inferior to
the one presented in [2] (utilizing the method of [7]). In order
to make the results in Table I reproducible, we completely
specify how they were obtained in Appendix B.

VII. ASYMPTOTIC ANALYSIS

For a given constraint S and positive integers r and s, let
t be an integer such that 0 ≤ t < s. Denote by µ(r, s, t)
the value of the optimization program in Figure 3, where the
parameters are as in (8). In this section, we show that even
if we restrict ourselves to this simple case, we get an upper
bound which is asymptotically tight, in the following sense.

Theorem 9: For all ε > 0, there exist

r0 > 0 , s0 > 0 , 0 ≤ t0 < s0

such that for all

r ≥ r0 , s ≥ s0 , t0 ≤ t ≤ s− (s0 − t0) ,

we have that
µ(r, s, t)− cap(S) ≤ ε .

In order to prove Theorem 9, we need the following lemma.

TABLE I
UPPER-BOUNDS ON THE CAPACITY OF SOME 2-D CONSTRAINTS.

Constraint r s ` ≺ used Upper bound Comparison Lower bound
(2,∞)-RLL 3 8 7 ≺lex, ≺skip 0.4457 0.4459 [16] 0.444202 [17]
(3,∞)-RLL 4 8 5 ≺lex 0.36821 0.3686 [16] 0.365623 [18]
(0, 2)-RLL 3 5 2 ≺lex 0.816731 0.817053 0.816007 [18]

n.i.b. 3 4 1 ≺skip 0.92472 0.927855 0.922640 [17]

Lemma 10: For all ε > 0, there exist

r0 > 0 , s0 > 0 , 0 ≤ t0 < s0

such that
µ(r0, s0, t0)− cap(S) < ε .

Proof: Another well known method for bounding cap(S)
from above is the so called “stripe method,” mentioned in
the introduction. Namely, for some given θ, consider the 1-D
constraint S = S(θ) defined as follows. The alphabet of the
constraint is Σθ. A word of length r′ satisfies S if and only if
when we write its entries as rows of length θ, one below the
other, we get an r′ × θ configuration which satisfies the 2-D
constraint S.

Define the normalized capacity of S as

ĉap(S) =
1

θ
cap(S) .

By the definition of cap(S), the normalized capacity ap-
proaches cap(S) as θ →∞. Thus, fix a θ such that

ĉap(S)− cap(S) ≤ ε/2 .

We say that a 1-D constraint has memory m if there exists
a graph representing it, and all paths in the graph of length
m with the same labeling terminate in the same vertex. By
[1, Theorem 3.17] and its proof, there exists a series of 1-D
constraints {Sm}∞m=1 such that S ⊆ Sm, the memory of Sm is
m, and limm→∞ cap(Sm) = cap(S). Thus, fix m such that

ĉap(Sm)− ĉap(S) ≤ ε/2 .

To finish the proof, we now show that

µ(r0, s0, t0) ≤ ĉap(Sm) ,

where

r0 = m + 1 , s0 = 2 · θ , t0 = θ − 1 .

Note that µ(r0, s0, t0) is the maximum of

H(X̄m,θ−1|X̄[T
(≺lex)
m,θ−1 ∩ Bm+1,2·θ]) , (13)

over all random variables X̄ ∈ Sm+1,2·θ with a probability
distribution satisfying our linear requirements.

For all 0 ≤ φ < θ we get by the (imposed) stationarity of
X̄ that (13) is bounded from above by

Hφ = H(X̄m,φ|X̄[T
(≺lex)
m,φ ∩ Bm+1,θ]) .

So, (13) is also bounded from above by

1

θ

θ−1∑
φ=0

Hφ . (14)

The first θ columns of X̄ form a configuration with index set
Bm+1,θ. By our linear requirements, stationarity (specifically,
vertical stationarity) holds for this configuration as well. So,
we may define a stationary 1-D Markov chain [1, §3.2.3] on
Sm, with entropy given by (14). That entropy, in turn, is at
most ĉap(Sm).

Proof of Theorem 9: The following inequalities are easily
verified:

µ(r, s, t) ≥ µ(r + 1, s, t) .

µ(r, s, t) ≥ µ(r, s+ 1, t) .

µ(r, s, t) ≥ µ(r, s+ 1, t+ 1) .

The proof follows from them and Lemma 10.

VIII. ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for helpful
comments.

APPENDIX A
PROOF OF THEOREM 1

Our goal in this appendix is to prove Theorem 1. Essentially,
Theorem 1 will turn out to be a corollary of [8, Theorem 1.4].
However, [8, Theorem 1.4] deals with configurations in which
the index set is Z2. So, some definitions and auxiliary lemmas
are in order.

Recall that (Grow, Gcol) is the pair of vertex-labeled graphs
through which S = S(Grow, Gcol) is defined. Also, recall
that each member of S is a configuration with a rectangular
index set. Namely, the index set of a configuration in S is
σi,j(BM,N), for some i, j, M , and N . We now give a very
similar definition to that of S, only now we require that
the index set of each configuration is Z2. Namely, define
S = S(Grow, Gcol) as follows: A configuration (wi,j)(i,j)∈Z2

over Σ is in S(Grow, Gcol) iff there exists a configuration
(ui,j)(i,j)∈Z2 over the vertex set V with the following prop-
erties: for all (i, j) ∈ Z2, (a) the labeling of ui,j satisfies
L(ui,j) = wi,j ; (b) there exists an edge from ui,j to ui,j+1 in
Grow; (c) there exists an edge from ui,j to ui+1,j in Gcol.

For positive integers M,N > 0, define SM,N as the
restriction of S to BM,N . Namely,

SM,N = S[BM,N] ,

where the definition of the restriction operation is as in (3).
Also, for M equal to N , define

SM = SM,M .

Note that for all M,N > 0 we have

SM,N ⊆ SM,N , (15)

and there are cases in which the inclusion is strict. Next, define
the capacity of S as

cap(S) = lim
M→∞

1

M2
· log2 |SM | .

The limit indeed exists, by sub-additivity (see [3, Appendix],
and references therein).

For integers M,N > 0 and δ ≥ 0, denote

CM,N,δ = σ−δ,−δ(BM+2δ,N+2δ)

and let
SM,N,δ = S[CM,N,δ] .

Note that the index set CM,N,δ of each element of SM,N,δ is
simply BM,N , padded with δ columns to the right and left and
δ rows to the top and bottom. The following lemma will help
us bridge the gap between finite and infinite index sets. It is
essentially a restatement of [19, Lemma 2.6].

Lemma 11: Let w be a configuration over the finite
alphabet Σ with index set BM,N . If for all δ ≥ 0 we have
that

w ∈ SM,N,δ[BM,N] , (16)

then we must have that

w ∈ SM,N .

Proof: Define the following auxiliary directed graph. The
vertex set is⋃

δ≥0

{ŵ ∈ SM,N,δ : ŵ[BM,N] = w} .

For every δ ≥ 0, there is a directed edge from w1 ∈ SM,N,δ to
w2 ∈ SM,N,δ+1 iff w1 = w2[CM,N,δ]. It is easily seen that this
graph is a directed tree with root w, as defined in [20, §2.4].
Since (16) holds for all δ ≥ 0, the vertex set of the tree is
infinite (and countable). On the other hand, since the alphabet
size |Σ| is finite, the out-degree of each vertex is finite. Thus,
by König’s Infinity Lemma [20, Theorem 2.8], we must have
an infinite path in the tree starting from the root w.

Denote the vertices of the above-mentioned infinite path as

w = w[0], w[1], w[2],

We now show how to find a configuration (w′i,j)(i,j)∈Z2 such
that w′ ∈ S and w = w′[BM,N]. For each (i, j) ∈ Z2, define
w′i,j as follows: let δ ≥ 0 be such that (i, j) ∈ CM,N,δ , and
take w′i,j = w

[δ]
i,j . It is easily seen that w′ is well defined and

contained in S.
The following lemma states that although the inclusion in

(15) may be strict, the capacities of S and S are equal. The
lemma is stated in [19] as Theorem 2.5, for the case of finite

type constraints. For the sake of completeness, and also since
our setting is more general, we give a proof here as well.

Lemma 12: Let S and S be as previously defined. Then,

cap(S) = cap(S) . (17)

Proof: By (15), we must have that cap(S) ≤ cap(S). For
the other direction, it suffices to prove that for all M > 0,

cap(S) ≤ 1

M2
log2 |SM | . (18)

So, let us fix M and prove the above. By Lemma 11, there
exists δ ≥ 0 such that for all w ∈ ΣM×M ,

w 6∈ SM =⇒ w 6∈ SM,M,δ[BM] .

For t > 0, let M ′ be shorthand for

M ′ = t ·M .

By the definition of capacity, we have that

cap(S) = lim
t→∞

1

(M ′)2
log2 |SM ′ | . (19)

Now, let us partition BM ′ into the following disjoint sub-sets
of indexes: for 0 ≤ i, j < t, define the set

Di,j = σi·M,j·M (BM) .

Let w′ ∈ SM ′ . Notice that for all 0 ≤ i, j < t for which

σi·M,j·M (CM,M,δ) ⊆ BM ′ , (20)

we must have that w′[Di,j] is equal to some correspondingly
shifted element of SM . On the other hand, for M and δ fixed,
the number of pairs (i, j) for which (20) does not hold is O(t).
Thus, a simple calculation gives us that

1

(M ′)2
log2 |SM ′ | ≤ 1

M2
log2 |SM |+O(1/t) .

This, together with (19), proves (18).
For a given M > 0, define the set F(M) of configurations

with index set Z2 as follows: a configuration (wi,j)(i,j)∈Z2 is
in F(M) iff for all (i, j) ∈ Z2,

w[σi,j(BM)] ∈ SM .

Namely, each M × M “patch” is a correspondingly shifted
element of SM .

Note that there exist vertex-labeled graphs Grow(M) and
Gcol(M) such that F(M) = S(Grow(M), Gcol(M)). Specif-
ically, the vertex set of both graphs is equal to SM ; the label
of each such vertex is its lower-left entry; there is an edge
from w1 ∈ SM to w2 ∈ SM in Grow(M) (Gcol(M)) iff the
first M − 1 rows (columns) of w1 are equal to the last M − 1
(rows) columns of w2. Thus, cap(F(M)) exists. Also, since
w ∈ S implies w ∈ F(M), we have

cap(S) ≤ cap(F(M)) . (21)

The following is a direct corollary of [8, Theorem 1.4].

Corollary 13: For all M > 0, there exists a stationary
random variable W (M) taking values on F(M)[BM] such that

cap(F(M)) ≤ 1

M2
H(W (M)) . (22)

Proof of Theorem 1: Notice that

F(M)[BM] = SM ⊆ SM .

Thus, take W (M) as in Corollary 13 and notice that it satisfies
conditions (i) and (ii) in Theorem 1. From (17), (21), and (22)
we get that

cap(S) ≤ lim
M→∞

1

M2
·H(W (M)) .

But since W (M) takes values on SM , we have by [9, p. 19]
that the above inequality is in fact an equality. Thus, condition
(iii) is proved.

APPENDIX B
FULL SPECIFICATION OF RESULTS IN TABLE I

This appendix is devoted to completely specifying how the
results given in the sixth column of Table I were obtained.

Recall that the first four columns of Table I specify the
constraint considered, along with the values of r, s, and `
used. We will repeat these here, for convenience. Next, for
k = 1, 2, . . . , `, we must specify ρ〈k〉, ≺〈k〉, c = c〈k〉, f 〈k〉,
and (a

〈k〉
γ , b

〈k〉
γ)cγ=1. Note that we have omitted (Ψ

〈k〉
γ)cγ=1 in

the above, since it can be deduced from (6).
We relate the following facts about our calculations, in order

to make the specification more concise later on. We stress that
the reader may choose to preform calculations in which the
following do not hold.
• For a fixed 1 ≤ k ≤ `, we have that the pair (a

〈k〉
γ , b

〈k〉
γ)

is independent of 1 ≤ γ ≤ c〈k〉. Hence, even if c〈k〉 > 1,
we will specify only one pair (denoted (a

〈k〉
∗ , b

〈k〉
∗) in the

following tables).
• Recall from Table I that the two possible values for ≺〈k〉

are ≺lex and ≺skip. In our case, specifying ≺〈k〉 specifies
c〈k〉 and f 〈k〉 as well: If ≺〈k〉=≺lex, then c〈k〉 = 1 and
f 〈k〉 is identically 1. If ≺〈k〉=≺skip, then c〈k〉 = 2 and
f 〈k〉 is given by

fskip(i, j) =

{
1 j ≡ 0 (mod 2)

2 j ≡ 1 (mod 2)
.

Thus, we have omitted c〈k〉 and f 〈k〉 from Tables II–V,
which specify the parameters that yielded the results in
Table I.

REFERENCES

[1] B. H. Marcus, R. M. Roth, and P. H. Siegel, “Constrained systems and
coding for recording channels,” in Handbook of Coding Theory, V. Pless
and W. Huffman, Eds. Amsterdam: Elsevier, 1998, pp. 1635–1764.

[2] W. Weeks and R. E. Blahut, “The capacity and coding gain of certain
checkerboard codes,” IEEE Trans. Inform. Theory, vol. 44, pp. 1193–
1203, 1998.

[3] A. Kato and K. Zeger, “On the capacity of two-dimensional run-length
constrained code,” IEEE Trans. Inform. Theory, vol. 45, pp. 1527–1540,
1999.

TABLE II
FIRST ROW IN TABLE I — (2,∞)-RLL: r = 3, s = 8, ` = 7.

k ρ〈k〉 ≺〈k〉 (a
〈k〉
∗ , b

〈k〉
∗)

1 0.32 ≺lex (2, 2)
2 0.20 ≺lex (2, 3)
3 0.35 ≺lex (2, 4)
4 0.08 ≺lex (2, 5)
5 0.01 ≺lex (2, 7)
6 0.03 ≺skip (2, 2)
7 0.01 ≺skip (2, 3)

TABLE III
SECOND ROW IN TABLE I — (3,∞)-RLL: r = 4, s = 8, ` = 5.

k ρ〈k〉 ≺〈k〉 (a
〈k〉
∗ , b

〈k〉
∗)

1 0.56 ≺lex (3, 3)
2 0.23 ≺lex (3, 4)
3 0.13 ≺lex (3, 5)
4 0.04 ≺lex (3, 6)
5 0.04 ≺lex (3, 7)

[4] T. Etzion, “Cascading methods for runlength-limited arrays,” IEEE
Trans. Inform. Theory, vol. 43, pp. 319–324, 1997.

[5] S. Halevy, J. Chen, R. M. Roth, P. H. Siegel, and J. K. Wolf, “Improved
bit-stuffing bounds on two-dimensional constraints,” IEEE Trans. In-
form. Theory, vol. 50, pp. 824–838, 2004.

[6] S. Forchhammer and J. Justesen, “Bounds on the capacity of constrained
two-dimensional codes,” IEEE Trans. Inform. Theory, vol. 46, pp. 2659–
2666, 2000.

[7] N. Calkin and H. S. Wilf, “The number of independent sets in a grid
graph,” SIAM J. Discrete Math., vol. 11, pp. 54–60, 1997.

[8] R. Burton and J. E. Steif, “Non-uniqueness of measures of maximal
entropy for subshifts of finite type,” Ergod. Th. Dynam. Sys., vol. 14,
pp. 213–235, 1994.

[9] T. M. Cover and J. A. Thomas, Elements of Information Theory. Wiley,
1991.

[10] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, UK:
Cambridge University Press, 2004.

[11] J. Czyzyk, M. P. Mesnier, and J. J. Moré, “The NEOS server,” IEEE
Computational Science & Engineering, vol. 5, no. 3, pp. 68–75, 1998.

[12] W. Gropp and J. J. Moré, “Optimization environments and the NEOS
server,” in Approximation Theory and Optimization. Cambridge Uni-
versity Press, 1997, pp. 167–182.

[13] E. D. Dolan, R. Fourer, J. J. Moré, and T. S. Munson, “The NEOS server
for optimization: Version 4 and beyond,” Mathematics and Computer
Science Division, Argonne National Laboratory, Argonne, IL, Tech.
Rep., 2002.

[14] R. Fourer, D. M. Gay, and B. W. Kernighan, AMPL: A Modeling
Language for Mathematical Programming, 2nd ed. Duxbury Press,
2002.

[15] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming,”
Math. Program., vol. 106, pp. 25–57, 2006.

[16] S. Forchhammer and T. V. Laursen, “Entropy of bit-stuffing-induced
measures for two-dimensional checkerboard constraints,” IEEE Trans.
Inform. Theory, vol. 53, pp. 1537–1546, 2007.

[17] I. Tal and R. M. Roth, “Bounds on the rate of 2-D bit-stuffing encoders,”
IEEE Trans. Inform. Theory, vol. 56, pp. 2561–2567, 2010.

[18] A. Sharov and R. M. Roth, “Two-dimensional constrained coding based
on tiling,” IEEE Trans. Inform. Theory, vol. 56, pp. 1800–1807.

[19] S. Friedland, “On the entropy of Zd subshifts of finite type,” Lin. Alg.
Appls., vol. 252, pp. 199–220, 1997.

[20] S. Even, Graph Algorithms. Computer Science Press, 1979.

TABLE IV
THIRD ROW IN TABLE I — (0, 2)-RLL: r = 3, s = 5, ` = 2.

k ρ〈k〉 ≺〈k〉 (a
〈k〉
∗ , b

〈k〉
∗)

1 0.54 ≺lex (2, 2)
2 0.46 ≺lex (2, 3)

TABLE V
FOURTH ROW — N.I.B.: r = 3, s = 4, ` = 1.

k ρ〈k〉 ≺〈k〉 (a
〈k〉
∗ , b

〈k〉
∗)

1 1 ≺lex (2, 2)

Biographies:
Ido Tal was born in Haifa, Israel, in 1975. He received

the B.Sc., M.Sc., and Ph.D. degrees in computer science
from Technion—Israel Institute of Technology, Haifa, Israel,
in 1998, 2003 and 2009, respectively.

He is a Postdoctoral Scholar at the Information Theory and
Applications (ITA) Center and is affiliated with the Center for
Magnetic Recording Research (CMRR), both at the University
of California at San Diego, La Jolla, CA, USA. His research
interests include constrained coding and error-control coding.

Ron M. Roth was born in Ramat Gan, Israel, in 1958. He
received the B.Sc. degree in computer engineering, the M.Sc.
in electrical engineering and the D.Sc. in computer science
from Technion—Israel Institute of Technology, Haifa, Israel,
in 1980, 1984 and 1988, respectively. Since 1988 he has been
with the Computer Science Department at Technion, where
he now holds the General Yaakov Dori Chair in Engineering.
During the academic years 1989–91 he was a Visiting Scientist
at IBM Research Division, Almaden Research Center, San
Jose, California, and during 1996–97 and 2004–05 he was
on sabbatical leave at Hewlett–Packard Laboratories, Palo
Alto, California. He is the author of the book Introduction
to Coding Theory published by Cambridge University Press
in 2006. Dr. Roth was an associate editor for coding theory
in IEEE TRANSACTIONS ON INFORMATION THEORY from
1998 till 2001, and he is now serving as an associate editor in
SIAM Journal on Discrete Mathematics. His research interests
include coding theory, information theory, and their application
to the theory of complexity.

