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A Lower Bound on the Probability of Error of Polar
Codes over BMS Channels

Boaz Shuval, Student Member, IEEE, Ido Tal, Senior Member, IEEE

Abstract—Polar codes are a family of capacity-achieving codes
that have explicit and low-complexity construction, encoding,
and decoding algorithms. Decoding of polar codes is based
on the successive-cancellation decoder, which decodes in a bit-
wise manner. A decoding error occurs when at least one bit is
erroneously decoded. The various codeword bits are correlated,
yet performance analysis of polar codes ignores this dependence:
the upper bound is based on the union bound, and the lower
bound is based on the worst-performing bit. Improvement of the
lower bound is afforded by considering error probabilities of two
bits simultaneously. These are difficult to compute explicitly due
to the large alphabet size inherent to polar codes. In this research
we propose a method to lower-bound the error probabilities of bit
pairs. We develop several transformations on pairs of synthetic
channels that make the resultant synthetic channels amenable
to alphabet reduction. Our method yields lower bounds that
significantly improve upon currently known lower bounds for
polar codes under successive-cancellation decoding.

Index Terms—Channel polarization, channel upgrading, lower
bounds, polar codes, probability of error.

I. INTRODUCTION

POLAR codes [1] are a family of codes that achieve capacity
on binary, memoryless, symmetric (BMS) channels and

have low-complexity construction, encoding, and decoding
algorithms. This is the setting we consider. Polar codes
have since been extended to a variety of settings including
source-coding [2], [3], non-binary channels [4], asymmetric
channels [5], settings with memory [6], [7], [8], and more.
The probability of error of polar codes is given by a union of
correlated error events. The union bound, which ignores this
correlation, is used to upper-bound the error probability. In
this work, we exploit the correlation between error events to
develop a general method for lower-bounding the probability
of error of polar codes.

Figure 1 shows a numerical example of the lower bound
developed in this paper. We designed a polar code of length
N = 210 = 1024 and rate R = 0.1 for a Binary Symmetric
Channel (BSC) with crossover probability 0.2. We plot upper
and lower bounds on the probability of error of this code under
successive cancellation decoding, when used over BSCs of
varying crossover probabilities. Our lower bound significantly
improves upon the existing (trivial) lower bound, and is tight
over a large range of crossover probabilities.
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Fig. 1. Bounds on the probability of error of a rate 0.1 polar code of length
210 designed for a BSC with crossover probability 0.2. The code was used
over BSCs with a range of crossover probabilities. The upper bound is based
on [9]. The trivial lower bound is a lower bound on the probability of error
of worst synthetic channel in the non-frozen set. The new lower bound was
computed using the techniques of this paper.

Our method is based on lower-bounding the probability of
correlated error events. It consists of several operations and
transformations that we detail throughout this article. A high-
level description of the key steps appears at the end of the
introduction, once we establish some notation.

Polar codes are based on an iterative construction that trans-
forms N = 2n identical and independent channel uses into low-
entropy and high-entropy channels. The low-entropy channels
are almost noiseless, whereas the high-entropy channels are
almost pure noise. Arıkan showed [1] that for every ε > 0, as
N →∞ the proportion of channels with capacity greater than
1 − ε tends to the channel capacity C and the proportion of
channels with capacity less than ε tends to 1 − C.

The polar construction begins with two identical and inde-
pendent copies of a BMS channel W and transforms them into
two new channels,

W−(y1, y2 |u1) =
1
2

∑
u2

W(y1 |u1 ⊕ u2)W(y2 |u2),

W+(y1, y2, u1 |u2) =
1
2

W(y1 |u1 ⊕ u2)W(y2 |u2). (1)

Channel W+ is a better channel than W whereas channel W−
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is worse than W .1 This construction can be repeated multiple
times; each time we take two identical copies of a channel, say
W+ and W+, and polarize them, e.g., to W+− and W++. We
call the operation W 7→ W− a ‘−’-transform, and the operation
W 7→ W+ a ‘+’-transform.

There are N = 2n possible combinations of n ‘−’-
and ‘+’-transforms; we define channel Wa as follows. Let
〈α1, α2, . . . , αn〉 be the binary expansion of a − 1, where α1 is
the most significant bit (MSB). Then, channel Wa is obtained
by n transforms of W according to the sequence α1, α2, . . . , αn,
starting with the MSB: if αj = 0 we do a ‘−’-transform and if
αj = 1 we do a ‘+’-transform. For example, if n = 3, channel
W5 is W+−−, i.e., it first undergoes a ‘+’-transform and then
two ‘−’-transforms.

Overall, we obtain N channels W1, . . . ,WN ; channel Wa has
input ua and output y1, . . . , yN, u1, . . . , ua−1. That is, channel
Wa has binary input ua, output that consists of the output
and input of channel Wa−1, and assumes that the input bits
of future channels ua+1, . . . , uN are uniform. We call these
synthetic channels. One then determines which synthetic
channels are low-entropy and which are high-entropy, and
transmits information over the low-entropy synthetic channels
and predetermined values over the high-entropy synthetic
channels. Since the values transmitted over the latter are
predetermined, we call the high-entropy synthetic channels
frozen.

Decoding is accomplished via the successive-cancellation
(SC) decoder. It decodes the synthetic channels in succession,
using previous bit decisions as part of the output. The bit
decision for a synthetic channel is either based on its likelihood
or, if it is frozen, on its predetermined value. That is, denoting
the set of non-frozen synthetic channels by A,

Ûa(y
N
1 , û

a−1
1 ) =


arg max

ua

Wa(y
N
1 , û

a−1
1 |ua), a ∈ A

ua, a ∈ Ac,

where we denoted yN1 = y1, . . . , yN and similarly for the
previous bit decisions ûa−1

1 . As non-frozen synthetic channels
are almost noiseless, previous bit decisions are assumed to be
correct. Thus, when N is sufficiently large, this scheme can
be shown to achieve capacity [1], as the proportion of almost
noiseless channels is C.

To analyze the performance of polar codes, let Ba denote the
event that channel Wa errs under SC decoding while channels
1, 2, . . . , a − 1 do not. That is,

Ba =
{
uN

1 , y
N
1 | û

a−1
1 = ua−1

1 , Ûa(y
N
1 , û

a−1
1 ) , ua

}
.

The probability of error of polar codes under SC decoding is
given by P

{⋃
a∈A Ba

}
. Denote by Ea the event that channel

Wa errs given that a genie had revealed to it the true previous
bits, i.e.

Ea =
{
uN

1 , y
N
1 | Ûa(y

N
1 , u

a−1
1 ) , ua

}
.

We call an SC decoder with access to genie-provided pre-
vious bits a genie-aided decoder. Some thought reveals that

1By this we mean that channel W+ can be stochastically degraded to channel
W , which in turn can be stochastically degraded to W−.

⋃
a∈A Ba =

⋃
a∈A Ea (see [4, Proposition 2.1] or [10, Lemma

1]). Thus, the probability of error of polar codes under SC
decoding is equivalently given by PSC

e (W) = P
{⋃

a∈A Ea
}
. In

the sequel we assume a genie-aided decoder.
The events {Ba} are disjoint but difficult to analyze. The

events Ea are easier to analyze, but are no longer disjoint. A
straightforward upper bound for P

{⋃
a∈A Ea

}
is the union

bound:

P

{ ⋃
a∈A

Ea

}
≤

∑
a∈A

P {Ea} . (2)

This bound facilitated the analysis of [1]. An important question
is how tight this upper bound is. To this end, one approach is
to develop a lower bound to P

{⋃
a∈A Ea

}
, which is what we

pursue in this work.
A trivial lower bound on a union is

P

{ ⋃
a∈A

Ea

}
≥ max

a∈A
P {Ea} . (3)

Better lower bounds may be obtained by considering pairs of
error events:

P

{ ⋃
a∈A

Ea

}
≥ max

a,b∈A
P {Ea ∪ Eb} .

Via the inclusion-exclusion principle, one can combine lower
bounds on multiple pairs of error events to obtain a better
lower bound [11]

P

{ ⋃
a∈A

Ea

}
≥

∑
a∈A

P {Ea} −
∑

a,b∈A,
a<b

P {Ea ∩ Eb} . (4)

This can also be cast in terms of unions of error events using
P {Ea ∩ Eb} = P {Ea} + P {Eb} − P {Ea ∪ Eb}.

To our knowledge, to date there have been two attempts to
compute a lower bound on the performance of the SC decoder,
both based on (4). The first attempt was in [10], using a density
evolution approach, and the second attempt in [12] applies only
to the Binary Erasure Channel (BEC). We briefly introduce
these below, but first we explain where the difficulty lies.

The probability P {Ea} is given by an appropriate functional
of the probability distribution of synthetic channel Wa. How-
ever, the output alphabet of Wa is very large. If the output
alphabet of W is Y then the output alphabet of Wa has size
|Y|N2a−1. This quickly grows unwieldy, recalling that N = 2n.
It is infeasible to store this probability distribution and it must
be approximated. Such approximations are the subject of [9];
they enable one to compute upper and lower bounds on various
functionals of the synthetic channel Wa.

To compute probabilities of unions of events, one must
know the joint distribution of two synthetic channels. The size
of the joint channel’s output alphabet is the product of each
synthetic channel’s alphabet size, rendering the joint distribution
infeasible to store.

The authors of [10] suggested to approximate the joint distri-
bution of pairs of synthetic channels using a density evolution
approach. This provides an iterative method to compute the
joint channel, but does not address the problem of the amount
of memory required to store it. Practical implementation of
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density evolution must involve quantization [13, Appendix B].
The probability of error derived from quantized joint channels
approximates, but does not generally bound, the real probability
of error. For the special case of the BEC, as noted and analyzed
in [10], no quantization is needed, as the polar transform of
a BEC is a BEC. Thus, they were able to precisely compute
the probabilities of unions of error events of descendants of a
BEC using density evolution.

The same bounds for the BEC were developed in [12] using
a different approach, again relying on the property that the
polar transform of a BEC is a BEC. The authors were able to
track the joint probability of erasure during the polarization
process. Furthermore, they were able to show that the union
bound is asymptotically tight for the BEC.

In this work, we develop an algorithm to compute lower
bounds on the joint probability of error of two synthetic
channels P {Ea ∪ Eb}. Our technique is general, and applies to
synthetic channels that are polar descendants of any BMS
channel. We use these bounds in (4) to lower-bound the
probability of error of polar codes. For the special case of
the BEC, we recover the results of [10] and [12] using our
bounds.

Concretely, consider two synthetic channels, Wa(ya |ua)

and Wb(yb |ub), which we call the a-channel and the b-
channel, respectively. Their joint channel is Wa,b(ya, yb |ua, ub).
Our algorithm lower-bounds the probability that a successive
cancellation decoder errs on either channel. It is based on the
following key steps:

1) Replace successive cancellation with a different decoding
criterion (Section III).

2) Bring the joint channel to a different form that makes
the b-channel decoding immediately apparent from the
received symbol (Section IV-A).

3) Apply the symmetrizing transform, after which the output
of the a-channel is independent of the input of the b-
channel (Section V).

4) Apply the upgrade-couple transform, which splits each
a-channel output to multiple symbols. However, each
such new symbol is constrained to appear with only a
small subset of b-channel outputs (Section VI-A).

5) Reduce each channel’s alphabet size. This is done by
stochastically upgrading one channel while keeping the
other channel constant. Each channel has a different
upgrading procedure; the a-channel upgrading procedure
is detailed in Section VI-A, and the b-channel upgrading
procedure is detailed in Section VI-B.

II. OVERVIEW OF OUR METHOD

In this section we provide a brief overview of our method,
and lay out the groundwork for the sections that follow. We
aim to produce a lower bound on the probability of error of
two synthetic channels. Since we cannot know the precise joint
distribution, we must approximate it. The approximation is
rooted in stochastic degradation.

Degradation is a partial ordering of channels. Let W(y |u)
and Q(z |u) be two channels. We say that W is (stochastically)

degraded with respect to Q, denoted W 4 Q, when there exists
some channel P(y |z) such that

W(y |u) =
∑
z

P(y |z)Q(z |u). (5)

If W is degraded with respect to Q then Q is upgraded with
respect to W . Degradation implies an ordering on the probability
of error of the channels [13, Chapter 4]: if W 4 Q then
P?e (W) ≥ P?e (Q), where P?e denotes the probability of error of
the optimal decoder (defined in Section III-A).

The notion of degradation readily applies to joint channels.
If Wa,b(ya, yb |ua, ub) and Qa,b(za, zb |ua, ub) are two joint
channels, we say that Qa,b(za, zb |ua, ub) < Wa,b(ya, yb |ua, ub)
via some degrading channel P(ya, yb |za, zb) if

Wa,b(ya, yb |ua, ub) =
∑
za,zb

P(ya, yb |za, zb)Qa,b(za, zb |ua, ub).

(6)
As for the single channel case, if Qa,b < Wa,b then P?e (Wa,b) ≥

P?e (Qa,b), where P?e is the probability of error of the optimal
decoder for the joint channel. Indeed our approach will be
to approximate the joint synthetic channel with an upgraded
joint channel with smaller output alphabet. There is a snag,
however: this ordering of error probabilities does not hold, in
general, for suboptimal decoders.

The SC decoder, used for polar codes, is suboptimal. In the
genie-aided case, which we consider here, it is equivalent to
performing a maximum likelihood decision on each marginal
separately. We shall demonstrate the suboptimality of the SC
decoder in Section III. Then, we will develop a different
decoding criterion whose performance lower-bounds the SC
decoder performance and is ordered by degradation. While in
general finding this decoder requires an exhaustive search, for
the special case of polar codes this decoder is easily found.
It does, however, imply a special structure for the degrading
channel, which we use to our advantage.

We investigate the joint distribution of two synthetic channels
in Section IV. We first bring it to a more convenient form
that will be used in the sequel. Then, we explain how to
polarize a joint synthetic channel distribution and explore some
consequences of symmetry. Further consequences of symmetry
are the subject of Section V, in which we transform the channel
to another form that greatly simplifies the steps that follow.
This form exposes the inherent structure of the joint channel.

How to actually upgrade joint channels is the subject
of Section VI. We upgrade the joint channel in two ways;
each upgrades one marginal without changing the other. We
cannot simply upgrade the marginals, as we must consider the
joint channel as a whole. This is where the above-mentioned
symmetrizing and upgrade-couple transforms come into play.

We present our algorithm for lower-bounding the probability
of error of polar codes in Section VII. This algorithm is based
on the building blocks presented in the previous sections.
Details of our implementation appears in Section VIII. We
demonstrate our algorithm with some numerical results in
Section IX, and conclude with a short discussion in Section X.
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A. Notation

For j < k, let ykj denote (yj, yj+1, . . . , yk). We use an Iverson-
style notation (see [14]) for indicator (characteristic) functions.
That is, for a logical expression expr, [expr] is 0 whenever
expr is not true and is 1 otherwise. We assume that the
indicator function takes precedence whenever it appears, e.g.,
n−1 [n > 0] is 0 for n = 0.

III. DECODING OF TWO DEPENDENT CHANNELS

In this section, we tackle decoding of two dependent
channels. We explain how this differs from the case of decoding
a single channel, and dispel some misconceptions that may arise.
We then specialize the discussion to polar codes. We explain
the difficulty with combining the SC decoder with degradation
procedures, and develop a different decoding criterion instead.
Finally, we develop a special structure for the degrading channel
that, combined with the decoding criterion, implies ordering
of probability of error by degradation.

A. General Case

A decoder for channel W : U → Y is a mapping φ that
maps every output symbol y ∈ Y to some u ∈ U. The average
probability of error of the decoder for equiprobable inputs is
given by

Pe(W) =
∑
u

∑
y

W(y |u)
|U|

P {φ(y) , u} .

The decoder is deterministic for symbols y for which
P {φ(y) , u} assumes only the values 0 and 1. For some
symbols, however, we allow the decoder to make a random
decision. If W(y |u) = W(y |u′) for some u, u′ ∈ U, then Pe(W)
is the same whether φ(y) = u or φ(y) = u′. Thus, the probability
of error is insensitive to the resolution of ties. We denote the
error event of a decoder by E = {(u, y) : φ(y) , u} . It is
dependent on the decoder, i.e., E = E(φ); we suppress this to
avoid cumbersome notation. Clearly, Pe(W) = P {E}.

The maximum-likelihood (ML) decoder, well known to
minimize Pe(W) when the input bits are equiprobable, is
defined by

W(y |u) > W(y |u′) ∀u′ , u⇒ φ(y) = u. (7)

The ML decoder is not unique, as it does not define how ties
are resolved. In the absence of ties, the ML decoding rule is
φ(y) = arg maxu W(y |u). We denote by PML

e (W) the probability
of error of the ML decoder.

We now consider two dependent binary-input channels, Wa :
U → Ya and Wb : U → Yb , with joint distribution Wa,b : U×
U → Ya×Yb . A decoder is a mapping φ : Ya×Yb →U×U.
The joint probability of error of the decoder is, as above,

Pe(Wa,b)

=
∑
ua,ub

∑
ya,yb

Wa,b(ya, yb |ua, ub)
|U|2

P {φ(ya, yb) , (ua, ub)} .

(8)

An optimal decoder for the joint channel considers both
outputs together and makes a decision for both inputs jointly,

to minimize Pe(Wa,b). We denote its probability of error by
P?e (Wa,b). When the input bits are equiprobable, P?e (Wa,b) =

PML
e (Wa,b).
Rather than jointly decoding the input bits based on the

joint output, we may opt to decode each marginal channel
separately. That is, consider decoders of the form φ(ya, yb) =
(φa(ya), φb(yb)). In words, the decoder of channel Wa bases
its decision solely on ya and completely ignores yb and vice
versa. What are the optimal decoders φa and φb? The answer
depends on the criterion of optimality.

Denote by Ei the error event of channel Wi under some
decoder φi : Yi → U. The Individual Maximum Likelihood
(IML) decoder minimizes each individual marginal channel’s
probability of error. That is, we set φa and φb as ML decoders
for their respective marginal channels. We denote its joint
probability of error by PIML

e (Wa,b). Hence, PIML
e (Wa,b) is

computed by (8), with φ(ya, yb) = (φ
ML
a (ya), φ

ML
b
(yb)), where

φML
a and φML

b
are ML decoders for the marginal channels Wa

and Wb , respectively.
Another criterion is to minimize P {Ea ∪ Eb}, the probability

that at least one of the decoders makes an error. We call
the decoder that minimizes this probability using individual
decoders for each channel the Individual Minimum Joint
Probability of error (IMJP) decoder. The event Ea ∪ Eb is not
the same as the error event of the optimal decoder for the joint
channel, even when the individual decoders turn out to be ML
decoders. This is because we decode each input bit separately
using only a portion of the joint output. Clearly,

P?e (Wa,b) ≤ min
φa,φb

P {Ea ∪ Eb} ≤ PIML
e (Wa,b). (9)

We denote

PIMJP
e (Wa,b) = min

φa,φb

P {Ea ∪ Eb} .

The three decoders in (9) successively use less information
for their decisions. The optimal decoder uses both outputs
jointly as well as knowledge of the joint probability distribution;
the IMJP decoder retains the knowledge of the joint probability
distribution, but uses each output separately; finally, the IML
decoder dispenses with the joint probability distribution and
operates as if the marginals are independent channels.

Example 1. The conditional distribution Wa,b(ya, yb |ua, ub)
of some joint channel is given in Table I.2 The marginals are
channels Wa(ya |ua) and Wb(yb |ub). Three decoders for this
channel are shown in Table II. Note that for the IML and IMJP
decoders we have φ(ya, yb) = (φa(ya), φb(yb)).

The optimal decoder for the joint channel chooses, for
each output pair, the input pair with the highest probability.
The IML decoder is formed by using an ML decoder for
each marginal; the ML decoders of the marginals decide that
the input is 0 when 1 is received and vice versa. The IMJP
decoder is found by checking all combinations of marginal

2This is not a joint distribution of two synthetic channels that result from
polarization. However, the phenomena observed here hold for joint distributions
of two synthetic channels as well, and similar examples may be constructed
for the polar case.
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TABLE I
CONDITIONAL DISTRIBUTION Wa,b (ya, yb |ua, ub ). IN THIS CASE, THE

ML DECODERS OF THE MARGINALS DO NOT MINIMIZE P {Ea ∪ Eb }.

(ua, ub )
(ya, yb )

(0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) 0.30 0.04 0.04 0.62
(0, 1) 0.44 0.46 0.01 0.09
(1, 0) 0.22 0.49 0.24 0.05
(1, 1) 0.05 0.54 0.32 0.09

TABLE II
VARIOUS DECODERS FOR JOINT CHANNEL Wa,b FROM TABLE I. THREE

DECODERS ARE SHOWN: THE OPTIMAL DECODER, THE IML DECODER, AND
THE IMJP DECODER. THE LEFTMOST COLUMN IS THE RECEIVED JOINT

CHANNEL OUTPUT, AND THE REMAINING COLUMNS DEPICT THE DECISIONS
OF THE VARIOUS DECODERS.

(ya, yb )
(ûa, ûb ) = φ(ya, yb )

optimal IML IMJP

(0, 0) (0, 1) (1, 1) (1, 0)
(0, 1) (1, 1) (1, 0) (1, 0)
(1, 0) (1, 1) (0, 1) (0, 0)
(1, 1) (0, 0) (0, 0) (0, 0)

channel decoders φa and φb and choosing the pair that achieves
minφa,φb

P {Ea ∪ Eb}. We then have

P?e (Wa,b) = 1 − (0.44 + 0.54 + 0.32 + 0.62)/4 = 0.52,
PIML
e (Wa,b) = 1 − (0.05 + 0.49 + 0.01 + 0.62)/4 = 0.7075,

PIMJP
e (Wa,b) = 1 − (0.22 + 0.49 + 0.04 + 0.62)/4 = 0.6575.

As expected, (9) holds.
We now demonstrate that the probability of error of sub-

optimal decoders is not ordered by degradation. To this end,
we degrade the joint channel in Table I by merging the output
symbols (0, 0), (1, 1) into a new symbol, (0′, 0′) and (0, 1), (1, 0)
into a new symbol, (1′, 1′). We denote the new joint channel
by W ′

a,b
and provide its conditional distribution in Table III.

For each of the marginals, the ML decoder declares 0 upon
receipt of 0′, and 1 otherwise. Hence, for the degraded channel,
PIML
e (W ′

a,b
) = 1−(0.92+0.86)/4 = 0.555, which is lower than

PIML
e (Wa,b). For the degraded channel, the IML decoder is also

the optimal decoder. As this is a degraded channel, however,
PIML
e (W ′

a,b
) = P?e (W

′
a,b
) ≥ P?e (Wa,b) = 0.52.

B. Polar Coding Setting

Given a joint channel, finding an optimal or IML decoder
is an easy task. In both cases we use maximum-likelihood
decoders; in the first case based on the joint channel, whereas
in the second case based on the marginal channels. On the
other hand, finding an IMJP decoder requires an exhaustive
search, which may be costly. In the polar coding setting, as
we now show, the special structure of joint synthetic channels
permits finding the IMJP decoder without resorting to a search
procedure.

1) Joint Distribution of Two Synthetic Channels: Let W be
some BMS channel that undergoes n polarization steps. Let a
and b be two indices of synthetic channels, where b > a. The

TABLE III
CHANNEL W ′

a,b
(ya, yb |ua, ub ), DEGRADED FROM Wa,b OF TABLE I.

(ua, ub )
(ya, yb )

(0′, 0′) (1′, 1′)

(0, 0) 0.92 0.08
(0, 1) 0.53 0.47
(1, 0) 0.27 0.73
(1, 1) 0.14 0.86

synthetic channels are Wa(ya |ua) and Wb(yb |ub), where ya =

(yN1 , u
a−1
1 ), yb = (yN1 , u

b−1
1 ), and N = 2n. We call them the a-

channel and the b-channel, respectively. Their joint distribution
is Wa,b(ya, yb |ua, ub); this is the probability that the output of
the a-channel is ya and the output of the b-channel is yb , given
that the inputs to the channels are ua and ub , respectively.

With probability 1, yb has (ya, ua) as its prefix. Namely, yb
has the form

yb = ((y
N
1 , u

a−1
1 ), ua, ub−1

a+1) ≡ (ya, ua, yr ),

where yr denotes the remainder of yb after removing ya and
ua. Thus,

Wa,b(ya, yb |ua, ub)

=

{
2Wb(yb |ub), (ya, ua) is a prefix of yb,

0, otherwise.
(10)

That is, Wa,b(ya, yb |ua, ub) can be nonzero only when yb is
of the form (ya, ua, yr ) for some yr . The factor 2 stems from
the uniform distribution of ua. With some abuse of notation,
we will write

Wa,b(ya, yb |ua, ub) = Wa,b(yb |ua, ub)

= Wa,b(ya, ua, yr |ua, ub).

The rightmost expression makes it clear that the portion of yb
in which the input of the a-channel appears must equal the
actual input of the a-channel.

Observe from (10) that we can think of Wb(ya, ua, yr |ub)
as the joint channel Wa,b up to a constant factor. Indeed, we
will use Wb(ya, ua, yr |ub) to denote the joint channel where
convenient.

2) Decoders for Joint Synthetic Channels: Which decoders
can we consider for joint synthetic channels? The optimal
decoder extracts ua from the output of the b-channel and
proceeds to decode ub . This outperforms the SC decoder but
is also impractical and does not lend itself to computing the
probability that is of interest to us, the probability that either of
the synthetic channels errs. A natural suggestion is to mimic the
SC decoder, i.e., to use an IML decoder. The joint probability of
error of this decoder may decrease after stochastic degradation,
so we discard this option.

Consider two decoders φa and φb for channels Wa and Wb ,
respectively. As above, Ei is the error event of channel Wi using
decoder φi , i = a, b. We seek a lower bound on P {Ea ∪ Eb}.
Therefore, we choose decoders φa and φb that minimize
P {Ea ∪ Eb}; this is none other than the IMJP decoder. Its
performance lower-bounds that of the IML decoder [see (9)].
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As we shall later see, combined with a suitable degrading
channel structure, the probability of error of the IMJP decoder
increases after stochastic degradation. Conversely, it decreases
under stochastic upgradation; thus, combining the IMJP decoder
with a suitable upgrading procedure produces the desired lower
bound.

Multiple decoders may achieve minφa,φb
P {Ea ∪ Eb}. One

decoder can be found in a straight-forward manner; we call it
the IMJP decoder. The following theorem shows how to find
it. Its proof is a direct consequence of Lemmas 3 and 4 that
follow.

Theorem 1. Let Wa(ya |ua) and Wb(yb |ub) be two chan-
nels with joint distribution Wa,b that satisfies (10). Then,
minφa,φb

P {Ea ∪ Eb} is achieved by setting φb as an ML
decoder for Wb and φa according to

φa(ya) = arg max
ua

T(ya |ua), (11)

where

T(ya |ua) =
1
2

∑
ub,
yb

Wa,b(ya, yb |ua, ub)P {φb(yb) = ub} . (12)

Note that T(ya |ua) is not a conditional distribution; it is
non-negative, but its sum over ya does not necessarily equal
1. In the right-hand side of (12), the dependence on ya, ua

is via (10), as Wa,b(ya, yb |ua, ub) = 0 if yb does not have
(ya, ua) as its prefix.

Corollary 2. Theorem 1 holds for any two synthetic channels
Wa(ya |ua) and Wb(yb |ub) that result from the same number
of polarization steps of a BMS, where index b is greater than
a.

Proof: In the polar code case, the joint channel satis-
fies (10), so Theorem 1 applies.

In what follows, denote

ϕi(yi, ui) , P {φi(yi) = ui} , i = a, b.

Lemma 3. Let Wa(ya |ua) and Wb(yb |ub) be two dependent
binary-input channels with equiprobable inputs and joint
distribution Wa,b that satisfies (10). Let φa : Ya →U be some
decoder for channel Wa with error event Ea. Then, setting φb
as an ML decoder for Wb achieves minφb

P {Ea ∪ Eb}.

Proof: Recall that yb = (ya, ua, yr ). Using (10),

1 − P {Ea ∪ Eb}

=
1
4

∑
ua,
ub

∑
ya,
yb

Wa,b(ya, yb |ua, ub)ϕa(ya, ua)ϕb(yb, ub)

=
1
2

∑
ua,

ya,yb

ϕa(ya, ua) [yb = (ya, ua, yr )] g(yb),

where
g(yb) =

∑
ub

ϕb(yb, ub)Wb(yb |ub).

The problem of finding the decoder φb that minimizes
P {Ea ∪ Eb} is separable over ua, ya, yb; the terms ϕa(ya, ua),
[yb = (ya, ua, yr )] are non-negative and independent of ub.

Therefore, the optimal decoder φb is given by φb(yb) =
arg maxu′

b
Wb(yb |u′b).

We remark that Lemma 3 holds for any a-channel decoder φa.
Thus, regardless of the selection of φa, the optimal decoder for
the b-channel (in the sense of minimizing minφb

P {Ea ∪ Eb})
is an ML decoder.

Lemma 4. Let Wa(ya |ua) and Wb(yb |ub) be two binary-
input channels with joint distribution Wa,b(ya, yb |ua, ub) and
equiprobable inputs. Let φb : Yb → U be some decoder
for channel Wb. Then, the decoder φa for channel Wa given
by (11) minimizes P {Ea ∪ Eb}.

Proof: Since the input is equiprobable,

1 − P {Ea ∪ Eb}

=
1
4

∑
ua,
ya

∑
ub,
yb

Wa,b(ya, yb |ua, ub)ϕa(ya, ua)ϕb(yb, ub)

=
1
2

∑
ua,
ya

ϕa(ya, ua) ·
1
2

∑
ub,
yb

Wa,b(ya, yb |ua, ub)ϕb(yb, ub)

=
1
2

∑
ua,
ya

T(ya |ua)ϕa(ya, ua),

where the last equality is by (12). The problem of finding
the decoder φa that minimizes P {Ea ∪ Eb} is separable over
ya; clearly the optimal decoder is the one that sets φa(ya) =
arg maxu′a T(ya |u′a).

Using (10), if φb is chosen as an ML decoder, as per
Lemma 3, we have the following expression for T(ya |ua):

T(ya |ua) =
∑
yr

∑
ub

Wb(ya, ua, yr |ub)ϕb(yb, ub)

=
∑
yr

max
ub

Wb(ya, ua, yr |ub).
(13)

The IMJP and IML decoders do not coincide in general,
although in some cases they may indeed coincide. We demon-
strate this in the following example.

Example 2. Let W be a binary symmetric channel with
crossover probability p. We perform n = 2 polarization steps
and consider the joint channel W1,4, i.e., Wa = W−− and
Wb = W++. When p = 0.4, we have 0.6544 = PIMJP

e (W1,4) <
PIML
e (W1,4) = 0.6976. On the other hand, when p = 0.2,

the IMJP and IML decoders coincide, and PIMJP
e (W1,4) =

PIML
e (W1,4) = 0.5136. In either case, (9) holds.

Remark 1. In the special case where W is a BEC and Wa

and Wb are two of its polar descendants, the IMJP and IML
(SC) decoders coincide. This is thanks to a special property of
the BEC that erasures for a synthetic channel are determined
by the outputs of the N = 2n copies of a BEC, regardless
of the inputs of previous synthetic channels. We show this in
Appendix A.

3) Proper Degrading Channels: The IMJP decoder is
attractive for joint polar synthetic channels since, by Theorem 1,
we can efficiently compute it. This was made possible by
the successive form of the joint channel (10). Thus, we seek
degrading channels that maintain this form.
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Pb
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P(ya,ua,yr |za,ua,zr )

za

zr

ua ua

Fig. 2. The structure of proper degrading channels.

Let Wa,b(ya, yb |ua, ub) be a joint distribution of
two synthetic channels and let Qa,b(za, zb |ua, ub) <
Wa,b(ya, yb |ua, ub). The marginal channels of Qa,b are
Qa(za |ua) and Qb(zb |ub). The most general degrading
channel from Qa,b to Wa,b is of the form

P(ya, yb |za, zb) = P1(ya |za, zb) · P2(yb |za, zb, ya),

where P1 and P2 are probability distributions. This form
does not preserve the successive structure of joint synthetic
channels (10). Even if Qa,b satisfies (10), the resulting Wa,b

may not. To this end, we turn to a subset of degrading channels.
Recalling that yb = (ya, ua, yr ), we consider degrading channels
of the form

P(ya, ua, yr |za, ua, zr )

= Pa(ya |za) · Pb(yr |za, ua, zr, ya).
(14)

That is, these degrading channels degrade za, the output of
Qa, to ya, pass ua unchanged, and degrade zr , the remainder
of Qb’s output, to yr . For this to be a valid channel, Pa and
Pb must be probability distributions. This degrading channel
structure is illustrated in Figure 2. By construction, degrading
channels of the form (14) preserve the form (10) that is required
for efficiently computing the IMJP decoder as in Theorem 1.

Definition 1 (Proper degrading channels). A degrading channel
of the form (14) is called proper. We write Q

p
< W to denote

that channel Q is upgraded from W with a proper degrading
channel. We say that an upgrading (degrading) procedure is
proper if its degrading channel is proper.

By marginalizing the joint channel it is straight-forward to
deduce the following for joint synthetic channel distributions.

Lemma 5. If Qa,b(za, ua, zr |ua, ub)
p
< Wa,b(ya, ua, yr |ua, ub),

then Qa(za |ua) < Wa(ya |ua) and Qb(za, ua, zr |ub) <
Wb(ya, ua, yr |ub).

This lemma is encouraging, but insufficient for our purposes.
It is easy to take degrading channels that are used for degrading
a single (not joint) synthetic channel and cast them into a proper
degrading channel for joint channels. This, however, is not our
goal. Instead, we start with Wa,b and seek an upgraded Qa,b

with smaller output alphabet that can be degraded to Wa,b using
a proper degrading channel. This is a very different problem
than the degrading one, and its solution is not immediately
apparent. Plain-vanilla attempts to use upgrading procedures
for single channels fail to produce the desired results. Later,
we develop proper upgrading procedures that upgrade one of
the marginals without changing the other.

We now show that the probability of error of the IMJP de-
coder does not decrease after degradation by proper degrading
channels. Intuitively, this is because the decoder for the original
channel can simulate the degrading channel. We denote by EWa
the error event of channel Wa under some decoder φa, and
similarly define EQa , EW

b
, and EQ

b
. Further, we denote by φi

decoders for Wi and by ψi decoders for Qi , i = a, b.

Lemma 6. Let joint channel Wa,b(ya, ua, yr |ua, ub) have
marginals Wa(ya |ua) and Wb(ya, ua, yr |ub). Assume

that Qa,b(za, ua, zr |ua, ub)
p
< Wa,b(ya, ua, yr |ua, ub), then

minψa,ψb
P

{
E
Q
a ∪ E

Q
b

}
≤ minφa,φb

P
{
EWa ∪ E

W
b

}
.

Proof: The proof follows by noting that for any decoder
φi , i = a, b we can find a decoder ψi with identical per-
formance. First consider the decoder for channel a. Denote
by arg Pa(ya |za) the result of drawing ya with probability
Pa(·|za). Then, the decoder ψa for Qa, defined as ψa(za) =
φa(arg Pa(ya |za)), has performance identical to φa for Wa.
The decoder ψa results from first degrading the a-channel
output and only then decoding. Next, consider the decoder for
the b-channel. Denote by arg Pb(yr |za, ua, zr, ya) the result of
drawing yr with probability Pb(·|za, ua, zr, ya). Then, similar
to the a-channel case, the decoder ψb for Qb, defined as
ψb(za, ua, zr ) = φb(arg Pa(ya |za), ua, arg Pb(yr |za, ua, zr, ya)),
has performance identical to φb for Wb . Hence, the best decoder
pair ψa, ψb cannot do worse than the best decoder pair φa, φb .

Let W be a BMS channel that undergoes n polarization steps.
The probability of error of a polar code with non-frozen set
A under SC decoding is given by PSC

e (W) = P
{⋃

a∈A E
ML
a

}
,

where EML
a is the error probability of synthetic channel Wa

under ML decoding. Obviously, for any A ′ ⊆ A,

PSC
e (W) ≥ P

{ ⋃
a∈A′

EML
a

}
. (15)

We have already mentioned the simplest such lower bound,
PSC
e (W) ≥ maxa∈A P

{
EML
a

}
. We now show that the IMJP

decoder provides a tighter lower bound. To this end, recall
that PIMJP

e (Wa,b) = minφa,φb
P {Ea ∪ Eb} , where Ei is the

probability of error of channel i under decoder φi , i = a, b.

Lemma 7. Let W be a BMS channel that undergoes n
polarization steps, and let A be the non-frozen set. Then,

PSC
e (W) ≥ max

a,b∈A
PIMJP
e (Wa,b) ≥ max

a∈A
P

{
EML
a

}
. (16)

Proof: Using (15), PSC
e (W) ≥ maxa,b∈A P

{
EML
a ∪ EML

b

}
.

By definition, the IMJP decoder seeks decoders φa and φb that
minimize the joint probability of error of synthetic channels
with indices a and b. Therefore, for any two indices a and
b we have P

{
EML
a ∪ EML

b

}
≥ PIMJP

e (Wa,b). In particular, this
holds for the indices a, b that maximize the right-hand side.
This establishes the leftmost inequality of (16).

To establish the rightmost inequality of (16), we first show
that for any a, b,

PIMJP
e (Wa,b) ≥ max{P

{
EML
a

}
, P

{
EML
b

}
}. (17)



8

To see this, first recall that the IMJP decoder performs ML
decoding on the b-channel, yielding PIMJP

e (Wa,b) ≥ P
{
EML
b

}
.

Next, we construct W ′
a,b

p
< Wa,b in which the b-channel is

noiseless, by augmenting the yr portion of the output of Wa,b

with ub , i.e.,

W ′a,b(ya, ua, (yr, vb)|ua, ub)

= Wa,b(ya, ua, yr |ua, ub) [vb = ub] .

Channel W ′
a,b

can be degraded to Wa,b using a proper degrading
channel by omitting vb from the yr portion of the output and
leaving ya unchanged. Thus, PIMJP

e (Wa,b) ≥ PIMJP
e (W ′

a,b
) =

P
{
EML
a

}
.

Finally, denote a0 = arg maxa∈A P
{
EML
a

}
. By (17), for

any c > a0 > d we have PIMJP
e (Wa0,c) ≥ P

{
EML
a0

}
and

PIMJP
e (Wd,a0 ) ≥ P

{
EML
a0

}
. Since maxa,b∈A PIMJP

e (Wa,b) ≥

maxc,d{PIMJP
e (Wa0,c), P

IMJP
e (Wd,a0 )} we obtain the proof.

Lemmas 6 and 7 are instrumental for our lower bound, which
combines upgrading operations and the IMJP decoder.

IV. PROPERTIES OF JOINT SYNTHETIC CHANNELS

In this section, we study the properties of joint synthetic
channels. We begin by bringing the joint synthetic channel
into an equivalent form where the b-channel’s ML decision is
immediately apparent. We then explain how to jointly polarize
synthetic channels. Finally, we describe some consequences of
symmetry on joint channels and on the IMJP decoder.

A. Representation of Joint Synthetic Channel Distribution using
D-values

Two channels W and W ′ with the same input alphabet but
possibly different output alphabets are called equivalent if
W < W ′ and W ′ < W . We denote this by W ≡ W ′. Channel
equivalence can cast a channel in a more convenient form. For
example, if W is a BMS, one can transform it to an equivalent
channel whose output is a sufficient statistic, such as a D-value
(see Appendix B), in which case the ML decoder’s decision is
immediately apparent.

Let Wa,b(ya, ua, yr |ua, ub) be a joint synthetic channel. Since
the joint distribution is determined by the distribution of Wb ,
we can transform Wa,b to an equivalent channel in which
the b-channel D-value3 of symbol (ya, ua, yr ) is immediately
apparent.

Definition 2 (D-value representation). Joint channel
Wa,b(ya, ua, db |ua, ub) is in D-value representation if the
marginal Wb satisfies

db =
Wb(ya, ua, db |0) −Wb(ya, ua, db |1)
Wb(ya, ua, db |0) +Wb(ya, ua, db |1)

.

We use the same notation Wa,b for both the regular and
the D-value representations of the joint channel due to their

3By “b-channel D-value” we mean the D-value computed for channel Wb .
Instead of D-values, other sufficient statistics of the b-channel could have been
used. In fact, for practical implementation (see Section VIII), we recommend
to use likelihood ratios, which offer a superior dynamic range. Our use of
D-values in the exposition was prompted by their bounded range: [−1, 1].
This simplifies many of the expressions that follow.

equivalence. The discussion of the various representations of
joint channels in Section III-B applies here as well. In particular,
we will frequently use Wb(ya, ua, db |ub) to denote the joint
synthetic channel distribution.

The following lemma affords a more convenient description
of the joint channel, in which, in line with the IMJP decoder, the
b-channel’s ML decision is immediately apparent. Moreover,
this description greatly simplifies the expressions that follow.

Lemma 8. Channels Wa,b(ya, ua, yr |ua, ub) and
Wa,b(ya, ua, db |ua, ub) are equivalent and the degrading
channels from one to the other are proper.

Proof: To establish equivalence we show that each channel
is degraded from the other using proper degrading channels.
The only portion of interest in (14) is Pb , as in either direction
ya and ua are unchanged by the degrading channel. Denote
by Ddb

ya,ua
the set of all symbols yr such that the b-channel

D-value of (ya, ua, yr ) is db , for fixed ya, ua. Then,

Wa,b(ya, ua, db |ua, ub)

=
∑

yr ∈D
db
ya ,ua

Wa,b(ya, ua, yr |ua, ub)

=
∑
yr

Wa,b(ya, ua, yr |ua, ub) · Pb(db |yr, ya, ua),

where
Pb(db |yr, ya, ua) =

[
yr ∈ Ddb

ya,ua

]
.

Clearly, the b-channel D-value of (ya, ua, db) is db .
On the other hand, by (10) and since all symbols in Ddb

ya,ua

share the same b-channel D-value,

Wa,b(ya, ua, yr |ua, ub)

=
∑
db

Wa,b(ya, ua, db |ua, ub) · P′b(yr |db, ya, ua),

where

P′b(yr |db, ya, ua) =
Wb(ya, ua, yr )∑

y′r ∈D
db
ya ,ua

Wb(ya, ua, y
′
r )

[
yr ∈ Ddb

ya,ua

]
,

and Wb(ya, ua, yr ) =
1
2
∑

ub
Wb(ya, ua, yr |ub).

Remark 2. In Section IV-B we will show how to jointly
polarize a joint channel Wa,b. Even if Wa,b is given in
D-value representation, the jointly polarized version is not.
However, this lemma enables us to convert the jointly polarized
distribution to D-value representation. This is possible because
Lemma 8 holds for any representation of Wa,b(ya, ua, yr |ua, ub)
in which ua, ya are the input and output, respectively, of the
a-channel, ub is the input of the b-channel, and (ya, ua, yr ) is
the output of the b-channel. In particular, yr need not consist
of inputs to channels Wa+1, . . . ,Wb−1.

Remark 3. At this point the reader may wonder why we have
stopped here and not converted the a-channel output to its D-
value. The reason is that this constitutes a degrading operation,
which is the opposite of what we need. Two a-channel symbols
with the same a-channel D-value may have very different
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Wa,b

Wa,b

+

+

ua

νb

νa

ub

db

ua ⊕ νa

ηa

ya

δb

νa

Fig. 3. Two independent copies of joint channel Wa,b combined using a
(u ⊕ v, v) construction. The a-channel input and output for each copy are
denoted using thicker arrows with hollow tips.

meanings for the IMJP decoder. Thus, we cannot combine
them to a single symbol without incurring loss.

When the joint channel is in D-value representation, proper
degrading channels admit the form

P(ya, ua, db |za, ua, zb) = Pa(ya |za)Pb(db |za, ya, ua, zb).
(18)

It is obvious that all properties obtained from degrading
channels of the form (14) are retained for degrading channels of
the form (18). By Lemma 8, we may assume that the degraded
channel is also in D-value representation.

B. Polarization for Joint Synthetic Channels

Let Wa,b(ya, ua, db |ua, ub) be some joint synthetic channel
distribution in D-value representation. Recall that a and b are
indices of synthetic channels. For α, β ∈ {−,+}, we denote
by aα and bβ the indices of the synthetic channels that result
from polar transforms of Wa and Wb according to α and β.
That is,

aα =

{
2a − 1, α = −

2a, α = +

and a similar relationship holds for bβ . The resulting joint
channel is, thus, Waα,bβ .

Even though Wa,b is in D-value representation, after a
polarization transform this is no longer the case. Of course, one
can always bring the polarized joint channel to an equivalent
D-value representation as in Lemma 8.

The polar construction is shown in Figure 3. Here, two
independent copies of the joint channel Wa,b (in D-value
representation) are combined. The inputs and outputs of the
a-channel of each copy are denoted explicitly using thicker
arrows with hollow tips ( ). For example, for the bottom
copy of Wa,b , the a-input is νa and the a-output is ηa, whereas
the b-input is (νb) and the b-output is (ηa, νa, δb).

The input uaα and output yaα of Waα are given by

uaα =

{
ua, α = −

νa, α = +,

yaα =

{
(ya, ηa), α = −

(ya, ηa, ua), α = +.

The input ubβ and output ybβ of Wbβ are given by

ubβ =

{
ub, β = −

νb, β = +,

ybβ =

{
(ya, ηa, ua, νa, db, δb), β = −

(ya, ηa, ua, νa, ub, db, δb), β = +.

Note that yaα and uaα are contained in ybβ . That is, ybβ =

(yaα, uaα, yr ), where

yr =


νa, db, δb, α = −, β = −

νa, ub, db, δb, α = −, β = +

db, δb, α = +, β = −

ub, db, δb, α = +, β = +.

Thus, the joint output of both channels is ybβ .
The distribution of the jointly polarized channel is given by

Waα,bβ (yaα, ybβ |uaα, ubβ )

= 2Wbβ (ybβ |ubβ ) [ybβ = (yaα, uaα, yr )]

=
∑
Bβ

(
Wb(ya, ua ⊕ νa, db |ub ⊕ νb)Wb(ηa, νa, δb |νb)

)
,

(19)

where ∑
Bβ

≡


∑
νb

, β = −

No sum, β = +.

We have shown how to generate Waα,bβ from Wa,b . Another
case of interest is generating Wa−,a+ from Wa. Denote the
output of Wa− by ya− . The output of Wa+ is (ya−, ua).
From (10), we need only compute Wa+ to find Wa−,a+ . This is
accomplished by (1).

If two channels are ordered by degradation, so are their polar
transforms [3, Lemma 4.7]. That is, if Q < W then Q− < W−

and Q+ < W+. This is readily extended to joint channels. To
this end, for BMS channel W we denote the joint channel
formed by its ‘−’- and ‘+’-transforms by W−,+.

Lemma 9. Let BMS channel Q < W. Then Q−,+
p
< W−,+.

Proof: Using (5) and the definition of W−,+ we have

W−,+((y1, y2), u1 |u1, u2)

= 2W+((y1, y2), u1 |u2)

= W(y1 |u1 ⊕ u2)W(y2 |u2)

=
∑
z1,z2

Q(z1 |u1 ⊕ u2)P(y1 |z1)Q(z2 |u2)P(y2 |z2)

=
∑
z1,z2

Q−,+((z1, z2), u1 |u1, u2)Pa(y1, y2 |z1, z2),

where Pa(y1, y2 |z1, z2) = P(y1 |z1)P(y2 |z2) is a proper degrad-
ing channel.

Lemma 10. If Qa,b(za, zb |ua, ub)
p
< Wa,b(ya, yb |ua, ub), then,

for α, β ∈ {−,+}, Qaα,bβ
p
< Waα,bβ .

Proof: The proof follows similar lines to the proof of
Lemma 9. Expand Waα,bβ using (19) and expand again using
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the definition of joint degradation with a proper degrading
channel. Using the one-to-one mappings between the outputs
of the polarized channels and the inputs and outputs of non-
polarized channels, the desired results are obtained. The details
are mostly technical, and are omitted.

The operational meaning of Lemma 10 is that to compute
an upgraded approximation of Waα,bβ we may start with
Qa,b , an upgraded approximation of Wa,b , and polarize it. The
result Qaα,bβ is an upgraded approximation of Waα,bβ . This
enables us to iteratively compute upgraded approximations of
joint synthetic channels. Whenever the joint synthetic channel
exceeds an allotted size, we upgrade it to a joint channel with
a smaller alphabet size and continue from there. We make
sure to use proper upgrading procedures; this preserves the
special structure of the joint channel and enables us to compute
a lower bound on the probability of error. In Section VI we
derive such upgrading procedures.

Since a sequence of polarization and proper upgrading steps
is equivalent to proper upgrading of the overall polarized joint
channel, using Lemmas 6 and 7 we obtain that the IMJP
decoding error of a joint channel that has undergone multiple
polarization and proper upgrading steps lower-bounds the SC
decoding error of the joint channel that has undergone only
the same polarization steps (without upgrading steps).

C. Double Symmetry for Joint Channels

A binary input channel W(y |u) is called symmetric if for
every output y there exists a conjugate output ȳ such that
W(y |0) = W(ȳ |1). We now extend this to joint synthetic
channels.

Definition 3 (Double symmetry). Joint channel
Wb(ya, ua, db |ub) in D-value representation exhibits double
symmetry if for every ya, db there exist y(a)a , y(b)a , y(ab)

a such
that

Wb(ya, ua, db |ub) = Wb(y
(a)
a , ūa, db |ub)

= Wb(y
(b)
a , ua,−db |ūb)

= Wb(y
(ab)
a , ūa,−db |ūb),

(20)

where for binary u, ū = u + 1.

We call (·)(a) the a-conjugate; (·)(b) the b-conjugate; and
(·)(ab) the ab-conjugate. We can also cast this definition using
the regular (non-D-value) representation of joint channels in a
straight-forward manner, which we omit here.

Example 3. Let W be a BMS channel and denote by W−,+ the
joint channel formed by its ‘−’- and ‘+’-transforms. What are
the a-, b-, and ab-conjugates of the a-channel output ya? Recall
that the output of the a-channel W− consists of the outputs of
two copies of W . Denote ya = (y1, y2), where y1 and y2 are
two possible outputs of W with conjugates ȳ1, ȳ2, respectively.
We then have

W−,+(ya, ua |ua, ub) = 2W+(ya, ua |ub)

= W(y1 |ua ⊕ ub)W(y2 |ub).

By symmetry of W we obtain y
(a)
a = (ȳ1, y2), y

(b)
a = (ȳ1, ȳ2),

and y
(ab)
a = (y1, ȳ2). Indeed,

W+(ya, ua |ub) = W+(y(a)a , ūa |ub)

= W+(y(b)a , ua |ūb)

= W+(y(ab)
a , ūa |ūb).

We leave it to the reader to show that (20) holds for the D-value
representation of the joint channel.

Pairs of polar synthetic channels exhibit double symmetry.
One can see this directly from symmetry properties of polar
synthetic channels, see [1, Proposition 13]. Alternatively, one
can use induction to show directly that the polar construction
preserves double symmetry; we omit the details. This implies
the following Proposition.

Proposition 11. Let Wa,b be the joint distribution of two
synthetic channels Wa and Wb that result from n polarization
steps of BMS channel W. Then, Wa,b exhibits double symmetry.

The following is a direct consequence of double symmetry.

Lemma 12. Let Wa,b(ya, ua, db |ua, ub) be a joint channel in
D-value representation that exhibits double symmetry. Then

1) For the b-channel, (ya, ua, db) and (y(a)a , ūa, db) have the
same b-channel D-value db .

2) For the a-channel, ya and y
(b)
a have the same a-channel

D-value da, and y
(a)
a and y

(ab)
a have the same a-channel

D-value −da.

Proof: The first item is obvious from (20). For the second
item, note that

Wa(ya |ua) =
∑
db

∑
ub

Wb(ya, ua, db |ub)

(a)
=

∑
db

∑
ub

Wb(y
(b)
a , ua,−db |ūb)

=
∑
−db

∑̄
ub

Wb(y
(b)
a , ua,−db |ūb)

= Wa(y
(b)
a |ua),

where (a) is by (20). In the same manner, y(a)a and y
(ab)
a have

the same a-channel D-value, −da.
Lemma 12 implies that an SC decoder does not distinguish

between ya and y
(b)
a when making its decision for the a-channel.

We now show that a similar conclusion holds for the IMJP
decoder.

Lemma 13. Let ya be some output of Wa. Then

T(ya |ua) = T(y(b)a |ua) = T(y(a)a |ūa) = T(y(ab)
a |ūa).

Proof: Theorem 1 holds for joint channels given in D-
value representation, Wa,b(ya, ua, db |ua, ub). This is easily seen
by following the proof with minor changes. Under the D-value
representation, (13) becomes

T(ya |ua) =
1
2

∑
db

max
ub

Wa,b(ya, ua, db |ua, ub)

=
∑
db

max
ub

Wb(ya, ua, db |ub).
(21)
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The remainder of the proof hinges on double symmetry and
follows along similar lines to the proof of Lemma 12, with
Wa replaced with T and accordingly the sum over ub replaced
with a maximum operation over ub .

Lemma 13 implies that the IMJP decoder does not distinguish
between ya and y

(b)
a .

Corollary 14. Let φa be the IMJP decoder for the a-channel.
Then φa(ya) = φa(y

(b)
a ) = 1 − φa(y(a)a ) = 1 − φa(y(ab)

a ).

V. SYMMETRIZED JOINT SYNTHETIC CHANNELS

In this section we introduce the symmetrizing transform. The
resultant channel is degraded from the original joint channel yet
has the same probability of error. Its main merit is to decouple
the a-channel from the b-channel. This simpler structure is the
key to upgrading the a-channel, as we shall see in Section VI.

A. Symmetrized Joint Channel

The SC decoder observes marginal distributions and makes
a decision based on the D-value of each synthetic channel’s
output. In particular, by Lemma 12, the SC decoder makes
the same decision for the a-channel whether its output was
ya or y

(b)
a and the b-channel decision is based on db without

regard to ya. By Corollary 14, the IMJP decoder acts similarly.
That is, the IMJP decoder makes the same decision for the
a-channel whether its output is ya or y

(b)
a , and the decision for

the b-channel is based solely on db .
We conclude that if the a-channel were told only whether its

output was one of {ya, y
(b)
a }, it would make the same decision

had it been told its output was, say, ya. This is true for either the
SC or IMJP decoder. Consequently, either decoder’s probability
of error is unaffected by obscuring the a-channel output in this
manner.

This leads us to define a symmetrized version of the joint
synthetic channel distribution,

◦

Wa,b , as follows. Let4

◦
ya , {ya, y

(b)
a },

◦̄
ya , {y

(a)
a , y

(ab)
a }

and define
◦

Wa,b(
◦
ya, ua, db |ua, ub) = Wa,b(ya, ua, db |ua, ub)

+Wa,b(y
(b)
a , ua, db |ua, ub),

◦

Wa,b(
◦̄
ya, ua, db |ua, ub) = Wa,b(y

(a)
a , ua, db |ua, ub)

+Wa,b(y
(ab)
a , ua, db |ua, ub).

(22)

Lemma 15. Let Wa,b be a joint synthetic channel distribution,
and let

◦

Wa,b be its symmetrized version. Then, the probability of
error under SC (IMJP) decoding of either channel is identical.

Proof: By Lemma 12 for the SC decoder or Corollary 14
for the IMJP decoder, if the decoder for the symmetrized
channel makes an error for some symbol ◦

ya then the decoder
for the non-symmetrized channel makes an error for both ya

4The order of elements in ◦
ya and ◦̄

ya does not matter. That is, {ya, y
(b)
a }

is a set containing both ya and y
(b)
a .

and y
(b)
a , and vice-versa. Therefore, denoting by E the error

indicator of the decoder,

Pe(
◦

Wa,b) =
1
4

∑
ua,ub

∑
◦
ya,db

◦

Wa,b(
◦
ya, ua, db |ua, ub)E

(a)
=

1
4

∑
ua,ub

∑
ya,db

Wa,b(ya, ua, db |ua, ub)E

= Pe(Wa,b),

where (a) is by (22).
The marginal synthetic channels

◦

Wa and
◦

Wb are given by
◦

Wa(
◦
ya |ua) =

∑
ub,db

◦

Wa,b(
◦
ya, ua, db |ua, ub),

◦

Wb(
◦
ya, ua, db |ub) =

1
2
◦

Wa,b(
◦
ya, ua, db |ua, ub).

Note that by double symmetry
◦

Wa(
◦
ya |ua) =

◦

Wa(
◦̄
ya |ūa),

◦

Wb(
◦
ya, ua, db |ub) =

◦

Wb(
◦̄
ya, ūa, db |ub)

=
◦

Wb(
◦
ya, ua,−db |ūb)

=
◦

Wb(
◦̄
ya, ūa,−db |ūb).

(23)

Definition 4 (Symmetrized distribution). A joint channel whose
marginals satisfy (23) is called symmetrized.

The name ‘symmetrized’ stems from comparison of (23)
and (20). We note that Theorem 1 holds for

◦

Wa,b .
A symmetrized joint channel remains symmetrized upon

polarization. That is, if
◦

Wa,b is a symmetrized joint channel
and

◦

Waα,bβ , α, β ∈ {−,+} is the result of jointly polarizing it
(without applying a further symmetrization operation), then
the marginals

◦

Waα and
◦

Wbβ satisfy (23). This is easily seen
from (19) and (23).

Clearly,
◦

Wa,b is degraded with respect to Wa,b, exactly
the opposite of our main thrust. Nevertheless, as established
in Lemma 15, both channels have the same probability of
error under SC (IMJP) decoding. Moreover, if we upgrade the
symmetrized version of the channel, its probability of error
under IMJP decoding lower-bounds the probability of error
of the non-symmetrized channel under either SC or IMJP
decoding.

What is not immediately obvious, however, is what happens
after polarization. That is, if we take a joint channel, symmetrize
it, and then polarize it, how does its probability of error
compare to the original joint channel that has just undergone
polarization? Furthermore, what happens if the symmetrized
version undergoes an upgrading transform?

In the following proposition, we provide an answer. To this
end, a joint polarization step is a pair (α, β) ∈ {−,+}2 that
denotes which transforms the a-channel and b-channel undergo.
For example, the result of joint polarization step (−,+) on
joint channel Wa,b is the joint channel Wa−,b+ . A sequence t
of such pairs is called a sequence of joint polarization steps.
The joint polarization steps are applied in succession: the
result of joint polarization of Wa,b according to the sequence
t = {(α1, β1), (α2, β2), (α3, β3), . . . , (αk, βk)} is the same as
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the result of joint polarization of Waα1,bβ1 according to the
sequence t′ = {(α2, β2), (α3, β3), . . . , (αk, βk)}.

Proposition 16. Let Wa,b be a joint distribution of two
synthetic channels and let W t

a,b
denote this joint distribu-

tion after a sequence t of joint polarization steps. Then
PIMJP
e (W t

a,b
) ≥ PIMJP

e (
◦

Qt
a,b
), where

◦

Qt
a,b

is the distribution
of

◦

Wa,b after the same sequence of polarization steps and any
number of proper upgrading transforms along the way.

Proof: Let Wa,b be a joint channel with symmetrized
version

◦

Wa,b . For α, β ∈ {−,+}, denote by Waα,bβ and
◦

Waα,bβ

the polarized versions of Wa,b and
◦

Wa,b , respectively. For the
bβ-channel, the decoder makes the same decision for either
Waα,bβ or

◦

Waα,bβ . This is because the decision is based on
the b-channel D-value, which is unaffected by symmetrization
[see (22)].

Next, for the aα channel, using on (19) a derivation similar to
the proof of Lemma 13, T(yaα |uaα ) = T(y′aα |uaα ), where y′aα
is any combination of an element of ◦

ya and an element of ◦
ηa.

That is, y′aα is any one of {ya, ηa}, {y
(b)
a , ηa}, {ya, η

(b)
a }, and

{y
(b)
a , η

(b)
a }. Thus, the IMJP decoder makes the same decision

for the aα-channel for either Waα,bβ or
◦

Waα,bβ .
We compare the channels obtained by the following two

procedures.
• Procedure 1: Joint channel Wa,b goes through sequence t

of polarization steps.
• Procedure 2: Joint channel Wa,b is symmetrized to form

◦

Wa,b. It goes through sequence t of polarization steps
(without any further symmetrization operations).

We iteratively apply the above reasoning and conclude in a
similar manner to Lemma 15 that both channels have the same
performance under IMJP decoding. Next, we modify Procedure
2.
• Procedure 2a: Joint channel Wa,b is symmetrized to form

◦

Wa,b. It goes through sequence t of polarization steps
(without any further symmetrization operations), but at
some point mid-sequence, it undergoes a proper upgrading
procedure.

Since polarizing and proper upgrading is equivalent to proper
upgrading and polarizing (see Lemma 10) we can assume that
the upgrading happens after the entire sequence of polarization
steps. Thus, under IMJP decoding, the probability of error of
the channel that results from Procedure 2a lower-bounds the
probability of error of the channels resulting from Procedures
1 and 2. Similarly, multiple upgrading transforms can also be
thought of as occurring after all polarization steps.

Corollary 17. Let W be a BMS channel that undergoes n
polarization steps. Let Wa,b be the joint channel of two of its

polar descendants such that a, b ∈ A, and let
◦

Qa,b

p
<

◦

Wa,b.
Then PSC

e (W) ≥ PIMJP
e (

◦

Qa,b).

Proof: A direct consequence of Lemmas 6 and 7 combined
with Proposition 16.

We emphasize that, by Proposition 16, it does not matter how
we arrive at

◦

Qa,b. So long as
◦

Qa,b

p
<

◦

Wa,b and a, b ∈ A, we
can use

◦

Qa,b to obtain a lower bound on PSC
e (W). A practical

way to obtain
◦

Qa,b is via multiple proper upgrading operations
that we perform after joint polarization operations. This is the
route we take in Section VII.

Due to Proposition 16, we henceforth assume that joint
channel Wa,b is symmetrized, and no longer distinguish
symmetrized channels or symbols by the (◦·) symbol. Replacing
the joint channel with its symmetrized version need only be
performed once, at the first instance the two channels go
through different polarization transforms.

Implementation: Since symmetrization is performed only
once, and since this invariably happens when converting a
channel W to W−,+, we find the a-, b-, and ab-conjugates
using the results of Example 3. We then form the symmetrized
channel using (22). Note that it is sufficient to find just the
b-conjugates and use the first equation of (22).

B. Decomposition of Symmetrized Joint Channels

Let the joint channel be Wb(ya, ua, db |ub), which, as men-
tioned above, we assume to be symmetrized. We have

Wb(ya, ua, db |ub) = P {ya, ua |ub} P {db |ub, ya, ua}

= P {ua} P {ya |ua, ub} P {db |ub, ya, ua}

=
1
2

W1(ya |ua, ub) ·W2(db |ub; ya, ua),

(24)

in which we used the independence and uniformity of
the input bits ua and ub. The distribution W1 is given
by W1(ya |ua, ub) = 2

∑
db

Wb(ya, ua, db |ub). Whenever
W1(ya |ua, ub) is nonzero, distribution W2(db |ub; ya, ua) is
obtained by dividing Wb(ya, ua, db |ub) by W1(ya |ua, ub)/2.
Our notation W2(db |ub; ya, ua) (with a semicolon, as opposed
to W2(db |ya, ua, db)) reminds us that for fixed ya, ua, channel
W2 is a binary-input channel with input ub and output
db. If W1(ya0 |ua0, ub) = 0 for some ya0, ua0, we define
W2(db |ub; ya0, ua0) to be some arbitrary BMS channel, to
ensure it is always a valid channel.

Since the joint channel is symmetrized, by (23) we have
W1(ya |ua, ub) = W1(ya |ua, ūb). Hence, for any ub ,

Wa(ya |ua) =
∑
u′
b

W1(ya |ua, u′b)P
{
u′b

}
= W1(ya |ua, ub). (25)

That is, a consequence of symmetrization is that given ua,
output ya becomes independent of ub . This is not true in the
general case where the joint channel is not symmetrized.

The decomposition of (24) essentially decouples the sym-
metrized joint channel to a product of two distributions.

Lemma 18. Let Wb(ya, ua, db |ub) be a symmetrized joint
channel. It admits the decomposition

Wb(ya, ua, db |ub) =
1
2

Wa(ya |ua)W2(db |ub; ya, ua). (26)

For any ya, ua, channel W2 is a BMS channel with input ub
and output db , i.e.,

W2(db |ub; ya, ua) = W2(−db |ūb; ya, ua). (27)

Moreover, W2 satisfies

W2(db |ub; ya, ua) = W2(db |ub; ȳa, ūa). (28)
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Proof: Using (25) in (24) yields (26). The remainder of
this lemma is readily obtained by using (23) in (26).

Definition 5 (Decoupling decomposition). A decomposition
of the form (26) for a symmetrized joint channel is called
a decoupling decomposition. Channel Wa is obtained by
marginalization, i.e.,

Wa(ya |ua) =
∑
ub,db

Wb(ya, ua, db |ub)

= 2
∑
db

Wb(ya, ua, db |ub),

where the latter equality, which is due to symmetry, holds
for any ub. Then, we compute channel W2(db |ub; ya, ua)

using (26). The special case where Wa(ya |ua) = 0 requires
special attention. Such a case invariably happens for perfect
symbols — that is, symbols for which Wa(ya |ua) > 0 but
Wa(ya |ūa) = 0 for some ua ∈ {0, 1}. Specifically, we ensure
that W2 is a well-defined BMS channel even in this case, so
we set it to an arbitrary BSC. Thus,

W2(db |ub; ya, ua) =


Wb(ya, ua, db |ub)

Wa(ya |ua)/2
, Wa(ya |ua) > 0

An arbitrary BSC, otherwise.
(29)

When setting to an arbitrary BSC, we make sure not to add
new b-channel D-values. One possible choice is to set to a
BSC whose output has the highest b-channel D-value.

We use decoupling decompositions of symmetrized joint
channels in the sequel. We shall see in Section VI-A that W2
plays a central role in the a-channel upgrading procedure.

We conclude this section with an example that compares a
joint channel and its symmetrized version. In particular, we
demonstrate the decoupling decomposition for the symmetrized
joint channel.

Example 4. Let W be a BSC with crossover probability 0.2
and consider W−,+, the joint synthetic channel of the ‘−’- and
‘+’-transforms of W . In D-value representation, the a-channel
has four possible outputs ya ∈ {00, 01, 10, 11} and there are
three values of db: db ∈ {− 15

17, 0,
15
17 } . Table IV contains the

probability table of this joint synthetic channel for ua = 0 and
varying ya, ub, db. When ya = 00 and ua = 0, the b-channel
input ub is more likely to be 1 than 0. Similarly, when ya = 11
and ua = 0, the b-channel input ub is more likely to be 0 than
1. Thus, the channel in Table IV does not satisfy (26).

After symmetrization, the a-channel output is either
◦

0 =
{00, 11} or

◦

1 = {01, 10}. The probability table for the
symmetrized channel with ua = 0 is shown in Table V. Here,
when ua = 0 and

◦

0 is received at the a-channel, ub = 0 or 1 are
equally likely. Indeed, W− is a BSC with crossover probability
2p(1 − p) = 0.32, and the channel in Table V satisfies (26).

VI. UPGRADING PROCEDURES FOR JOINT SYNTHETIC
CHANNELS

In this section, we introduce proper upgrading procedures
for joint synthetic channels. The overall goal is to reduce the
alphabet size of the joint channel. The upgrading procedures

TABLE IV
PROBABILITY TABLE OF JOINT SYNTHETIC CHANNEL W−,+ DERIVED FROM

A BSC WITH CROSSOVER PROBABILITY 0.2. ONLY THE CASE WHERE
ua = 0 IS SHOWN.

(ua = 0) ub = 0 ub = 1

ya

db db

− 15
17 0 15

17 − 15
17 0 15

17

00 0.02 0 0 0.32 0 0
01 0 0.08 0 0 0.08 0
10 0 0.08 0 0 0.08 0
11 0 0 0.32 0 0 0.02

TABLE V
PROBABILITY TABLE OF THE SYMMETRIZED VERSION OF THE CHANNEL

FROM TABLE IV. ONLY THE CASE WHERE ua = 0 IS SHOWN.

(ua = 0) ub = 0 ub = 1

ya

db db

− 15
17 0 15

17 − 15
17 0 15

17
◦

0 0.02 0 0.32 0.32 0 0.02
◦

1 0 0.16 0 0 0.16 0

we develop enable us to reduce the alphabet size of each of the
marginals without changing the distribution of the other; there
is a different procedure for each marginal. As an intermediate
step, we further couple the marginals by increasing the alphabet
size of one of them.

The joint channel Wa,b is assumed to be symmetrized
and in D-value representation. The upgrading procedures will
maintain this. As discussed in Section V, we do not distinguish
symmetrized channels with any special symbol. The upgrading
procedure of Section VI-A hinges on symmetrization. The
upgrading procedure of Section VI-B does not require sym-
metrization and holds for non-symmetrized channels without
change. However, we shall see that symmetrization simplifies
the resulting expressions.

A. Upgrading Channel Wa

We now introduce a theorem that enables us to deduce an
upgrading procedure that upgrades Wa and reduces its output
alphabet size. Let symmetrized joint channel Wb(ya, ua, db |ub)
admit decoupling decomposition (26). Let Qb(za, ua, zb |ub) be
another symmetrized joint channel, where zb represents the
D-value of the b-channel output. It also admits a decoupling
decomposition,

Qb(za, ua, zb |ub) =
1
2

Qa(za |ua)Q2(zb |ub; za, ua). (30)

Theorem 19. Let Wb and Qb be symmetrized joint channels
with decoupling decompositions (26) and (30), respectively.

Then, Qb

p
< Wb if

1) Qa(za |ua) < Wa(ya |ua) with degrading channel
Pa(ya |za).

2) Q2(zb |ub; za, ua) < W2(db |ub; ya, ua) for all ua, ya, za
such that Pa(ya |za) > 0.

Before going into the proof, some comments are in order.
First, we do not claim that any Qb that is upgraded from Wb
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must satisfy this theorem. Second, the meaning of the second
item is that, for fixed za, ua, BMS channel Q2(zb |ub; za, ua)

with binary input ub is upgraded from a set of BMS channels
{W2(db |ub; ya, ua)}ya with the same binary input.

Proof: Using decoupling decompositions (26) and (30)
and the structure of a proper degrading channel (18), Qb

p
< Wb

if and only if there exist P′a and P′
b

such that∑
za

Qa(za |ua)P′a(ya |za)V(db |za, ya, ua, ub)

= Wa(ya |ua)W2(db |ub; ya, ua), (31)

where

V(db |za, ya, ua, ub)

=
∑
zb

Q2(zb |ub; za, ua)P′b(db |ya, za, ua, zb). (32)

We now find P′a and P′
b

from the conditions of the theorem.
The first condition of the theorem implies that there exists

a channel Pa(ya |za) such that∑
za

Qa(za |ua)Pa(ya |za) = Wa(ya |ua). (33)

The second condition of the theorem implies that for each
ya, ua, za there exists a channel Pb(db |ya, za, ua, zb) such that∑

zb

Q2(zb |ub; za, ua)Pb(db |ya, za, ua, zb)

= W2(db |ub; ya, ua) · [P {ya |za} > 0] . (34)

We set

P′a(ya |za) = Pa(ya |za),

P′b(db |ya, za, ua, zb) = Pb(db |ya, za, ua, zb).

Using (34) in (32), we have

V(db |za, ya, ua, ub) = W2(db |ub; ya, ua) · [Pa(ya |za) > 0] .

It is easily verified that (31) is satisfied by P′a = Pa and this
V , completing the proof.

Remark 4. Recall from (29) that when Wa(ya |ua) = 0, we
set W2 to an arbitrary BSC. At this point, the reader may
wonder what effect — if any — does this have on the
resulting joint channel. We now show that there is no effect.
To see this, observe from (33) that if Wa(ya |ua) = 0 and
Pa(ya |za) > 0, then necessarily Qa(za |ua) = 0. Hence, by (30),
Qb(za, ua, zb |ub) = 0. This latter equality is the same regardless
of how we had set W2(db |ub; ya, ua).

How might one use Theorem 19 to upgrade the a-channel?
A naive way would be to first upgrade the marginal Wa to
Qa using some known method (e.g., the methods of [9], see
Appendix C). This yields degrading channel Pa by which one
can find channel Q2 that satisfies (34). With Qa and Q2 at
hand, one forms the product (30) to obtain Qb. If the reader
were to attempt to do this, she would find out that it often
changes the b-channel. Moreover, this change may be radical:
the resulting b-channel may be so upgraded to become almost
noiseless, which boils down to an uninteresting bound, the

trivial lower bound (3). It is possible to upgrade the a-channel
without changing the b-channel; this requires an additional
transform we now introduce.

The upgrade-couple transform enables upgrading the a-
channel without changing the b-channel. The idea is to split
each a-channel symbol to several classes, according to the
possible b-channel outputs. Symbols within a class have the
same W2 channel, so that confining upgrade-merges to operate
within a class inherently satisfies the second condition of
Theorem 19. Thus, we circumvent changes to the b-channel.
This results in only a modest increase to the number of output
symbols of the overall joint channel.

Let channel Wb have 2B possible D-values,
±db1,±db2, . . . ,±dbB. We assume that erasure symbols
are duplicated,5 and 0 ≤ db1 ≤ db2 ≤ · · · ≤ dbB ≤ 1. For each
a-channel symbol ya we define B2 upgrade-couple symbols
y
i, j
a , i, j ∈ {1, 2, . . . B}. The new symbols couple the outputs of

the a- and b-channels (whence the name of the upgrade-couple
transform). Namely, if the a-channel output is y

i, j
a and ua = 0,

the b-channel output can only be ±dbi; if the a-channel output
is y

i, j
a and ua = 1, the b-channel output can only be ±dbj .

The upgrade-couple channel W̌b(y
i, j
a , ua, db |ub) is defined

by

W̌b(y
i, j
a , ua, db |ub) , Wb(ya, ua, db |ub) · Si, j(ya, ua, db), (35)

where

Si, j(ya, ua, db) =



∑
ub

W2(dbj |ub; ya, 1),
ua = 0,
db = ±dbi∑

ub

W2(dbi |ub; ya, 0),
ua = 1,
db = ±dbj

0, otherwise,

and W2(db |ub; ya, ua) is derived from the decoupling decom-
position of Wb , see (29).

As intuition for the factor Si, j(ya, ua, db), observe that it
ensures that W̌b(y

i, j
a , ua = 0, db |ub) = 0 for db < ±dbi and that

W̌b(y
i, j
a , ua = 1, db |ub) = 0 for db < ±dbj . Crucially, it does

not upgrade the marginal channels (see Corollaries 24 and 25).
In particular, as shown in Lemma 23, the factor Si, j(ya, ua, db)
ensures that symbols ya of channel Wa and y

i, j
a of channel

W̌a share the same a-channel D-value.

Remark 5. For the original joint channel there may be a-channel
symbols ya for which Wa(ya |0) > 0 but Wa(ya |1) = 0. For
the upgrade-couple channel W̌b, the symbol y

i, j
a determines

the possible values for the b-channel output when ua = 0
or when ua = 1. The symbol ya never appears with positive
probability if ua = 1, yet, because it may appear with positive
probability if ua = 0, we still need to map it to some y

i, j
a . The

upgrade-couple transform is well defined even in this case,
thanks to our definition of W2, see (29). In particular, if ya
never occurs with positive probability with ua = 1, say, then
y
i, j
a for the upgrade-couple channel also never occurs with

positive probability with ua = 1 (see Lemma 23, item 2).

5That is, there are a “positive” erasure and a “negative” erasure, see [9,
Lemma 4].
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A parameter that is related to Si, j and will be useful in the
sequel is

αi, j(ya) = Si, j(ya, ua = 0, dbi) · Si, j(ya, ua = 1, dbj). (36)

For every ya, ua, db, there must exist some i, j such that
Si, j(ya, ua, db) > 0. The following lemma makes this clear.

Lemma 20. For any ya, ua, db we have∑
i, j

Si, j(ya, ua, db) = 1, (37)∑
i, j

αi, j(ya) = 1. (38)

Proof: Without loss of generality, we shall show (37) for
ua = 0 and db = +db1. Observe that Si, j(ya, 0, db1) = 0 for
all i > 1. Thus,

∑
i, j Si, j(ya, 0, db1) =

∑
j S1, j(ya, 0, db1). Next,

by (27),∑
j

S1, j(ya, 0, db1) =
∑
j

∑
ub

W2(+dbj |ub; ya, 1)

=
∑
db

W2(db |0; ya, 1)

= 1,

where the latter equality is because W2 is a valid BMS channel.
To see (38), observe that

αi, j(ya) =

(∑
ub

W2(dbj |ub; ya, 1)

)
·
©­«
∑
u′
b

W2(dbi |u′b; ya, 0)
ª®¬ .

Summing over i, j and using (27) yields the result.
As we now show, since Wb is symmetrized, so is W̌b .

Lemma 21. Let Wb(ya, ua, db |ub) be a symmetrized joint
channel. Then, W̌b(y

i, j
a , ua, db |ub), defined as in (35), is also

symmetrized.

Proof: To establish the lemma, we need to show that (23)
holds for the upgrade-couple channel. For the a-channel Wa, let
symbols ya and ȳa be conjugates, i.e., Wa(ya |ua) = Wa(ȳa |ūa).
Channel Wb is symmetrized, so, by (28), Si, j(ya, ua, db) =
Sj,i(ȳa, ūa, db). Furthermore, by definition, Si, j(ya, ua, db) =
Si, j(ya, ua,−db). Thus,

W̌b(y
i, j
a , ua, db |ub) = W̌b(ȳ

j,i
a , ūa, db |ub)

= W̌b(y
i, j
a , ua,−db |ūb)

= W̌b(ȳ
j,i
a , ūa,−db |ūb).

Next, recall that W̌a(y
i, j
a |ua) =

∑
db,ub

W̌b(y
i, j
a , ua, db |ub), so

that W̌a(y
i, j
a |ua) = W̌a(ȳ

j,i
a |ūa). Thus, (23) holds as required.

In the proof of Lemma 21 we have seen that the conjugate
symbol of y

i, j
a is ȳ

j,i
a (with the order of i and j flipped). We

summarize this in the following corollary.

Corollary 22. If Wa(ȳa |ūa) = Wa(ya |ua) then W̌a(ȳ
j,i
a |ūa) =

W̌a(y
i, j
a |ua).

Since W̌b is symmetrized, it admits decoupling decomposi-
tion

W̌b(y
i, j
a , ua, db |ub) =

1
2

W̌a(y
i, j
a |ua)W̌2(db |ub; yi, ja , ua). (39)

Denote by BSC(p) a binary symmetric channel with crossover
probability p. In Lemma 23 we derive W̌a [see (41)] and
establish that for every ya,

W̌2(db |ub; yi, ja , ua) =


BSC

(
1 − dbi

2

)
, ua = 0

BSC
(1 − dbj

2

)
, ua = 1.

(40)

That is, when ua = 0 we have W̌2(±dbi |ub; yi, ja , ua) = (1 ±
(−1)ub dbi)/2, when ua = 1 we have W̌2(±dbj |ub; yi, ja , ua) =

(1±(−1)ub dbj)/2, and W̌2(db |ub; yi, ja , ua) is zero for any other
db . We emphasize that we define W̌2(db |ub; yi, ja , ua) using (40)
even if W̌a(y

i, j
a |ua) = 0.

Lemma 23. Let Wb(ya, ua, db |ub) be a symmetrized joint
channel and let W̌b(y

i, j
a , ua, db |ub) be defined as in (35), with

decoupling decomposition (39). Then
1) Joint channel W̌b is upgraded from joint channel Wb

with a proper degrading channel that deterministically
maps y

i, j
a to ya.

2) We have

W̌a(y
i, j
a |ua) = Wa(ya |ua) · αi, j(ya). (41)

Moreover, symbols ya of channel Wa and y
i, j
a of channel

W̌a have the same a-channel D-value for every i, j such
that W̌b(y

i, j
a , ua, db |ub) > 0.

3) For every ya, BMS channel W̌2(db |ub; yi, ja , ua) with input
ub and output db is BSC((1 − dbi)/2) if ua = 0 and
BSC((1 − dbj)/2) if ua = 1.

Proof: For the first item, we sum (35) over i, j and obtain,
using (37),

Wb(ya, ua, db |ub) =
∑
i, j

W̌b(y
i, j
a , ua, db |ub).

That is, joint channel W̌b is upgraded from Wb with degrading
channel Pa that deterministically maps y

i, j
a to ya. This is a

proper degrading channel.
For the second item, we marginalize W̌b over db and ub.

Using (26) in the right-hand-side of (35), we obtain (41), where
αi, j(ya) is given in (36). Whenever W̌b(y

i, j
a , ua, db |ub) > 0, we

have, by (35), αi, j(ya) > 0. Thus,

W̌a(y
i, j
a |0) − W̌a(y

i, j
a |1)

W̌a(y
i, j
a |0) + W̌a(y

i, j
a |1)

=
Wa(ya |0) −Wa(ya |1)
Wa(ya |0) +Wa(ya |1)

,

implying that ya and y
i, j
a have the same a-channel D-value for

their respective channels.
For the final item, if W̌a(y

i, j
a |ua) = 0, we are free to

set W̌2(db |ub; yi, ja , ua) as we please, so we set it as per the
item. Otherwise, there are only two values of db for which
Si, j(ya, ua, db) is nonzero. Hence, W̌b can output only two
b-channel D-values for fixed y

i, j
a and ua. Thus, W̌2 is a BMS

channel with only two possible outputs, or, in other words,
a BSC. A BSC that outputs D-values ±d, 0 ≤ d ≤ 1, has
crossover probability (1 − d)/2. This establishes the item.
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Definition 6 (Canonical channel). The canonical channel
W∗(d |u) of channel W(y |u) has a single entry for each D-
value. That is, denoting by Dd the set of symbols y whose
D-value is d, we have W∗(d |u) =

∑
y∈Dd

W(y |u). It can be
shown that a channel is equivalent to its canonical form, i.e.,
each form can be degraded from the other.

Corollary 24. The canonical b-channels of W̌b(y
i, j
a , ua, db |ub)

and Wb(ya, ua, db |ub) coincide.

Proof: This is a direct consequence of the first item of
Lemma 23:

W̌∗b(db |ub) =
∑
ya,ua

∑
i, j

W̌b(y
i, j
a , ua, db |ub)

=
∑
ya,ua

Wb(ya, ua, db |ub)

= W∗b(db |ub).

Corollary 25. The canonical a-channels of W̌b(y
i, j
a , ua, db |ub)

and Wb(ya, ua, db |ub) coincide.

Proof: This follows from the second item of Lemma 23,
(38), and (41).

Definition 7 (Class). The class Ci, j is the set of symbols y
i, j
a

with fixed i, j.

There are B2 classes. The size of each class is the number of
symbols ya. By (40), W̌2(db |ub; yi, ja , ua) is the same BSC for
all symbols of class Ci, j and fixed ua. Thus, the second item
of Theorem 19 becomes trivial and is immediately satisfied if
we use an upgrading procedure that upgrade-merges several
symbols of the same class Ci, j .

To determine which upgrading procedures may be used,
we turn to the degrading channel. So long as the degrading
channel does not mix a symbol and its conjugate, the upgrading
procedure can be confined to a single class. This is because
conjugate symbols belong to different classes, as established
in Corollary 22. Thus, of the upgrading procedures of [9]
(see Appendix C) we can use either upgrade-merge-3 without
restriction or upgrade-merge-2 provided that the two symbols
to be merged have the same a-channel D-value.

Theorem 26. Let Wb(ya, ua, db |ub) be some joint channel
with marginals Wa(ya |ua),W∗b(db |ub) and upgrade-couple
counterpart W̌b(y

i, j
a , ua, db |ub). Let Qa(za |ua) < Wa(ya |ua)

obtained by an upgrade-merge-3 procedure. Then there exists

joint channel Q̌b(z
i, j
a , ua, db |ub)

p
< W̌b(y

i, j
a , ua, db |ub) with

canonical marginals Q̌∗a(za |ua), Q̌∗b(db |ub) such that Q̌∗a = Q∗a
and Q̌∗

b
= W∗

b
.

Proof: The idea is to confine the upgrading procedures
to work within a class, utilizing Theorem 19 over each class
separately.

Assume that the upgrading procedure from Wa to Qa

replaces symbols ya1, ya2, ya3 with symbols za1, za3. We obtain
Q̌b by using Theorem 19 for each class Ci, j of W̌b separately.
The a-channel upgrade procedure for class Ci, j is upgrade-
merge-3 from W̌a to Q̌a that replaces symbols y

i, j
a1, y

i, j
a2, y

i, j
a3

with symbols zi, j
a1, z

i, j
a3. As the upgrade is confined to symbols

of the same class, the channel W̌2 — given by (40) — is
the same regardless of ya, as established in Lemma 23, item
3. Hence, the second item of Theorem 19 is automatically
satisfied within a class Ci, j , with

Q̌2(db |ub; zi, ja , ua) = W̌2(db |ub; yi, ja , ua) (42)

for all ya, za. Channel Q̌b is then obtained by the product of
Q̌a and Q̌2 as per (39):

Q̌b(z
i, j
a , ua, db |ub) =

1
2

Q̌a(z
i, j
a |ua)Q̌2(db |ub; zi, ja , ua). (43)

By properties of upgrade-merge-3 (see (57) in Ap-
pendix C-B) we have

∑
za Q̌a(z

i, j
a |ua) =

∑
ya W̌a(y

i, j
a |ua).

Therefore,

Q̌∗b(db |ub) =
∑
i, j,ua

∑
za

Q̌b(z
i, j
a , ua, db |ub)

(a)
=

∑
i, j,ua

∑
za

1
2

Q̌2(db |ub; zi, ja , ua)Q̌a(z
i, j
a |ua)

(b)
=

∑
i, j,ua

1
2

W̌2(db |ub; yi, j
a1, ua)

∑
za

Q̌a(z
i, j
a |ua)

=
∑
i, j,ua

1
2

W̌2(db |ub; yi, j
a1, ua)

∑
ya

W̌a(y
i, j
a |ua)

(c)
=

∑
i, j,ua

∑
ya

1
2

W̌2(db |ub; yi, ja , ua)W̌a(y
i, j
a |ua)

(d)
= W∗b(db |ub),

where in (a) we used the decoupling decomposition (43); (b)
and (c) are by Lemma 23, item 3 and by (42); finally, (d) is
due to Corollary 24.

To see that the canonical a-channel marginals coincide, note
that by Lemma 23, item 2, for any fixed za, the symbols
{zi, ja }i, j all have the same a-channel D-value. Let da be some
a-channel D-value, and let Dda be the set of a-channel outputs
za whose a-channel D-value is da. Then,

Q̌∗a(da |ua) =
∑

za ∈Dda

∑
i, j

∑
db,ub

Q̌b(z
i, j
a , ua, db |ub)

=
∑

za ∈Dda

∑
i, j

Q̌a(z
i, j
a |ua)

(a)
=

∑
za ∈Dda

Qa(za |ua)

= Q∗a(da |ua),

where (a) is a direct consequence of the expressions for
upgrade-merge-3 and our construction of upgrading each class
separately.

To use Theorem 26, one begins with a design parameter A
that controls the output alphabet size. Working one class at
a time, one then applies upgrade operations in succession to
reduce the class size to 2A. The resulting channel, therefore,
will have 2AB2 symbols overall. The canonical a-channel
marginal that results from this operation will have at most
2A symbols.
Remark 6. The upgrade-merge-3 procedure replaces three pairs
of conjugate symbols with two pairs of conjugate symbols. Re-
call from Corollary 22 that after the upgrade-couple transform,
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conjugate symbols belong to different classes. In particular,
if ya and ȳa are a conjugate pair of the a-channel before the
upgrade-couple transform, then y

i, j
a ∈ Ci, j and ȳ

j,i
a ∈ Cj,i are

a conjugate pair of the a-channel after the upgrade-couple
transform. Therefore, when one uses Theorem 26 to replace
the symbols {

y
i, j
a1, y

i, j
a2, y

i, j
a3

}
→

{
zi, j
a1, z

i, j
a3

}
,

one must also replace their conjugates{
ȳ
j,i
a1, ȳ

j,i
a2, ȳ

j,i
a3

}
→

{
z̄ j,i
a1, z̄

j,i
a3

}
.

We still always operate within a class as nowhere do we mix
symbols from different classes. Alternatively, one may upgrade
only classes Ci, j with i ≥ j and then use channel symmetry to
obtain the upgraded forms of classes Cj,i .

There is one case where it is possible to use upgrade-merge-2,
as stated in the following corollary.

Corollary 27. Theorem 26 also holds if the a-channel upgrade
procedure is upgrade-merge-2 applied to two symbols of the
same a-channel D-value.

Proof: While in general the upgrade-merge-2 procedure
mixes a symbol and its conjugate, when the two symbols to be
merged have the same a-channel D-value this is no longer the
case (see Appendix C-A), and we can follow along the lines
of the proof of Theorem 26. We omit the details.

The reason that [9] introduced both the upgrade-merge-2 and
upgrade-merge-3 procedures despite the superiority of the latter
stems from numerical issues. To implement upgrade-merge-3
we must divide by the difference of the extremal D-values to
be merged. If these are very close this can lead to numerical
errors. Upgrade-merge-2 is not susceptible to such errors. On
the other hand, upgrade-merge-2 cannot be used in the manner
stated above; it requires us to mix symbols from two classes
Ci, j and Cj,i that may have wildly different Q̌2 channels. Thus,
this will undesirably upgrade the b-channel.

In practice, however, we may be confronted with a triplet
of symbols with very close, but not identical, a-channel D-
values. To avoid numerical issues, we utilize a fourth nearby
symbol. Say that our triplet6 is ya1, ya2, ya3 with a-channel
D-values da1 ≤ da2 < da3 such that da3 − da1 < ε , for some
“closeness” threshold ε . Let ya4 have a-channel D-value da4
such that da4 − da1 > ε . Then, we apply upgrade-merge-3
twice: first for ya1, ya2, ya4 obtaining za1, za4 with a-channel
D-values da1, da4 and then for za1, ya3, za4, ending up with
z′
a1, z

′
a4 with a-channel D-values da1, da4. In this example we

have chosen a fourth symbol with a greater a-channel D-value
than da4, but we could have similarly chosen a fourth symbol
with a smaller a-channel D-value than da1 instead.

B. Upgrading Channel Wb

We now show how to upgrade Wa,b(ya, ua, db |ua, ub) to
channel Qa,b(ya, ua, zb |ua, ub) such that Qb < Wb and Qa =

Wa. The idea is to begin with W∗
b
, a channel equivalent to

6To simplify notation, we omit the dependence on the class; it is clear that
we do this for each class separately.

Wb in which ya and ua are not explicit in the output. The
channel W∗

b
is given by W∗

b
(db |ub) =

∑
ya,ua

Wb(ya, ua, db |ub).
We upgrade W∗

b
to Q∗

b
using some known method, such that

channel P∗
b

degrades Q∗
b

to W∗
b

. To form upgraded channel Qb ,
we “split” the outputs of Q∗

b
to include ya and ua and find a

degrading channel that degrades Qb to Wb . We shall see that
the upgraded channel Qb is given by

Qb(ya, ua, zb |ub) = Q∗b(zb |ub)
∑
db

P∗
b
(db |zb)Wb(ya, ua, db)

W∗
b
(db)

,

where Wb(ya, ua, db) and W∗
b
(db) are defined in (45), below.

Finally, we form the joint channel Qa,b using (10). We illustrate
this in Figure 4.

Theorem 28. Let Wb(ya, ua, db |ub) be a joint channel where
db is the D-value of the b-channel’s output. Let W∗

b
(db |ub)

be a channel equivalent to Wb, and let Q∗
b
(zb |ub) <

W∗
b
(db |ub) with degrading channel P∗

b
(db |zb). Then there exists

joint channel Qb(ya, ua, zb |ub) such that Qb(ya, ua, zb |ub)
p
<

Wb(ya, ua, db |ub) and
∑

ya,ua
Qb(ya, ua, zb |ub) = Q∗

b
(zb |ub).

Proof: We shall explicitly find Qb and an appropriate
degrading channel. The degrading channel will be of the form
Pb(db |ya, ua, zb), i.e., ya and ua pass through the degrading
channel unchanged. Such degrading channels are proper. Since
Q∗

b
< W∗

b
we have, for any db and ub ,

W∗b(db |ub) =
∑
zb

P∗b(db |zb)Q
∗
b(zb |ub). (44)

Denote

Wb(ya, ua, db) =
1
2

∑
ub

Wb(ya, ua, db |ub),

W∗b(db) =
1
2

∑
ub

W∗b(db |ub).
(45)

We assume that W∗
b
(db) > 0, for otherwise output db never

appears with positive probability and may be ignored, and
define

ρdb
ya,ua

,
Wb(ya, ua, db)

W∗
b
(db)

.

We have ρdb
ya,ua

≥ 0,
∑

ya,ua
ρdb
ya,ua

= 1 for any db, and, for
any ub ,

Wb(ya, ua, db |ub) = ρ
db
ya,ua

W∗b(db |ub). (46)

For each zb, we will shortly define constants µzbya,ua
such

that µzbya,ua
≥ 0 and

∑
ya,ua

µzbya,ua
= 1. Similar to (46), we use

these constants to define channel Qb by

Qb(ya, ua, zb |ub) = µ
zb
ya,ua

Q∗b(zb |ub). (47)

Indeed,
∑

ya,ua
Qb(ya, ua, zb |ub) = Q∗

b
(zb |ub). We now find

the constants µzbya,ua
and an appropriate degrading channel

Pb(db |ya, ua, zb) such that

Wb(ya, ua, db |ub) =
∑
zb

Pb(db |ya, ua, zb)Qb(ya, ua, zb |ub),

(48)
which will establish our goal.
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Q∗
b
(zb |ub) W∗

b
(db |ub)

Qb(ya, ua, zb |ub) Wb(ya, ua, db |ub)

P∗
b

Pb

× ××µzbya,ua ρdb
ya,ua

ρdb
ya,ua

µzbya,ua

Fig. 4. Illustration of how to transform an upgrading procedure from W ∗
b

to
Q∗

b
to an upgrading procedure from Wb to Qb . The double arrows represent

splitting to multiple outputs.

Let ya, ua, and db be such that the left-hand side of (48) is
positive7, so that ρdb

ya,ua
> 0. We shall see that the resulting

expressions hold for the zero case as well. Using (46) and (47),
we can rewrite (48) as

W∗b(db |ub) =
∑
zb

(
Pb(db |ya, ua, zb)µ

zb
ya,ua

ρdb
ya,ua

)
Q∗b(zb |ub).

Comparing this with (44), we set

P∗b(db |zb) =
Pb(db |ya, ua, zb)µ

zb
ya,ua

ρdb
ya,ua

. (49)

Since Pb is a probability distribution, by rearranging and
summing over db we obtain

µzbya,ua
=

∑
db

P∗b(db |zb)ρ
db
ya,ua

. (50)

It is easily verified that µzbya,ua
≥ 0 and

∑
ya,ua

µzbya,ua
= 1.

Using the expression for µzbya,ua
in (49) yields

Pb(db |ya, ua, zb) =
P∗
b
(db |zb)ρ

db
ya,ua∑

d′
b

P∗
b
(d ′

b
|zb)ρ

d′
b

ya,ua

. (51)

This is a valid probability distribution. We remark that (48)
is satisfied by (50) and (51) even when ρdb

ya,ua
= 0. We have

found Qb and a proper degrading channel Pb as required.

Corollary 29. In Theorem 28, the marginal a-channels of Qb

and Wb coincide.

Proof: By construction, the degrading channel from Qb

to Wb does not change the a-channel output, implying that the
a-channel marginal remains the same.

To use Theorem 28, one begins with design parameter
B that controls the output alphabet size. The channel Q∗

b
,

with output alphabet of size 2B, is obtained from W∗
b

using
a sequence of upgrade operations. To obtain upgraded joint
channel Qb , one uses the Theorem to turn them into a sequence
of upgrade operations to be performed on channel Wb . If one
uses the techniques of [9], the upgrade operations will consist
of upgrade-merge-2 and upgrade-merge-3 operations (see
Appendix C). In the following examples we apply Theorem 28
specifically to these upgrades.

7Since W ∗
b
(db ) > 0, there will always be at least one selection of ya, ua

for which the left-hand side of (48) is positive.

For brevity, we will use the following notation:

πdb
ya,ua

,
∑
ub

Wb(ya, ua, db |ub),

πdb ,
∑
ub

W∗b(db |ub).
(52)

Example 5 (Upgrading Wb Based on Upgrade-Merge-2).
The upgrade-merge-2 procedure of [9] selects two conjugate
symbols pairs and replaces them with a single conjugate symbol
pair. The details of the transformation, in our notation, appear
in Appendix C-A.

Let joint channel Wb(ya, ua, db |ub) have b-channel marginal
W∗

b
(db |ub), in which all symbols with the same D-value are

combined to a single symbol. We select symbols dbj, dbk and
their respective conjugates d̄bj = −dbj, d̄bk = −dbk , such that
dbk ≥ dbj > 0 and upgrade W∗

b
(db |ub) to Q∗

b
(zb |ub) given

by (55) (Appendix C-A). We denote by Db the output alphabet
of W∗

b
and by Dzbk

the set

Dzbk
, {dbk, dbj, d̄bj, d̄bk}.

The output alphabet of Q∗
b

is Z = (Db \ Dzbk
) ∪ (zbk, z̄bk);

outputs of Q∗
b

represent D-values. In particular, the D-values
of zbk and z̄bk are dbk and −dbk , respectively.

Using Theorem 28, we form channel Qb(ya, ua, zb |ub) by

Qb(ya, ua, zb |ub) =


µzbk
ya,ua

Q∗
b
(zbk |ub), zb = zbk

µz̄bk
ya,ua

Q∗
b
(z̄bk |ub), zb = z̄bk

Wb(ya, ua, zb |ub), otherwise,

where by (50),

µzbk
ya,ua

=

∑
d∈Dzbk

(
πdya,ua

· (dbk + d)
)

2(πdb j + πdbk )dbk
,

µz̄bk
ya,ua

=

∑
d∈Dzbk

(
πdya,ua

· (dbk − d)
)

2(πdb j + πdbk )dbk
.

We can simplify this when Wb is a symmetrized channel.
In this case, πdb

ya,ua
= πd̄b

ya,ua
, yielding

µzbk
ya,ua

= µz̄bk
ya,ua

=
π
db j
ya,ua

+ πdbk
ya,ua

πdb j + πdbk
.

Therefore, the upgraded joint channel becomes

Qb(ya, ua, zb |ub) =



Π
zbk
ya,ua

(
1 + (−1)ub dbk

2

)
, zb = zbk

Π
zbk
ya,ua

(
1 − (−1)ub dbk

2

)
, zb = z̄bk

Wb(ya, ua, zb |ub), otherwise,

where
Π

zbk
ya,ua

= (π
db j
ya,ua

+ πdbk
ya,ua
).

Example 6 (Upgrading Wb Based on Upgrade-Merge-3). The
upgrade-merge-3 procedure replaces three conjugate symbols
pairs with two conjugate symbol pairs. The details of the
transformation, in our notation, appear in Appendix C-B.
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As above, let joint channel Wb(ya, ua, db |ub) have b-channel
marginal W∗

b
(db |ub). For the upgrade procedure we select

symbols dbi, dbj, dbk and their respective conjugates, such that
0 ≤ dbi < dbj ≤ dbk .8 We upgrade W∗

b
(db |ub) to Q∗

b
(zb |ub)

given by (56) (Appendix C-B). We denote by Db the output
alphabet of W∗

b
and by Dzbk,zbi

the set

Dzbk,zbi
, {dbk, dbj, dbi, d̄bi, d̄bj, d̄bk}.

The output alphabet of Q∗
b

is Z = (Db \ Dzbk,zbi
) ∪

(zbk, zbi, z̄bi, z̄bk); outputs of Q∗
b

represent D-values. In partic-
ular, the D-values of zbk and zbi are dbk and dbi , respectively.

Assuming that Wb is symmetrized, we form channel
Qb(ya, ua, zb |ub) using Theorem 28 as

Qb(ya, ua, zb |ub) =



µzbk
ya,ua

Q∗
b
(zbk |ub), zb = zbk

µzbi
ya,ua

Q∗
b
(zbi |ub), zb = zbi

µz̄bi
ya,ua

Q∗
b
(z̄bi |ub), zb = z̄bi

µz̄bk
ya,ua

Q∗
b
(z̄bk |ub), zb = z̄bk

Wb(ya, ua, zb |ub), otherwise,

where by (50),

µzbk
ya,ua

=
πdbk
ya,ua

+
(
db j−dbi

dbk−dbi

)
π
db j
ya,ua

πdbk +
(
db j−dbi

dbk−dbi

)
πdb j

,

µzbi
ya,ua

=
πdbi
ya,ua

+
(
dbk−db j

dbk−dbi

)
π
db j
ya,ua

πdbi +
(
dbk−db j

dbk−dbi

)
πdb j

,

and µz̄bk
ya,ua

= µzbk
ya,ua

, µz̄bi
ya,ua

= µzbi
ya,ua

. The latter two equalities
are due to our assumption that Wb is symmetrized.

Denoting

Π
zbk
ya,ua

= πdbk
ya,ua

+

(
dbj − dbi
dbk − dbi

)
π
db j
ya,ua

Π
zbi
ya,ua

= πdbi
ya,ua

+

(
dbk − dbj
dbk − dbi

)
π
db j
ya,ua

= πdbi
ya,ua

+

(
1 −

dbj − dbi
dbk − dbi

)
π
db j
ya,ua

,

the upgraded joint channel is given by

Qb(ya, ua, zb |ub) =



Π
zbk
ya,ua

(
1 + (−1)ub dbk

2

)
, zb = zbk

Π
zbi
ya,ua

(
1 + (−1)ub dbi

2

)
, zb = zbi

Π
zbi
ya,ua

(
1 − (−1)ub dbi

2

)
, zb = z̄bi

Π
zbk
ya,ua

(
1 − (−1)ub dbk

2

)
, zb = z̄bk

Wb(ya, ua, zb |ub), otherwise.

8We could have also selected them such that 0 ≤ dbi ≤ db j < dbk . At
least one of the inequalities dbi ≤ db j or db j ≤ dbk must be strict.

Remark 7. We observe from these examples an interesting
parallel between the a-channel and b-channel upgrading proce-
dures. In the former case, we confine upgrade operations to
a single class, in which the b-channel D-values are fixed. In
light of the above examples, the latter case may be viewed as
confining upgrade procedures to “classes” in which ya and ua

are fixed.

VII. LOWER BOUND PROCEDURE

The previous sections have introduced several ingredients
for building an overall procedure for obtaining a lower bound
on the probability of error of polar codes under SC decoding.
We now combine these ingredients and present the overall
procedure. First, we lower-bound the probability of error of
two synthetic channels. Then, we show how to use lower
bounds on channel pairs to obtain better lower bounds on the
union of many error events.

A. Lower Bound on the Joint Probability of Error of Two
Synthetic Channels

We now present an upgrading procedure for Wa,b that results
in channel Qa,b with a smaller alphabet size. The procedure
leverages the recursive nature of polar codes.

The input to our procedure is BMS channel W , the number
of polarization steps n, the indices a and b of the a-channel and
b-channel, respectively, and parameters A and B that control the
output alphabet sizes of the a- and b-channels, respectively. The
binary expansions of a−1 and b−1 are a = 〈α1, α2, . . . , αm〉 and
b = 〈β1, β2, . . . , βm〉, respectively. These expansions specify
the order of polarization transforms to be performed, where 0
implies a ‘−’-transform and 1 implies a ‘+’-transform.

The algorithm consists of a sequence of polarization and
upgrading steps. After each polarization step, we bring the
channel to D-value representation, as described in Section IV-A.
A side effect of polarization is increase in alphabet size. The
upgrading steps prevent the alphabet size of the channels
from growing beyond a predetermined size. After the final
upgrading step we obtain joint channel Qa,b , which is properly
upgraded from Wa,b . We compute PIMJP

e (Qa,b), which serves
as a lower bound to PIML

e (Wa,b). We recall that PIML
e (Wa,b)

is the probability of error under SC decoding of the joint
synthetic channel Wa,b. This, in turn, lower-bounds PSC

e (W)
(see Corollary 17).

Algorithm A provides a high-level description of the proce-
dure. We begin by determining the first index m for which αm
and βm differ (i.e. α` = β` for ` < m and αm , βm). The first
m−1 polarization steps are of a single channel, as the a-channel
and b-channel indices are the same. Since these are single
channels, we utilize the upgrading procedures of [9] to reduce
the output alphabet size. At the mth polarization step, the a- and
b-channels differ. We perform joint polarization described in
Section IV-B and symmetrize the joint channel using (22). This
symmetrization needs only be performed once as subsequent
polarizations maintain symmetrization (Proposition 16). We
then perform the b-channel upgrading procedure (Section VI-B),
which reduces the b-channel alphabet size to 2B. Following
that, we upgrade the a-channel. As discussed in Section VI-A,
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this consists of two steps. First, we upgrade-couple the channel,
to generate B2 classes. Second, for each class separately, we
use the a-channel upgrade procedure until each class has at
most 2A elements (see Theorem 26 and Corollary 27). We
confine the a-channel upgrade procedure to the class by utilizing
only upgrade-merge-3 operations. We continue to polarize and
upgrade the joint channel in this manner, until ` = n. After
the final polarization and upgrading operation, we compute
the probability of error of the IMJP decoder for the resulting
channel.

Algorithm A: A lower bound on the probability of error
under SC decoding of a joint synthetic channel

Input: BMS channel W , number of polarization steps n,
channel indices a,b, and alphabet-size control
parameters A, B. The binary representations of
a − 1 and b − 1 are a = 〈α1, α2, . . . , αn〉 and
b = 〈β1, β2, . . . , βn〉, respectively.

Output: A lower bound on the probability of error Wa,b .
m← first_difference(a, b)
Q← single_upgrade(W,max{A, B})
for ` = 1, 2, . . . , n do

if ` < m then
Q← single_polarize(Q, α`)
Q← D-Value_representation(Q)
Q← single_upgrade(Q,max{A, B})

else
Q← jointly_polarize(Q, α`, β`)
Q← D-Value_representation(Q)
if ` = m then

Q← symmetrize(Q)

// b-channel upgrade:
Q← b-channel_upgrade(Q, B)

// a-channel upgrade:
Q← upgrade_couple(Q)
foreach class ∈ Q do

Q← a-channel_upgrade(Q, A, class)
/* Confine to class by using

only upgrade-merge-3. */

return PIMJP
e (Q)

The lower bound of this procedure compares favorably with
the trivial lower bound, max{P {Ea} , P {Eb}}. This is because
our upgrading procedure only ever changes one marginal,
keeping the other intact. Since it leverages upgrading transforms
that can be used on single channels, the marginal channels
obtained are the same as would be obtained on single channels
using the same upgrading steps. Thus, by Lemma 7 this lower
bound is at least as good as max{P {Ea} , P {Eb}}.
Remark 8. When the BMS W is a BEC, we can recover the
bounds of [10] and [12] using our upgrading procedure. Only
a-channel upgrades are required, as the b-channel, in D-value
representation, remains a BEC. For each a-channel symbol, the
channel W2 in (24) is either a perfect channel or a pure-noise
channel (see Lemma 32 in Appendix A). Thus, the upgrade-
couple procedure splits the a-channel symbols to those that see

a perfect channel regardless of ua and those that see a pure-
noise channel regardless of ua. Merging a-channel symbols
of the same class is equivalent to merging a-channel symbols
for which W̌2 is the same type of channel. We thus merge
a-channel symbols of the same a-channel D-value that “see”
the same type of b-channel. This corresponds to keeping track
of the correlation between erasure events of the two channels.
Remark 9. An initial step of Algorithm A is to upgrade
the channel W , even before any polarization operations. This
step enables us to apply our algorithm on continuous-output
channels, see [9, Section VI].

B. Lower Bound for More than Two Synthetic channels

Recall that the probability of error of polar codes under SC
decoding may be expressed as P

{⋃
a∈A Ea

}
. In the previous

section, we developed a lower bound on P {Ea ∪ Eb}, a < b,
which lower bounds P

{⋃
a∈A Ea

}
. This lower bound may be

strengthened by considering several pairs of synthetic channels
and using (4). We now show how this can be done.

Lemma 30. The probability of error of a union of M events,
∪M
a=1Ea is lower bounded by

P

{
M⋃
a=1
Ea

}
≥

∑
a<b

P {Ea ∪ Eb} − (M − 2)
∑
a

P {Ea} .

Proof: The proof hinges on using the identity
P {Ea ∩ Eb} = P {Ea} + P {Eb} − P {Ea ∪ Eb} in (4). Note
that any set of M numbers {p1, p2, . . . , pM } satisfies

2M
∑
a

pa =
∑
a,b

(pa + pb)

=
∑
a<b

(pa + pb) +
∑
a=b

(pa + pb) +
∑
a>b

(pa + pb)

= 2
∑
a<b

(pa + pb) + 2
∑
a

pa,

so that ∑
a<b

(pa + pb) = (M − 1)
∑
a

pa .

Therefore,∑
a<b

P {Ea ∩ Eb} =
∑
a<b

(P {Ea} + P {Eb} − P {Ea ∪ Eb})

= (M − 1)
∑
a

P {Ea} −
∑
a<b

P {Ea ∪ Eb} .

Using this in (4) yields the desired bound.
In practice, we combine the lower bound of Lemma 30

with (15). That is, we compute lower bounds on P {Ea ∪ Eb}
for all pairs of channels in some subset A ′ of the non-frozen
set, and use Lemma 30 over this subset.

Such bounds are highly dependent on the selection of the
subset A ′. One possible strategy is as follows. Let B be the set
of k worst synthetic channels in the non-frozen set for some k.
For each channel pair in B, compute a lower bound on the joint
probability of error using Algorithm A. Then, form all possible
subsets of B (there are 2k such subsets) and use Lemma 30
for each subset. Choose the subset with the highest upper
bound as A ′. The reason for going over all possible subsets is
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that bounds based on the inclusion-exclusion principle are not
guaranteed to be higher than the highest pairwise probability,
see [15].

VIII. IMPLEMENTATION

Our implementation of Algorithm A, in C++, is available
for download at [16]. In this section we provide some details
on the implementation.

A naive implementation of Algorithm A is to perform
all steps successively at each iteration. That is, first jointly
polarize the joint channel, then bring the channel to D-value
representation, followed by the b-channel upgrade procedure
and the upgrade-couple procedure, and finally perform the
a-channel upgrade procedure. One quickly finds out, however,
a limitation posed by this approach: the memory required to
store the outcomes of these stages becomes prohibitively large
when the alphabet-size control parameters A and B grow.

Observe, however, that the total required memory at the
end of each iteration of Algorithm A is actually quite small.
We need only store the values of W̌a(y

i, j
a |0) for each value of

ya, i, j (a total of 2A ·B2 combinations), a mapping between ya
and its conjugate ȳa, and a list of size B that stores the possible
b-channel D-values. Then, we can compute W̌b(y

i, j
a , ua, db |ub)

using (39), (40), and Corollary 22. Thus, our data structure for
an upgrade-coupled joint channel utilizes a three-dimensional
matrix of size (2A) × B × B to store W̌a(y

i, j
a |0) (specifically,

we use the cube data structure provided by [17]). As for the
mapping between ya and its conjugate, if W̌a(y

i, j
a |0) is stored in

element (y,i,j) of the matrix, and y is even, then W̌a(ȳ
i, j
a |0)

is stored in element (y+1,i,j). We store the absolute values
of the b-channel D-values in a vector of length B.

The second key observation is that each upgrading procedure
only ever changes one marginal. That is, the a-channel
upgrading procedure leaves the marginal b-channel unchanged,
and the b-channel upgrading procedure does not affect the
marginal a-channel. Thus, since our upgrading procedure
leverages upgrading procedures for single channels, we can
pre-compute the upgraded marginal channels. In essence, given
a target upgraded marginal channel — computed beforehand
using the techniques of [9] — our upgrading procedures “split”
the probability of an output symbol among two absorbing
symbols. The “splitting” factors are functions of the D-values
of the three symbols (see appendix C). Indeed, we compute
beforehand the polarized and upgraded marginal channels.

The joint polarization step maps each pair of symbols, yi1, j1a1

and y
i2, j2
a2 to up to four polarized counterparts (see Section IV-B).

Knowing beforehand what the upgraded marginal channels
should be, we can directly split each polarized symbol into the
relevant absorbing symbols. We incorporate the upgrade-couple
operation into this by utilizing the factor αi, j from (36).

Thus, in our implementation, rather than performing each
step of an iteration in its entirety, we perform all steps in
one fell swoop. This sidesteps the memory-intensive step of
computing the upgrade-coupled jointly polarized channel. The
interested reader is urged to look at our source code for further
details.
Remark 10. The description here was given in terms of D-
values, in line with the exposition in this paper. However, for

numerical purposes we recommend — and use — likelihood
ratios in practical implementation. Likelihood ratios have a
greater dynamic range than that of D-values, and therefore offer
better numerical precision.9 There is a one-to-one correspon-
dence between D-values and likelihood ratios (see appendix B),
and all D-value based formulas are easily translated to their
likelihood ratio counterparts.

IX. NUMERICAL RESULTS

Figures 1 and 5 present numerical results of our bound
for two cases. In both cases, we designed a polar code for a
specific BSC, and then assessed its performance when used
over different BSCs. Specifically:
• Figure 1: A code of length N = 210 = 1024, rate R = 0.1,

designed for a BSC with crossover probability 0.2.
• Figure 5: A code of length N = 211 = 2048, rate R = 0.25,

designed for a BSC with crossover probability 0.18.
The codes were designed using the techniques of [9] with
128 quantization levels. The non-frozen set A consisted of
the bNRc channels with smallest probability of error. This
non-frozen set was fixed.

For each code, we plot three bounds on the probability of
error, when used over specific BSCs: an upper bound on the
probability of error, the trivial lower bound on the probability
of error, and the new lower bound on the probability of error
presented in this paper.

For the upper bound, we computed an upper bound on∑
a∈A PML

e (Wa), and for the trivial lower bound we computed
a lower bound on maxa∈A PML

e (Wa); upper and lower bounds
on the probability of error of single channels (i.e., on PML

e (Wa))
were obtained using the techniques of [9]. The new lower bound
is based on the IMJP decoder, as described in this paper. We
computed the IMJP decoding error, with 2A = 2B = 32 for all
possible pairs of the 20 worst channels in the non-frozen set.10

We then used Lemma 30, computed for the subset of these
20 channels that yielded the highest bound; this provides a
significantly improved bound over the bound given by the worst-
performing pair. The computation utilized [18] for parallel
computation of the IMJP decoding error over different channel
pairs.

As one may observe, our bounds improve upon the previously
known lower bound (3). In fact, they are quite close to the
upper bound on the probability of error. This provides strong
numerical evidence that error events of channel pairs dominate
the error probability of polar codes under SC decoding.

X. DISCUSSION AND OUTLOOK

This research was inspired by [12], which showed that —
for the BEC — the union bound on the probability of error
of polar codes under SC decoding is asymptotically tight. The
techniques of [12] hinged on the property that a polarized

9As an example, two very different likelihood ratios: λ1 = 1020 and λ2 =
1030, cannot be differentiated in double precision upon conversion to D-values.

10Note that there is a different set of 20 worst channels for each crossover
probability. For each crossover probability, we selected the 20 channels in the
(fixed) non-frozen set with the highest upper bound on decoding error when
used over a BSC with that crossover probability.
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Fig. 5. Bounds on the probability of error of a rate 0.25 polar code of length
211 = 2048 designed for a BSC with crossover probability 0.18. The code was
used over BSCs with a range of crossover probabilities. The upper bound is
based on [9]. The trivial lower bound is a lower bound on maxa∈A PML

e (Wa ).
The new lower bound was computed using the techniques of this paper.

BEC is itself a BEC. Or, put another way, that the family of
binary erasure channels is closed under the polar transform.
This property enabled the authors to directly track the joint
probability of erasure during the polarization process and bound
its rate of decay. Unfortunately, this property is not shared by
other channel families.

Design of polar codes for channel coding is based on
selecting a set of indices to be frozen. One design rule is
to select the worst-performing indices as the frozen set. For
example, for a code of length N and rate R, choose the N(1−R)
indices with the highest probability of error (such channels
can be identified using the techniques of [9]). This design rule
optimizes the union bound on the probability of error of polar
codes, (2). As Parizi and Telatar have shown in [12], for the
BEC such a design rule is essentially optimal. It is an open
question whether a similar claim can be made for other BMS
channel families.

As our numerical results show, below a certain crossover
probability the upper bound and our lower bound all but
coincide, with a significant gap to the trivial lower bound.
Thus, we conjecture that the ratio between the union bound
and the actual probability of error approaches 1 asymptotically
for any BMS channel. This will imply the essential optimality
of the the union bound as a design rule. Moreover, we believe
that the tools developed in this research are key to proving
this conjecture.

One possible approach is to track analytically the evolution
of joint error probabilities during the polarization process. The
symmetrization transformation and the resultant decoupling
decomposition bring joint channels to a form more amenable
to analysis. One may look at, for example, the Bhattacharyya

parameter of the channel W2 from (26), when ua, ya are fixed,

Zb |ya,ua
=

∑
db

√
W2(db |0; ya, ua)W2(db |1; ya, ua).

This quantity, together with the Bhattacharyya parameters of
the a-channel, may be used to bound P {Ea ∩ Eb}. Tracking
the evolution of these parameters — or bounds on them —
may enable the study of the decay of P {Ea ∩ Eb} (if indeed
there is such decay). In fact, it can be shown that applying
the above suggestion to the BEC coincides with the approach
of [12].

Interestingly, our bounds are tight despite the various
manipulations they perform on the joint channel. The joint
channels that result from our procedure are very different from
the actual joint channel, yet have no effect on the marginal
distributions. This curious outcome merits further research on
the upgrade-couple transform and its effect on the joint channel.

There are several additional avenues of further research.
These include:
• Our results apply only to BMS channels. It would

be interesting to extend them to richer settings, such
as channels with non-binary input, or non-symmetric
channels.

• This research has concentrated on SC decoding. Can
it be expanded/applied to other decoding methods for
polar codes (e.g., successive cancellation list (SCL)
decoding [20])? A logical first step in analyzing SCL
decoding is to look at pairs of error events, as done here.
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APPENDIX A
THE IMJP DECODER FOR A BEC

In the special case where W is a BEC and Wa and Wb are
two of its polar descendants, we have the following.

Proposition 31. Let Wa(ya |ua) and Wb(ya, ua, yr |ub) be two
polar descendants of a BEC in the same tier. Then, the IMJP
and the IML (SC) decoders coincide.

To prove this, we first show that for the BEC erasures
are determined by the received channel symbols, y2n

1 , and
not previous bit decisions. This implies that for fixed ya,
regardless of yr and in particular ua, either channel Wb always
experiences an erasure, or always experiences a non-erasure. If
Wb experiences an erasure, it doesn’t matter what φa decides
in terms of the IMJP decoder – it may as well use an ML
decoder; if Wb does not experience an erasure, then the best
bet of Wa is to use an ML decoder. This suggests that the IML
and IMJP decoders coincide.

Lemma 32. Let Wa(y
2n

1 , ua−1
1 |ua) be a polar descendant of

a BEC, W. Then, there exists a set En, dependent only on a,
such that Wa has an erasure if and only if y2n

1 ∈ En.

Proof: Here, y2n

1 are the received channel symbols, and
ua−1

1 the previous bit decisions that are part of Wa’s output.
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Let 〈α1, α2, . . . , αn〉 be the binary expansion of a − 1, with α1
the MSB. Recall that channel Wa is the result of n polarization
steps determined by α1, α2, . . . , αn, where αj = 0 is a ‘−’-
transform and αj = 1 is a ‘+’-transform.

Consider first the case where n = 1, i.e., a − 1 = α1. If
α1 = 0 then Wa = W− has an erasure if and only if at least
one of y1, y2 is an erasure, i.e., if and only if y2

1 ∈ E1, E1 =
{y2

1 |y1 = e or y2 = e}. If α1 = 1 then Wa = W+ has an erasure
if and only if both y1 and y2 are erasures, i.e., if and only if
y2

1 ∈ E1, E1 = {y
2
1 |y1 = e and y2 = e}. Therefore, the claim is

true for n = 1.
We proceed by induction. Let the claim be true for n−1: for

a′ − 1 = 〈α1, α2, . . . , αn−1〉, there exists a set En−1 such that
Wa′ has an erasure if and only if y2n−1

1 ∈ En−1. If αn = 0, then
Wa is the result of a ‘−’-transform of two BEC channels Wa′ ,
so it has an erasure if and only if at least one of them erases. In
other words, Wa has an erasure if and only if y2n

1 ∈ En, En =

{y2n

1 |y
2n−1

1 ∈ En−1 or y2n

2n−1+1 ∈ En−1}. If, however, αn = 1,
then Wa is the result of a ‘+’-transform of two BEC channels
Wa′ , so it has an erasure if and only if both of them erase.
In other words, Wa has an erasure if and only if y2n

1 ∈ En,
En = {y

2n

1 |y
2n−1

1 ∈ En−1 and y2n

2n−1+1 ∈ En−1}. Thus, the claim
is true for n as well, completing the proof.

Proof of Proposition 31: By Lemma 3, a decoder φb that
minimizes P {Ea ∪ Eb} is an ML decoder. It remains to show
that a minimizing φa is also an ML decoder. Marginalizing
the joint channel (10) yields Wa:

Wa(ya |ua) =
∑
ub,yb

Wb(yb |ub) [yb = (ya, ua, yr )] .

The ML decoder for channel Wa maximizes Wa(ya |ua) with
respect to ua; decoder φa, on the other hand, maximizes
T(ya |ua), defined in (12). Using (10) we recast the expression
for T in the same form as the expression for Wa,

T(ya |ua)

=
∑
ub,yb

Wb(yb |ub) [yb = (ya, ua, yr )] · P {φb(yb) = ub} .

By Lemma 32, whether Wb has an erasure depends solely on
the received channel symbols, which are wholly contained in ya,
and not on previous bit decisions. In particular, in computing
Wa or T , we either sum over only erasure symbols or over
only non-erasure symbols. Since φb is an ML decoder for Wb ,
if yb is an erasure of Wb then Wa(ya |ua) = 2T(ya |ua); if yb
is not an erasure of Wb then Wa(ya |ua) = T(ya |ua). In either
case, it is clear that the decision based on (11) is identical
to the ML decision. Therefore, φa is an ML decoder as well,
implying that the IMJP decoder is an IML decoder.

APPENDIX B
INTRODUCTION TO D-VALUES

The decision of an ML decoder for a memoryless binary-
input channel WY |U may be based on any sufficient statistic of
the channel output. One well-known sufficient statistic is the
log-likelihood ratio (LLR), l(y) = log

(
WY |U (y |0)
WY |U (y |1)

)
. When l(y)

is positive, the decoder declares that 0 was transmitted; when
l(y) is negative, the decoder declares that 1 was transmitted;

l(y) = 0 constitutes an erasure, at which the decoder makes
some random choice. Another sufficient statistic is the D-value.

The D-value of output y, d(y), is given by

d(y) , WU |Y (0|y) −WU |Y (1|y). (53)

Clearly, −1 ≤ d(y) ≤ 1. A maximum likelihood decoder makes
its decision based on the sign of the D-value. Assuming a
symmetric channel input, U = 0, 1 with probability 1/2, using
Bayes’ law on (53) yields

d(y) =
WY |U (y |0) −WY |U (y |1)
WY |U (y |0) +WY |U (y |1)

(54)

The input is binary, hence WU |Y (0|y) + WU |Y (1|y) = 1.
Consequently (54) yields

1 + d(y)
2

=
WY |U (y |0)

WY |U (y |0) +WY |U (y |1)
= WU |Y (0|y),

1 − d(y)
2

=
WY |U (y |1)

WY |U (y |0) +WY |U (y |1)
= WU |Y (1|y).

There is a one-to-one correspondence between d(y) and l(y),
l(y) = log 1+d(y)

1−d(y), or, equivalently, d(y) = tanh(l(y)/2).
If channel WY |U is symmetric, for each output y there is

a conjugate output ȳ; their LLRs and D-values are related:
l(ȳ) = 1

l(y), d(ȳ) = −d(y).
Since the D-value is a sufficient statistic of a BMS channel,

we may replace the channel output with its D-value. Thus, we
may assume that the output y of channel WY |U is a D-value,
i.e., y = WU |Y (0|y) −WU |Y (1|y). In this case, we say that W
is in D-value representation.

Recall that every BMS channel can be decomposed into
BSCs [19, Theorem 2.1]. We can think of the output of a BMS
as consisting of the “reliability” of the BSC and its output.
The absolute value of the D-value corresponds to the BSC’s
reliability and its sign to the BSC output (0 or 1).

A comprehensive treatment of D-values and LLRs in relation
to BMS channels appears in [13, Chapter 4].

APPENDIX C
UPGRADES OF A BMS CHANNEL

We state here in our notation the two upgrades of a BMS
channel from [9].

Let W be a discrete BMS whose outputs are D-values
±d1,±d2, . . . ,±dm, and let the probability of symbol d` be
πd` , W(d` |u)+W(−d` |u) = W(d` |0)+W(d` |1), ` = 1, . . . ,m.
Without loss of generality, 0 ≤ d1 ≤ d2 ≤ · · · ≤ dm ≤ 1.
Clearly, πd` ≥ 0 for all `, and

∑m
`=1 π

d` = 1. Moreover,
πd` = π−d` . Namely, this is a BMS that decomposes to m differ-
ent BSCs, with crossover probabilities (1− d`)/2, ` = 1, . . . ,m.
BSC channel ` is selected with probability πd` . We have
W(d` |u) = (πd` /2) · (1 + (−1)ud`) and W(−d` |u) = W(d` |ū).

A. The Upgrade-merge-2 Procedure

The first upgrade-merge of [9] takes two D-values dj ≤ dk
and merges them by transferring the probability of dj to dk .
We call it upgrade-merge-2. Channel W : U → Y is upgraded
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Q(2)(z |u) W(d |u)

zk

−zk

dj

dk

−dj

−dk

p1

p2

p3

p1

p2

p3

(a) Degrading channel from Q(2) to W for upgrade-merge-2.

Q(3)(z |u) W(d |u)

zk
zi

−zi
−zk

dk
dj

di
−di
−dj

−dk

pk
qk

qi
pi

pk

qk

qi

pi

(b) Degrading channel from Q(3) to W for upgrade-merge-3.

Fig. 6. Degrading channels for the upgrade-merge-2 and upgrade-merge-3
procedures.

to channel Q(2) : U → Z; the output alphabet of Q(2) is
Z = (Y \ {dj, dk,−dj,−dk}) ∪ {zk,−zk}, and

Q(2)(z |u) =



πzk
(

1 + (−1)udk
2

)
, z = zk

πzk
(

1 − (−1)udk
2

)
, z = −zk

W(z |u), otherwise,

(55)

where

πz` =


0, ` = j
πd j + πdk , ` = k
πd` , otherwise.

The degrading channel from Q(2) to W is shown in Figure 6a.
We show only the portion of interest, i.e., we do not show
the symbols that this degrading channel does not change. The
parameters of the degrading channel are

p1 =
πd j

πd j + πdk

(
dk + dj

2dk

)
,

p2 =
πdk

πd j + πdk
,

p3 =
πd j

πd j + πdk

(
dk − dj

2dk

)
.

Indeed, p1, p2, p3 ≥ 0 and p1 + p2 + p3 = 1, so this constitutes
a valid channel. Note that if dj = dk then p3 = 0.

B. The Upgrade-merge-3 Procedure

The second upgrade-merge of [9] removes a D-value dj by
splitting its probability between a preceding D-value di ≤ dj

and a succeeding D-value dk ≥ dj . We call it upgrade-merge-3.
Unlike upgrade-merge-2, at least one of these inequalities must
be strict (i.e., either di < dj or dj < dk). Channel W : U → Y

is upgraded to channel Q(3) : U → Z with output alphabet
Z = (Y \ {di, dj, dk,−di,−dj,−dk}) ∪ {zi, zk,−zi,−zk}, and

Q(3)(z |u) =



πzk
(

1 + (−1)udk
2

)
, z = zk

πzi
(

1 + (−1)udi
2

)
, z = zi

πzi
(

1 − (−1)udi
2

)
, z = z̄i

πzk
(

1 − (−1)udk
2

)
, z = z̄k

W(z |u), otherwise,

(56)

where

πz` =



πdi + πd j

(
dk − dj

dk − di

)
, ` = i

0, ` = j

πdk + πd j

(
dj − di
dk − di

)
, ` = k

π`, otherwise.

Note that

Q(3)(zk |u) +Q(3)(zi |u) = W(di |u) +W(dj |u) +W(dk |u). (57)

The degrading channel from Q(3)(z |u) to W(y |u) is shown in
Figure 6b, showing only the interesting portion of the channel.
The parameters of the channel are p` = πd` /πz` , and q` =
1 − p` , ` = i, k. This is a valid channel as πz` ≥ πd` .

It can be shown [9, Lemma 12] that Q(2) < Q(3) < W .
That is, upgrade-merge-3 yields a better (closer) upgraded
approximation of W than does upgrade-merge-2.
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