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Greedy-Merge Degrading has Optimal Power-Law
Assaf Kartowsky, Ido Tal, Senior Member, IEEE

Abstract—Consider a channel with a given input alphabet size
and a given input distribution. Our aim is to degrade or upgrade
it to a channel with at most L output letters. A channel Q is
degraded with respect to a channel W if Q can be obtained
from W by processing the output of W . Upgrading is the inverse
relation.

The paper contains four main results. The first result, from
which the paper title is derived, deals with the so called “greedy-
merge” algorithm. We derive an upper bound on the reduction
in mutual information between input and output, as a function of
L. This upper bound is within a constant factor of an algorithm-
independent lower bound. Thus, we establish that greedy-merge
is optimal in the power-law sense (i.e. the power of L).

The other main results deal with upgrading. The second result
shows that a certain sequence of channels that was previously
shown to be “hard” for degrading, displays the same hardness
in the context of upgrading. That is, suppose we are given such
a channel and a corresponding input distribution. If we upgrade
(degrade) to a new channel with L output letters, we incur an
increase (decrease) in mutual information between input and
output. We show that a previously derived bound on the decrease
in mutual information for the degrading case is also a lower
bound on the increase for the upgrading case.

The third result is an efficient algorithm for optimal upgrading,
in the binary-input case. That is, we are given a channel and an
input distribution. We must find an upgraded channel with L
output letters, for which the increase in mutual information is
minimal. We give a simple characterization of such a channel,
which implies an efficient algorithm.

The fourth result is an analog of the first result for the
upgrading case, when the input is binary. That is, we first present
a sub-optimal algorithm for the setting considered in the third
result. The main advantage of the sub-optimal algorithm is that it
is amenable to analysis. We carry out the analysis, and show that
the increase incurred in mutual information is within a constant
factor of the lower bound derived in the second result.

Index Terms—Channel degrading, channel upgrading, greedy
merge, greedy split, polar codes, quantization

I. INTRODUCTION

IN myriad digital processing contexts, quantization is used
to map a large alphabet to a smaller one. For example, quan-

tizers are an essential building block in receiver design, used
to keep the complexity and resource consumption manageable.
The quantizer used has a direct influence on the attainable code
rate.

Another recent application is related to polar codes [1]. Polar
code construction is equivalent to evaluating the misdecoding
probability of each channel in a set of synthetic channels.
This evaluation cannot be carried out naively, since the output
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alphabet size of a synthetic channel is intractably large. One
approach to circumventing this difficulty is to either degrade
or upgrade the evaluated synthetic channel to a channel with
manageable output alphabet size [2]. We will fully define the
relations of degrading and upgrading shortly, in Section II. In
brief, a channel Q is degraded with respect to a channel W
if Q can be obtained from W by processing the output of W .
Upgrading is the inverse relation. When degrading (upgrading)
a channel W to a channel Q, one obtains from the misdecoding
probability of Q an upper (lower) bound on the misdecoding
probability of W . In particular, for a wiretap channel, both
upgrading and degrading are essential to ensure secure and
reliable communications [3][4][5][6][7].

The general problem considered in this paper is the following.
Given a design parameter L, we either degrade or upgrade
an initial channel to a new one with output alphabet size at
most L. We assume that the input distribution is specified, and
note that degradation reduces the mutual information between
the channel input and output, whereas upgradation increases
it. This reduction (increase) in mutual information is roughly
the loss (gain) in code rate due to quantization. We denote the
smallest reduction (increase) possible by ∆I∗� (∆I∗� ) or simply
∆I∗, when direction is clear from the context.

In this work we present four main results. For the sake of
clarity, Table I lists previous related works along with our new
results, marked by a “X”. In the table, BDMC and DMC are
short for Binary Discrete Memoryless Channel and Discrete
Memoryless Channel, respectively. We note that ∆I∗ = Ω(·)
denotes lower bounds on ∆I∗ as a function of L for a specified
channel and input distribution or a sequence of those two. On
the other hand, ∆I∗ = O(·) are general upper bounds on ∆I∗,
as a function of L, that are independent of channel and input
distribution.

TABLE I
PREVIOUS RELATED WORKS AND OUR NEW RESULTS

Channel Optimal
∆I∗ = Ω(·) ∆I∗ = O(·)Type Algorithm

Degrading BDMC [8],[9] [10] [2],[11]1,X
DMC [10] [12],[13],[14],X

Upgrading BDMC X X [2],[11]1,X
DMC X [14]

Let |X | denote the channel input alphabet size, and treat it as
a fixed quantity. In our first main result (Section III), we show
that for any input distribution and any initial channel, ∆I∗� =
O(L−2/(|X |−1)). Moreover, this bound is attained efficiently by
the greedy-merge algorithm discussed already in [2] and [11]
for binary-input memoryless symmetric channels (BMSCs), and

1To be precise, the results in [2] and [11] were derived for binary-input
memoryless symmetric channels (BMSCs).
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in [13] for general discrete memoryless channels. This bound is
tighter than the bounds derived in [2],[11],[12],[13] and [14]. In
fact, up to a constant multiplier (dependent on |X |), this bound
is the tightest possible. Namely, [10] proves the existence of
an input distribution and a sequence of channels for which
∆I∗� = Ω(L−2/(|X |−1)). Both bounds have −2/(|X | − 1) as
the power of L, the same power-law. We mention a recent
result [15] in which a different power-law is shown to be tight,
for the special case in which the channel is very noisy. See
also [16], which is especially relevant when L is small.

Our second main result (Section IV) is the analog of [10]
to the upgrading problem. Namely, in [10], a sequence of
channels is shown to have a degrading penalty of ∆I∗� =
Ω(L−2/(|X |−1)). We show that this same sequence of channels
has an upgrading penalty ∆I∗� = Ω(L−2/(|X |−1)), with the
exact same constant. Similar to [10], we conclude that some
channels with moderate |X | are “hard” to upgrade, in the sense
that a very large L is required to keep ∆I∗� small. Moreover,
this result plays an important role in our fourth result.

An optimal degrading algorithm was presented in [8], for the
binary-input case. Namely, a channel and input distribution are
supplied, along with a target output alphabet size. The algorithm
finds a degraded channel with the target output alphabet size,
that has the largest possible mutual information between input
and output. See also [9] for an improved implementation in
terms of running time. In our third result (Section V), we
present the upgrading analog: an optimal upgrading algorithm
for binary-input discrete memoryless channels. Namely, we
show that an optimal upgraded channel is a subset of the initial
channel, when both are represented using posterior probability
vectors. This characterization paves the way for an algorithm
that efficiently finds the optimal subset.

In our fourth main result (Section VI), we use our previous
results and techniques to obtain an upper bound on ∆I∗� , valid
for any binary-input discrete memoryless channel and any
input distribution. That is, a greedy version of the optimal
upgrading algorithm, known as “greedy-split”, is proved to
obtain ∆I∗� = O(L−2/(|X |−1)) = O(L−2). We note that the
algorithm is a generalization of the one presented in [2] for the
symmetric case. Our bound is tighter than the one previously
derived in [11]. As in our first result, this new bound shares
the same power-law as the lower bound from our second result,
and is thus, up to a constant multiplier, the tightest possible.

II. FRAMEWORK AND NOTATION

We are given an input distribution and a DMC W : X → Y .
Both |X | and |Y| are assumed finite. Let X and Y denote
the random variables that correspond to the channel input and
output, respectively. Denote the corresponding distributions
PX and PY . The probability of receiving y ∈ Y as the
channel output given that x ∈ X was transmitted, namely
P {Y = y|X = x}, is denoted by W (y|x). The probability that
x ∈ X is the channel input, namely P {X = x}, is denoted by
π(x). We also assume that X and Y are disjoint, allowing
ourselves to abuse notation and denote P {X = x|Y = y}
and P {Y = y} as W (x|y) and π(y), respectively. We stress
that unless stated otherwise, we will not assume that W is

W Φ
YX Z

Q

(a) Q 4W .

Q Φ
ZX Y

W

(b) Q <W .

Fig. 1. Degrading and upgrading W to Q.

symmetric in any sense. Without loss of generality we assume
that π(x) > 0 and π(y) > 0 for every x ∈ X and y ∈ Y .

The mutual information between the channel input and output
is

I(W,PX) , I(X;Y ) =
∑
x∈X

η(π(x))−
∑
x∈X ,
y∈Y

π(y)η(W (x|y)) ,

where

η(p) =

{
−p log p p > 0 ,

0 p = 0 ,
(1)

and the logarithm is taken in the natural basis. We note that
the input distribution does not necessarily have to be the one
that achieves the channel capacity.

We now define the relations of degradedness and upgraded-
ness between channels. A channel Q : X → Z is said to be
degraded with respect to a channel W : X → Y , and we write
Q 4W , if there exists a channel Φ : Y → Z such that

Q(z|x) =
∑
y∈Y

W (y|x)Φ(z|y) (2)

for all x ∈ X and z ∈ Z (see Figure 1a). The channel Φ
is then defined as the intermediate channel. Conversely, the
channel Q is said to be upgraded with respect to W , if W
is degraded with respect to Q (see Figure 1b). We note that
as a result of the data processing theorem, Q 4 W implies
∆I� , I(W,PX) − I(Q,PX) ≥ 0, and similarly, W 4 Q
implies ∆I� , I(Q,PX)− I(W,PX) ≥ 0.

Since our focus is on approximating channels with a large
output alphabet size using channels with a limited output
alphabet size we define the optimal degrading loss for a given
pair (W,PX) and a target output alphabet size L as

∆I∗� (W,PX , L) = ∆I∗� , min
Q:Q4W,
|Q|≤L

I(W,PX)− I(Q,PX) ,

(3)
where |Q| denotes the output alphabet size of the channel Q.
The optimizer Q is the degraded channel that is “closest” to W
in the sense of mutual information, yet has at most L output
letters. In the same manner, we define the optimal upgrading
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gain for a given pair (W,PX) and a target output alphabet
size L as

∆I∗� (W,PX , L) = ∆I∗� , min
Q:Q<W,
|Q|≤L

I(Q,PX)− I(W,PX) .

(4)
As in [10], define the degrading cost in the following way:

DC(|X |, L) , sup
W,PX

∆I∗� .

The optimizers W and PX are the channel and input distribu-
tion that yield the highest optimal degrading loss. In a way,
they are the “worst” or “hardest” pair to degrade. We define the
similar notion for the case of upgrading, namely the upgrading
cost as

UC(|X |, L) , sup
W,PX

∆I∗� . (5)

III. UPPER BOUND ON OPTIMAL DEGRADING LOSS

A. Main result
Our first main result is an upper bound on ∆I∗� and DC

in terms of |X | and L that is tight in the power-law sense.
This upper bound will follow from analyzing a sub-optimal
degrading algorithm, called “greedy-merge”. In each iteration
of greedy-merge, we merge the two output letters α, β ∈ Y that
result in the smallest decrease of mutual information between
input and output, denoted ∆I�. Namely, the intermediate
channel Φ maps α and β to a new symbol, while all other
symbols are unchanged by Φ. This is repeated |Y| − L times,
to yield an output alphabet size of L. By upper bounding the
∆I� of each iteration, we obtain an upper bound on ∆I∗� and
DC.

Theorem 1. Let a DMC W : X → Y satisfy |Y| > 2|X | and
let L ≥ 2|X |. Then, for any fixed input distribution PX ,

∆I∗� = min
Q:Q4W,
|Q|≤L

I(W,PX)− I(Q,PX) = O
(
L−

2
|X|−1

)
.

In particular,

∆I∗� ≤ ν(|X |) · L−
2

|X|−1 ,

where

ν(|X |) , π · |X |(|X | − 1)

2
(√

1 + 1
2(|X |−1) − 1

)2
·

 2|X |

Γ
(

1 + |X |−1
2

)
 2
|X|−1

,

and Γ(·) is the Gamma function. That is, for an integer n ≥ 1,

Γ(n) = (n− 1)! , Γ

(
n+

1

2

)
=

(2n)!

4nn!

√
π . (6)

This bound is attained by greedy-merge, and is tight in the
power-law sense.

Note that for large values of |X | the Stirling approximation
along with some other first order approximations can be applied
to simplify ν(|X |) to

ν(|X |) ≈ 16πe|X |3 .

We stress that the greedy-merge algorithm is not optimal in
the sense of ∆I∗� . To see this, consider the following example.

Example 1. Let X = {0, 1}, Y = {a, b, c, d}, and let the
channel W : X → Y satisfy

W (a|0) = 0, W (b|0) =
1

6
, W (c|0) =

1

3
, W (d|0) =

1

2
,

W (a|1) =
1

2
, W (b|1) =

1

3
, W (c|1) =

1

6
, W (d|1) = 0.

Assume also that π(x) = 1
2 for all x ∈ X . Suppose now

that we wish to reduce the output alphabet from 4 to 2 (i.e.,
L = 2) by degrading. The greedy-merge algorithm would first
merge the pair b, c to a new letter bc, and then merge a with
bc, resulting in ∆I� = 0.16 in total. The optimal degrading
algorithm, however, would merge a, b to ab and c, d to cd,
resulting in a total reduction of ∆I∗� = 0.13. Clearly, the
greedy-merge algorithm is not optimal.

To prove Theorem 1, we will use the following theorem
which proves the existence of a pair of output letters whose
merger yields a “small” ∆I�.

Theorem 2. Let a DMC W : X → Y satisfy |Y| > 2|X |, and
let the input distribution be fixed. There exists a pair α, β ∈ Y
whose merger results in a channel Q satisfying

∆I� = O
(
|Y|−

|X|+1
|X|−1

)
.

In particular,

∆I� ≤ µ(|X |) · |Y|−
|X|+1
|X|−1 , (7)

where,

µ(|X |) , 2

|X | − 1
ν(|X |) ,

and ν(·) was defined in Theorem 1.

A large part of this section is devoted to stating and proving
claims cardinal to the proof of Theorem 2. Once Theorem 2 is
proved, Theorem 1 will follow as a simple corollary. Thus, let
us end this subsection by giving a short overview of the major
steps and techniques involved in the proof of Theorem 2:

- For given output letters α and β that are to be merged,
there is an explicit analytic expression for the reduction
in mutual information, ∆I�. This is given in (9), below.
Although the expression for ∆I� is simple and compact,
we were not able to easily manipulate it to suit our
needs. Essentially, the difficulty stems from the fact
that ∆I� behaves very differently, depending on whether
or not either one of the posterior probability vectors
corresponding to α and β has an entry that is very close
to 0. That is, the fact that the function η defined in (1)
has an unbounded derivative close to 0 is an analytic
complication.

- To overcome the above difficulty, we make use of a
previously derived bound (10) on ∆I�, and also develop
a new bound (11) on ∆I�. Essentially, the bound in (10)
is useful when a vector of posterior probabilities has an
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entry close to 0, while (11) is typically tighter than (10)
when this is not the case.

- In (13)–(16), a new bound on ∆I� is derived. In essence,
we use the minimum (tightest) of (10) and (11), and
replace a sum by a maximum in order to simplify the
derivations later on. In (16), we define the function d,
taking as arguments two posterior probability vectors.
Although the notation is purposefully evocative, d is not
a proper distance function: it does not satisfy the triangle
inequality.

- Recall that our aim is to find a pair of output letters, α
and β, for which ∆I� is small, in the sense that it satisfies
(7). Although searching over all the output alphabet Y is
allowed, we limit ourselves to a subset Ysmall of letters
having a sufficiently small probability. Doing so does not
reduce the search space by much (17), and affords us a
simple bound on ∆I� (18). Namely, the critical feature of
(18) is that it is a linear function of the above mentioned
d. That is, with respect to d, we must find a pair of
output letters with posterior probabilities that are “close”.
Essentially, this is the same technique as [13], but with a
tighter d.

- As in [13], our plan is to show the existence of such a pair
by a sphere-packing argument. However, such arguments
typically rely on an underlying distance function, and
since this is not the case for our d, some care and effort
are called for. As a first step, we calculate the “sphere”
of radius r “centered” at some point α, where α is the
posterior probability vector corresponding to output letter
α. A straightforward series of calculations yields the
characterization of this sphere, B(α, r), given in (22)
and (24).

- Most of the vectors contained in B(α, r) are irrelevant,
since they do not correspond to a posterior probability,
and thus lie outside of the probability simplex. To remedy
this, we first consider the intersection of B(α, r) with the
set of vectors with entries summing to 1. Doing so gives
us a gain in the form of a reduced affine dimension, but
results in a set that is unwieldy. Thus, we simplify by
considering instead a simple set of vectors summing to
1, which is contained in B(α, r). This is the set C(α, r),
defined in (26) and (27). Essentially, after a coordinate is
removed, C(α, r) is simply a box.

- We now come to terms with d not being a proper distance
function. Note that if d were a distance function, an
intersection of C(α, r) and C(β, r) would imply that
d(α,β) is at most 2r. This does not hold in our case.
Our way around this difficulty is by carefully defining
from C(α, r) the subset Q(α, r). This is done in (29).
The redeeming property of Q(α, r) is this: if, up to
technical conditions, Q(α, r) and Q(β, r) intersect, then
d(α,β) ≤ r. Thus, we are well on our way to applying
a sphere-packing argument: the intersection of sets Q is
a suitable replacement for the “sphere intersection” in a
typical sphere-packing argument.

- In many sphere-packing arguments, the volume of a
sphere does not depend on the point it is centered at.
However, this is not the case for Q(α, r), the volume of

which is strongly dependent on α. This is a deficiency,
which we counter by considering the “weight” of Q(α, r)
as opposed to its volume. Namely, a “weight density”
function ϕ is defined in (31) and (32), by which the
weight of a set Q is defined in (33). The function ϕ is
chosen so that all such Q have roughly the same weight.
Lastly, a sphere-packing argument is applied.

B. An alternative “distance” function

We begin by addressing the merger of a pair of output letters
α, β ∈ Y . Since this pair of letters is merged into a new letter
γ (we assume γ /∈ X ∪ Y), the new output alphabet of Q is
Z = {γ} ∪ Y \ {α, β}. The channel Q : X → Z then satisfies

Q(γ|x) = W (α|x) +W (β|x) ,

whereas for all y ∈ Z ∩ Y we have Q(y|x) = W (y|x). Using
the shorthand

πγ = π(γ) , πα = π(α) , πβ = π(β) ,

one gets that

πγ = πα + πβ .

Let us denote by α = (αx)x∈X , β = (βx)x∈X and γ =
(γx)x∈X the vectors corresponding to posterior probabilities
associated with α, β and γ, respectively. Namely,

αx = W (x|α) , βx = W (x|β) ,

and a short calculation shows that

γx = Q(x|γ) =
πααx + πββx

πγ
=
πααx + πββx
πα + πβ

. (8)

Thus, after canceling terms, one gets that

∆I� = I(W,PX)− I(Q,PX) =
∑
x∈X

∆Ix , (9)

where

∆Ix , πγη(γx)− παη(αx)− πβη(βx) .

In order to bound ∆I�, we give two bounds on ∆Ix. The
first bound was derived in [13],

∆Ix ≤ (πα + πβ) · d1(αx, βx) , (10)

where for σ ≥ 0 and ζ ∈ R, we define

d1(σ, ζ) , |ζ − σ| .

The subscript “1” in d1 is suggestive of the L1 distance.
Note that we will generally use αx or σ to denote a probability
associated with an input letter, while ζ will denote a “free” real
variable, possibly negative. We will keep to this convention
for the vector case as well. In addition, let us point out that
the bound in (10) was derived assuming a uniform input
distribution, however it remains valid for the general case.
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We now derive the second bound on ∆Ix. For the case
where αx, βx > 0,

∆Ix = πα(η(γx)− η(αx)) + πβ(η(γx)− η(βx))

(a)

≤ παη
′(αx)(γx − αx) + πβη

′(βx)(γx − βx)

(b)
=

παπβ
πα + πβ

(αx − βx)(η′(βx)− η′(αx))

(c)

≤ 1

4
(πα + πβ)(αx − βx)2(−η′′(λ)) ,

where in (a) we used the concavity of η(·), in (b) the definition
of γx (see (8)), and in (c) the AM-GM inequality and the mean
value theorem where λ = θαx + (1− θ)βx for some θ ∈ [0, 1].
Using the monotonicity of −η′′(p) = 1/p we get

−η′′(λ) ≤ 1

min(αx, βx)
.

Thus,
∆Ix ≤ (πα + πβ) · d2(αx, βx) , (11)

where

d2(σ, ζ) ,

{
(ζ−σ)2
min(σ,ζ) σ, ζ > 0 ,

∞ otherwise .
(12)

The subscript “2” in d2 is suggestive of the squaring in the
numerator. Combining (10) and (11) yields

∆Ix ≤ (πα + πβ) · d(αx, βx) , (13)

where
d(σ, ζ) , min(d1(σ, ζ), d2(σ, ζ)) . (14)

Returning to (9) using (13) we get

∆I� ≤ (πα + πβ)|X | · d(α,β) , (15)

where
d(α, ζ) , max

x∈X
d(αx, ζx) . (16)

Before moving on, let us make a few remarks and give some
motivation for (13), (15) and (16). First, the usage of “max” in
(16) as opposed to summing over all x is to simplify upcoming
derivations. Second, recall that we wish to prove the existence
of a pair α, β ∈ Y such that ∆I� is “small”. Then according to
(15), it suffices to show the existence of a pair that is “close”
in the sense of d, assuming that πα, πβ are also small enough.
Third, some intuition regarding the need for both d1 and d2
is the following. Using d2 alone is not good enough since it
diverges when either of its input arguments is in the vicinity
of zero. Thus, the merger of a pair of close letters with a small
entry yields a large value of d2 instead of a small one. Using
d1 alone, on the other hand, would lead us to a looser bound
than desired (see [13]).

Since we are interested in lowering the right hand side of
(15), we limit our search to a subset of Y , as was done in [13].
That is,

Ysmall ,

{
y ∈ Y : π(y) ≤ 2

|Y|

}
,

which implies

|Ysmall| ≥
|Y|
2
. (17)

s1

s0

B(α, r)

s
0 +
s
1 =

1

α0

α1

ω(α0, r) ω(α0, r)

ω(α1, r)

ω(α1, r)
ω(α1, r)

BK(α, r)

C(α, r)

Q′(α, r)

Fig. 2. The sets B(α, r), BK(α, r), C(α, r) and Q′(α, r) for the binary
case (|X | = 2) assuming α1 < α0 in the (s0, s1) plane.

Namely, we have not reduced the search space by too much.
The utility of confining ourselves to Ysmall is that for all
α, β ∈ Ysmall, we have that πα + πβ ≤ 4/|Y|. Thus, by (15),
we have the following lemma.

Lemma 3. Let α, β ∈ Ysmall. Then,

∆I� ≤
4|X |
|Y|
· d(α,β) . (18)

We still need to prove the existence of a pair α, β ∈ Ysmall

that is “close” in the sense of d. To that end, as in [13], we
would like to use a sphere-packing approach. A typical use
of such an argument assumes a proper metric, yet d is not a
metric. Specifically, the triangle-inequality does not hold:

d

([
0.1
0.9

]
,

[
0.2
0.8

])
︸ ︷︷ ︸

0.1

+ d

([
0.2
0.8

]
,

[
0.3
0.7

])
︸ ︷︷ ︸

0.05

� d

([
0.1
0.9

]
,

[
0.3
0.7

])
︸ ︷︷ ︸

0.2

.

The absence of a triangle-inequality is a complication that
we will overcome, but some care and effort are called for.
Broadly speaking, as usually done in sphere-packing, we aim
to show the existence of a critical “sphere” radius, rcritical =
rcritical(|X |, |Y|) > 0. Such a critical radius will ensure the
existence of α, β ∈ Ysmall for which d(α,β) ≤ rcritical.

C. Non-intersecting “spheres”
In this section, we gradually derive our equivalent of a

“sphere”. For convenience, some of the sets defined in the
process are illustrated in Figure 2 for the binary case. We start
by giving explicit equations for the “spheres” corresponding
to d1 and d2.

Lemma 4. For σ ≥ 0 and r > 0, define the sets B1(σ, r) and
B2(σ, r) as

B1(σ, r) , {ζ ∈ R : d1(σ, ζ) ≤ r} ,
B2(σ, r) , {ζ ∈ R : d2(σ, ζ) ≤ r} .
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Then,
B1(σ, r) = {ζ ∈ R : −r ≤ ζ − σ ≤ r} ,

and

B2(σ, r) = {ζ ∈ R : −
√
r2

4
+ σ · r +

r

2
≤ ζ − σ ≤

√
σ · r} .

Proof: Assume ζ ∈ B1(σ, r). Then ζ satisfies |ζ−σ| ≤ r,
which is equivalent to −r ≤ ζ − σ ≤ r, and we obtained
the desired result for B1(σ, r). Assume now ζ ∈ B2(σ, r). If
ζ ≥ σ, then min(σ, ζ) = σ, and thus

(ζ − σ)2

σ
≤ r ,

which implies
0 ≤ ζ − σ ≤

√
σ · r . (19)

Next, consider the case ζ ≤ σ. Note that since r is finite , we
may further assume by the definition of d2 in (12) that ζ > 0.
Now min(σ, ζ) = ζ, which implies that

(ζ − σ)2

ζ
≤ r .

Since ζ > 0, we rearrange the above to yield

ζ2 − (2σ + r) ζ + σ2 ≤ 0 ,

and considering the above as a quadratic inequality in ζ yields

−
√
r2

4
+ σ · r +

r

2
≤ ζ − σ ≤

√
r2

4
+ σ · r +

r

2
.

By assumption, ζ ≤ σ. Thus, we can sharpen and simplify the
rightmost inequality above, yielding

−
√
r2

4
+ σ · r +

r

2
≤ ζ − σ ≤ 0 . (20)

The union of (19) and (20) yields the desired result for B2(σ, r).

With B1(σ, r) and B2(σ, r) defined and calculated, we now
move on to defining B(σ, r) as

B(σ, r) , {ζ ∈ R : d(σ, ζ) ≤ r} ,

and note that,

B(σ, r) = B1(σ, r) ∪ B2(σ, r) .

Namely, since d is the minimum of d1 and d2, a point ζ satisfies
ζ ∈ B(σ, r) if either d1(ζ, σ) ≤ r or d2(ζ, σ) ≤ r. From our
previous calculations in (19) and (20), we deduce that

B(σ, r) = {ζ ∈ R : −ω(σ, r) ≤ ζ − σ ≤ ω(σ, r)} , (21)

where

ω(σ, r) , max

(√
r2

4
+ σ · r − r

2
, r

)

=

{√
r2

4 + σ · r − r
2 σ ≥ 2r ,

r σ ≤ 2r ,

ω(σ, r) , max
(√
σ · r, r

)
=

{√
σ · r σ ≥ r ,

r σ ≤ r .

(22)

To extend B to vectors we define R|X | as the set of vectors
with real entries that are indexed by X ,

R|X | , {ζ = (ζx)x∈X : ζx ∈ R} .

The set K|X | is defined as the set of vectors from R|X | with
entries summing to 1,

K|X | ,

{
ζ ∈ R|X | :

∑
x∈X

ζx = 1

}
.

The set K|X |+ is the set of probability vectors. Namely, the set
of vectors from K|X | with non-negative entries,

K|X |+ ,
{
ζ ∈ K|X | : ζx ≥ 0

}
.

We can now define B(α, r). For α ∈ K|X |+ let

B(α, r) ,
{
ζ ∈ R|X | : d(α, ζ) ≤ r

}
. (23)

Recalling the maximum in (16), we deduce that ζ ∈ B(α, r)
if and only if for all x ∈ X we have that ζx ∈ B(αx, r). Thus,
by (21) we have a simple characterization of B(α, r) as a box:
a Cartesian product of segments. That is,

B(α, r) =
{
ζ ∈ R|X | :

− ω(αx, r) ≤ ζx − αx ≤ ω(αx, r)
}
. (24)

We stress that the box B(α, r) contains α, but is not necessarily
centered at it.

Recall that we have described rcritical at the end of Sub-
section III-B as a quantity ensuring the existence of unique
α, β ∈ Ysmall for which d(α,β) ≤ rcritical. Using our
current notation, rcritical must imply the existence of distinct
α, β ∈ Ysmall such that β ∈ B(α, rcritical). Naturally, in light
of (15), we aim to pick rcritical as small as we can.

Note that B(α, r) is a set of vectors in R|X |. However,
the boxes B(α, r) are induced by points α in K|X |+ . Trivially,
such points α also belong to K|X |, a translated subspace of
R|X |. Thus, the sphere-packing would yield a tighter result if
performed in K|X | rather than in R|X |. Then, for α ∈ K|X |+

and r > 0, let us define

BK(α, r) = B(α, r) ∩K|X | . (25)

When considering BK(α, r) in place of B(α, r), we have
gained in that the affine dimension (see [17, Section 2.1.3]) of
BK(α, r) is |X |−1 while that of B(α, r) is |X |. However, we
have lost in simplicity: the set BK(α, r) is not a box. Indeed,
a moment’s thought reveals that any subset of K|X | with more
than one element cannot be a box.

We now show how to overcome the above loss. That is,
we show a subset of BK(α, r) which is — up to a simple
transform — a box. Denote the index of the largest entry of a
vector α ∈ K|X | as xmax(α), namely,

xmax(α) , arg max
x∈X

αx .

In case of ties, define xmax(α) in an arbitrary yet consistent
manner. For xmax = xmax(α) given, or clear from the context,
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define ζ′ as ζ, with index xmax deleted. That is, for a given
ζ ∈ K|X |,

ζ′ , (ζx)x∈X ′ ∈ R|X |−1 ,

where X ′ , X \{xmax}. Note that for ζ ∈ K|X |, all the entries
sum to one. Thus, given ζ′ and xmax we know ζ. Next, for
α ∈ K|X |+ and r > 0, define the set

C(α, r) , {ζ ∈ K|X | :

∀x ∈ X ′ , −ω′(αx, r) ≤ ζx − αx ≤ ω′(αx, r)} , (26)

where xmax = xmax(α) and

ω′(σ, r) ,
ω(σ, r)

|X | − 1

=
max

(√
r2/4 + σ · r − r/2, r

)
|X | − 1

.

(27)

Note that unlike B(α, r), the center of C(α, r) is α.

Lemma 5. Let α ∈ K|X |+ and r > 0 be given. Let xmax =
xmax(α). Then,

C(α, r) ⊂ BK(α, r) .

Proof: By (22), we see that 0 ≤ ω(αx, r) ≤ ω(αx, r).
Thus, according to (26), it suffices to show that

− ω(αxmax
, r) ≤ ζxmax

− αxmax
≤ ω(αxmax

, r) . (28)

Indeed, summing the condition in (26) over all x ∈ X ′ gives∑
x∈X ′

−ω′(αx, r) ≤
∑
x∈X ′

ζx −
∑
x∈X ′

αx ≤
∑
x∈X ′

ω′(αx, r) .

Since ω(αx, r) is a monotonically non-decreasing function of
αx, we have that ω′(αx, r) ≤ ω′(αxmax

, r). Hence, the above
can be simplified to

−ω(αxmax
, r) ≤

∑
x∈X ′

ζx −
∑
x∈X ′

αx ≤ ω(αxmax
, r) .

Since both ζ and α are in K|X |, the middle term in the above
is αxmax

− ζxmax
. Thus, (28) follows.

We remind ourselves of our ultimate goal by stating the
following corollary to Lemmas 3 and 5.

Corollary 6. Let α, β ∈ Ysmall be such that β ∈ C(α, r).
Then, merging α and β induces a penalty ∆I� of at most

∆I� ≤
4|X |r
|Y|

.

Proof: If β ∈ C(α, r), then according to Lemma 5, we
have that β ∈ BK(α, r). Using (25) we get that β ∈ B(α, r),
which means that d(α,β) ≤ r. Plugging it back in (18) yields
the desired result.

As outlined before, our aim is to find an rcritical for which
the conditions of the above corollary surely hold, for some α
and β. A standard sphere-packing approach to finding such
an rcritical is to consider the intersection of spheres of radius
rcritical/2. Since the triangle inequality does not hold for d,

we must use a somewhat different approach. Towards that end,
define the positive quadrant associated with α and r as

Q′(α, r) , {ζ′ ∈ R|X |−1 :

∀x ∈ X ′, 0 ≤ ζx − αx ≤ ω′(αx, r)} , (29)

where xmax = xmax(α) and ω′(αx, r) is as defined in (27).

Lemma 7. Let α, β ∈ Y be such that xmax(α) = xmax(β).
If Q′(α, r) and Q′(β, r) have a non-empty intersection, then
d(α,β) ≤ r.

Proof: By (23), (25) and Lemma 5, it suffices to prove
that β ∈ C(α, r). Define C′(α, r) as the result of applying a
prime operation on each member ζ of C(α, r), where xmax =
xmax(α). Namely, we remove the xmax entry from all ζ in
C(α, r). Hence, we must equivalently prove that β′ ∈ C′(α, r).
By (26), we must show that for all x ∈ X ′,

− ω′(αx, r) ≤ βx − αx ≤ ω′(αx, r) . (30)

Since we know that the intersection of Q′(α, r) and Q′(β, r)
is non-empty, let ζ′ be a member of both sets. Thus, we know
that for x ∈ X ′,

0 ≤ ζx − αx ≤ ω′(αx, r) ,

and
0 ≤ ζx − βx ≤ ω′(βx, r) .

For each x ∈ X ′ we must consider two cases: αx ≤ βx and
αx > βx.

Consider first the case αx ≤ βx. Since ζx − αx ≤ ω′(αx, r)
and βx − ζx ≤ 0, we conclude that βx − αx ≤ ω′(αx, r).
Conversely, since βx − αx ≥ 0 and, by (27), ω′(αx, r) ≥ 0,
we have that βx−αx ≥ −ω′(αx, r). Thus we have shown that
both inequalities in (30) hold.

To finish the proof, consider the case αx > βx. We
have already established that ω′(αx, r) ≥ 0. Thus, since by
assumption βx − αx ≤ 0, we have that βx − αx ≤ ω′(αx, r).
Conversely, since ζx − βx ≤ ω′(βx, r) and αx − ζx ≤ 0, we
have that αx−βx ≤ ω′(βx, r). We now recall that by (27), the
fact that αx ≥ βx implies that ω′(βx, r) ≤ ω′(αx, r). Thus,
αx − βx ≤ ω′(αx, r). Negating gives βx − αx ≥ −ω′(αx, r),
and we have once again proved the two inequalities in (30).

D. Weighted “sphere”-packing

At first glance, thanks to Lemma 7, the quadrant Q′(α, r)
could have been the equivalent of a “sphere” in the sense of
d. However, recalling (27), we see that the dimensions of the
quadrant Q′(α, r) are dependent on the point α. Specifically,
for r fixed, a larger αx is preferable, since the corresponding
sphere will take up a larger volume. That is, the side length
ω′(αx, r), corresponding to coordinate x, is increasing in αx.
We now show how to partially offset this dependence on α.
Towards this end, we define a density over R|X |−1 and derive a
lower bound on the weight of a “sphere” that does not depend
on α. That is, many sphere packing arguments typically involve
an argument having to do with the volume of a sphere versus
the volume of the space the spheres are placed in. In contrast,
our argument will involve the weight of a sphere versus the
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weight of the space the spheres are placed in. We now define
our density function ϕ. The utility of the following definition is
that it partially offsets the above described dependence on αx:
the smaller the argument, the larger the density. Specifically,
let ϕ : R→ R be defined as

ϕ(ζ) ,
1

2
√
ζ
. (31)

Next, for ζ′ ∈ R|X |−1, abuse notation and define ϕ : R|X |−1 →
R as

ϕ(ζ′) ,
∏
x∈X ′

ϕ(ζx) . (32)

The weight of Q′(α, r) is then defined as

M [Q′(α, r)] ,
∫
Q′(α,r)

ϕ(ζ′) dζ′ . (33)

The following lemma proposes a lower bound on M [Q′(α, r)]
that does not depend on α.

Lemma 8. The weight M [Q′(α, r)] satisfies

M [Q′(α, r)] ≥ r
|X|−1

2

(√
2 +

1

|X | − 1
−
√

2

)|X |−1
. (34)

Proof: Since ϕ(ζ′) is a product,

M [Q′(α, r)] =
∏
x∈X ′

∫ αx+ω
′(αx,r)

αx

dζx

2
√
ζx

=
∏
x∈X ′

ψr(αx) ,

where ψr(σ) ,
√
σ + ω′(σ, r)−

√
σ. It suffices to show that

ψr(σ) is decreasing for σ < 2r, and increasing for σ > 2r.
Assume first that σ < 2r. Then,

dψr
dσ

=
1

2
√
σ + r/(|X | − 1)

− 1

2
√
σ
< 0 ,

for all σ ≥ 0. Assume now that σ > 2r. Then,

dψr
dσ

=
1

2

√σ +

√
r2/4 + σ · r − r/2
|X | − 1

−1

·

(
1 +

r

2(|X | − 1)
√
r2/4 + σ · r

)
− 1

2
√
σ
.

Comparing the derivative to zero and solving for σ yields

σ +

√
r2/4 + σ · r − r/2
|X | − 1

= σ

(
1 +

r

2(|X | − 1)
√
r2/4 + σ · r

)2

,

which is equivalent to√
r2/4 + σ · r − r/2
|X | − 1

=

σ · r
(|X | − 1)

√
r2/4 + σ · r

+
σ · r2

4(|X | − 1)2 (r2/4 + σ · r)
.

We define ξ ,
√

r2

4 + σ · r and get

ξ − r

2
=
ξ2 − r2

4

ξ
+

r(ξ2 − r2

4 )

4(|X | − 1)ξ2
.

Now solving for ξ we have

(2|X | − 1)ξ2 − (|X | − 1)rξ − r2

4
= 0 ,

and since ξ > 0 the only solution is ξ = r/2 which implies
σ = 0. We note that this is not a real solution since the
derivative is not defined for σ = 0. Hence, the derivative is
either non-negative or non-positive. By plugging σ = 2r in
the derivative we get

dψr
dσ

∣∣∣∣
σ=2r

=
1

2

(√
2r +

r

|X | − 1

)−1
·
(

1 +
r

(|X | − 1)3r

)
− 1

2
√

2r

=
1

2r
√

2

 1 + 1
3(|X |−1)√

1 + 1
2(|X |−1)

− 1


≥ 0 ,

for |X | ≥ 2 and r > 0. Thus, by continuity of ψr,

ψr(αx) ≥ ψr(2r) ,

and since this lower bound does not depend on αx we get (34).

We partition the letters in Ysmall according to their xmax

value to |X | subsets (at most). The largest subset is denoted
by Y ′. We henceforth limit our search to Y ′. Thus, from this
point onward, xmax is fixed.

Let V ′ be the union of all the quadrants corresponding to
possible choices of α. Namely,

V ′ ,
⋃

α∈K|X|
+

xmax(α)=xmax

Q′(α, r) .

In order to bound the weight of V ′, we introduce the simpler
set

U ′ ,

{
ζ′ ∈ R|X |−1 :

∑
x∈X ′

ζx ≤ 2, ζx ≥ 0 ∀x ∈ X ′
}
.

The constraint r ≤ 1 in the following lemma will be motivated
shortly.

Lemma 9. Let r ≤ 1. Then, V ′ ⊆ U ′.

Proof: Assume ζ′ ∈ V ′. Then, there exists α ∈ K|X |+ such
that 0 ≤ ζx − αx ≤ ω′(αx, r) for all x ∈ X ′. Hence, ζx ≥ 0
for all x ∈ X ′. Moreover,∑

x∈X ′
ζx ≤

∑
x∈X ′

αx +
∑
x∈X ′

ω′(αx, r)

≤ 1− αxmax
+ ω(αxmax

, r) . (35)
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There are two cases to consider. In the case where αxmax
≥ 2r

we have∑
x∈X ′

ζx ≤ 1− αxmax
+

√
r2

4
+ αxmax

r − r

2

≤ 1− αxmax
+

√
α2
xmax

16
+
α2
xmax

2
− r

2

= 1− αxmax

4
− r

2
≤ 2 ,

where the second inequality is due to the assumption αxmax
≥

2r. In the case where αxmax ≤ 2r, (35) becomes∑
x∈X ′

ζx ≤ 1− αxmax + r

≤ 2− αxmax

≤ 2 ,

where we assumed r ≤ 1. Therefore, ζ′ ∈ U ′.
The lemma above and the non-negativity of ϕ, enable us to

upper bound the weight of V ′, denoted by M [V ′], using

M [V ′] ,
∫
V′
ϕdζ′ ≤

∫
U ′
ϕdζ′ . (36)

We define the mapping ρx =
√
ζx for all x ∈ X ′ and perform

a change of variables. As a result, U ′ is mapped to

S ′ ,

{
ρ′ ∈ R|X |−1 :

∑
x∈X ′

ρ2x ≤ 2, ρx ≥ 0

}
,

which is a quadrant of a |X | − 1 dimensional ball of a
√

2
radius. By (31), we have that

dζx
dρx

= 2ρx = 2
√
ζx =

1

ϕ(ζx)
.

Thus, we have by (32) that after the above change of variables,
the Jacobian determinant exactly cancels ϕ,∫

U ′
ϕdζ′ =

∫
S′

dρ′ . (37)

Hence, by (36) and (37)

M [V ′] ≤
∫
S′

dρ′

=
1

2|X |−1
π
|X|−1

2

Γ
(

1 + |X |−1
2

)2
|X|−1

2

=
(π

2

) |X|−1
2 1

Γ
(

1 + |X |−1
2

) , (38)

where we have used the well known expression for the volume
of a multidimensional ball. Thus, we are ready to prove
Theorem 2.

Proof of Theorem 2: Recall that we are assuming |Y| >
2|X |. According to the definition of Y ′, we get

|Y ′| ≥ |Ysmall|
|X |

≥ |Y|
2|X |

> 1 , (39)

where we used (17). As a result, we have at least two points in
Y ′, and are therefore in a position to apply a sphere-packing
argument. Towards this end, let r be such that the starred
equality in the following derivation holds:∑
α∈Y′

M [Q′(α, r)]

≥ |Y|
2|X |

· r
|X|−1

2

(√
2 +

1

|X | − 1
−
√

2

)|X |−1
(∗)
=
(π

2

) |X|−1
2 1

Γ
(

1 + |X |−1
2

)
≥M [V ′] .

(40)

Namely,

r ,
π

4

(√
1 +

1

2(|X | − 1)
− 1

)−2

·

 2|X |

Γ
(

1 + |X |−1
2

)
 2
|X|−1

· |Y|−
2

|X|−1 . (41)

There are two cases to consider. If r ≤ 1, then all of (40) holds,
by (34), (38) and (39). We take rcritical = r, and deduce the
existence of a pair α, β ∈ Y ′ for which d(α,β) ≤ r. Indeed,
assuming otherwise would contradict (40), since each Q′ in the
sum is contained in V ′, and, by Lemma 7 and our assumption,
all summed Q′ are disjoint.

We next consider the case r > 1. Now, any pair of letters
α, β ∈ Y ′ satisfies d(α,β) ≤ r. Indeed, by (14) and (16),

d(α,β) ≤ ‖α− β‖∞ ≤ 1 < r ,

where ‖ · ‖∞ is the maximum norm.
We have proved the existence of α, β ∈ Y ′ ⊂ Ysmall for

which d(α,β) ≤ r. By (18) and (41), the proof is finished.
Finally, we prove Theorem 1.

Proof of Theorem 1: If L ≥ |Y|, then obviously ∆I∗� = 0
which is not the interesting case. If 2|X | ≤ L < |Y|, then
applying Theorem 2 repeatedly |Y| − L times yields

∆I∗� ≤
|Y|∑

`=L+1

µ(|X |) · `−
|X|+1
|X|−1

≤ µ(|X |)
∫ |Y|
L

`−
|X|+1
|X|−1 d`

= ν(|X |)
(
L−

2
|X|−1 − |Y|−

2
|X|−1

)
≤ ν(|X |) · L−

2
|X|−1 ,

by the monotonicity of `−(|X |+1)/(|X |−1). The bound is tight in
the power-law sense by [10, Theorem 2], in which a sequence
of channels is proved to obtain

∆I∗� ≥ δ(|X |) · L
− 2
|X|−1 ,

for a specified δ(·).
We note that Theorem 1 can be generalized to channels with a

continuous output alphabet. This is done using arbitrarily close
approximating degraded channels [12][14], with corresponding
large finite output alphabets.
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E. Symmetric channels

We note that degrading a symmetric channel optimally does
not necessarily yield a symmetric channel [18, Theorem 2][19].
However, often, the fact that the resultant channel is symmetric
is important. For example, [1, Theorem 4] proves that if the
underlying binary-input channel is symmetric, then randomness
is not required in some parts of the process (namely, to borrow
the nomenclature of [1], any choice of frozen bits is as good
as any other). Thus, we would like an analog of Theorem 1,
for the case in which all channels involved are symmetric.
We have indeed found such an analog, for a restricted set of
symmetric channels, defined as cyclo-symmetric channels.

A channel W : X → Y is cyclo-symmetric if the following
holds.

1) The input alphabet is labeled X , {0, 1, . . . , |X | − 1}.
2) The output alphabet size is a multiple of |X |, and

partitioned into |Y|/|X | disjoint sets {Yi}|Y|/|X |i=1 . Each
such Yi contains |X | members,

Yi ,
{
y
(0)
i , y

(1)
i , . . . , y

(|X |−1)
i

}
.

3) For 0 ≤ θ ≤ |X | − 1,

W (y
(0)
i |x) = W (y

(θ)
i |x+ θ) , (42)

where x+ θ is short for x+ θ mod |X |.
Note that a cyclo-symmetric channel is symmetric, according to
the definition in [20, page 94]. Hence, the capacity-achieving
input distribution is the uniform input distribution π(x) =
1/|X | [20, Theorem 4.5.2]. We remark in passing that in the
binary-input case, |X | = 2, a symmetric channel is essentially
cyclo-symmetric as well: the only problematic symbol is the
erasure symbol, which can be split, as discussed in [2, Lemma
4].

Theorem 10. Let a DMC W : X → Y be cyclo-symmetric
and satisfy |Y| > 2|X | and let L ≥ 2|X | be a multiple of |X |.
Fix the input distribution PX to be uniform. Then,

∆I∗� = min
Q:Q4W,
|Q|≤L

I(W,PX)− I(Q,PX) = O
(
L−

2
|X|−1

)
,

where the optimization is over Q that are cyclo-symmetric. In
particular,

∆I∗� ≤ ν(|X |) · L−
2

|X|−1 ,

where ν(|X |) is as defined in Theorem 1. This bound is attained
by a simple modification of greedy-merge, and is tight in the
power-law sense.

Before getting into the proof, let us explain the modification
of greedy-merge mentioned in the theorem. Using the above
notation, in greedy-merge we are to choose the y(t)i and y(t

′)
j

whose merger results in the smallest drop in mutual information
between input and output. In our modified algorithm, we limit
our search to the case in which i 6= j. Namely, the symbols
are taken from Yi and Yj , and these sets are distinct. After
we have completed our search and found the above y(t)i and
y
(t′)
j , we merge Yi and Yj into a new set Yij , in the following

sense: for 0 ≤ θ ≤ |X | − 1, we merge y(t+θ)i and y(t
′+θ)

j into

y
(θ)
ij , where t+ θ and t′ + θ are calculated modulo |X |. As in

greedy-merge, the operation of merging Yi and Yj is repeated
until the output alphabet size is small enough.

Proof of Theorem 10: We start by proving that the
resulting channel Q is cyclo-symmetric. To do so, we prove
that each merging iteration — merging of sets Yi and Yj —
preserves cyclo-symmetry. Suppose for notational convenience
that only one such merge iteration is needed, taking us from
channel W to channel Q. Let the merging be carried out using
the notation above: Yi and Yj are merged to form Yij , with
y
(t)
i and y(t

′)
j as the pair initiating the merger. To prove that

cyclo-symmetry is preserved, we must show that (42) holds.
Namely, for all x ∈ X ,

Q(y
(0)
ij |x) = Q(y

(θ)
ij |x+ θ) .

The above is equivalent to showing that

W (y
(t)
i |x)+W (y

(t′)
j |x) = W (y

(t+θ)
i |x+θ)+W (y

(t′+θ)
j |x+θ) ,

which follows immediately from (42). Obviously, if the output
alphabet of W is a multiple of |X |, then the output alphabet
of Q is smaller by |X |, and is thus still a multiple of |X |.

We now move to proving the upper-bound on the difference
in mutual information. Since Theorem 1 is a direct consequence
of Theorem 2, it suffices to prove that each sub-merger of y(t+θ)i

and y(t
′+θ)

j attains the bound in Theorem 2. Namely, the bound
corresponding to θ = 0, 1, . . . , |X | − 1 must hold with respect
to |Y| − θ output letters.

Let us first consider the case θ = 0. Recall that for θ = 0,
the only constraint imposed by our version of greedy-merge is
that the two symbols merged, y(t)i and y(t

′)
j , must have i 6= j.

Apart from this, as in regular greedy-merge, we pick the pair
y
(t)
i and y(t

′)
j for which the reduction in mutual information

is minimal. Thus, we must show that this added constraint is
still compatible with the proof of Theorem 2. Recall that in
the proof of Theorem 2, only symbols with the same xmax are
considered. Thus, the proof will indeed be compatible with
our version of greedy-merge if we manage to show that all
the symbols in a generic subset Yi have distinct xmax. Indeed,
by (42), the xmax corresponding to y

(θ)
i is simply the xmax

corresponding to y(0)i , shifted by θ places (where, if needed,
ties are broken accordingly).

Recall that we are considering (7), with |Y| replaced by
|Y| − θ. Let us term this (7)’. We have just proved that (7)’
holds for θ = 0, and our aim now is to prove it for 1 ≤ θ < |X |.
Since the input distribution is uniform, we have by (42) that
the difference in mutual information between input and output
resulting from merging y

(t+θ)
i and y

(t′+θ)
j equals that from

merging y(t)i and y(t
′)

j . That is, the LHS of (7)’ is independent
of θ. Since the RHS of (7)’ is increasing in θ, and the claim
holds for θ = 0, we are done.

Lastly, we must prove the claim of tightness, in the power-
law sense. This is so, since the channels in [10, Theorem 2]
are essentially cyclo-symmetric. That is, consider the output
symbols in such a channel. All symbols having a corresponding
posterior probability vector with period |X | can be grouped into
subsets satisfying (42). The remaining symbols (a vanishing
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Fig. 3. The performance of optimal and greedy degrading algorithms for a
binary-input AWGN channel with Es/N0 = 0 dB and Es/N0 = 6 dB, and
the upper bound from Theorem 1.

fraction) will have posterior probability vectors with period
dividing |X |. These can be “split”, similarly to how erasure
symbols are split in [2, Lemma 4], to yield an equivalent
channel which is cyclo-symmetric.

F. Numerical example

In this subsection we compare the performance of the optimal
and greedy algorithms applied to specific channels, along with
the universal upper bound we proved in Theorem 1. The
results shown in Figure 3 are for a binary-input AWGN2

channel, with Es/N0 = 0 dB and Es/N0 = 6 dB, for every
L ∈ {5, 6, . . . , 512}. Specifically, we have chosen some rather
typical “real world” channel, in stark contrast to the somewhat
contrived channels used in [10]. Nevertheless, although the
power law is only currently known to be tight for the channels
in [10], the graph gives a very strong numerical indication that
it also holds for the considered AWGN channels as well. That
is, in our log-log plot, all curves have the same slope. It is
also remarkable how close each pair of curves are. That is,
how close to optimal the greedy approach was in this case.

IV. LOWER BOUND ON UPGRADING COST

Recall the definition of upgrading-cost given in (4) and (5).
In this section, we derive a lower bound on the upgrading cost.

Theorem 11. Given |X | and L, the upgrading cost defined in
(5) satisfies

UC ≥ κ(|X |) · L−
2

|X|−1 , (43)

where

κ(|X |) , |X | − 1

2π · (|X |+ 1)
·

Γ
(

1 + |X |−1
2

)
(|X | − 1)!


2

|X|−1

,

2Recall that the optimal degrading and greedy merge degrading algorithms
operate on channels with a finite output alphabet size. Thus, as a pre-processing
step, the AWGN output alphabet was first very finely sampled (degraded) to
have a discrete output alphabet size containing 4000 points.

and Γ(·) is the Gamma function, defined in (6).

Note that for large values of |X | the Stirling approximation
can be applied to simplify κ(|X |) to

κ(|X |) ≈ e

4π · (|X | − 1)
.

The proof of the above theorem will rely on a sequence
of channels that are “hard” to upgrade. It turns out that these
channels are exactly the channels that [10] proved were hard to
degrade. In fact, more is true: the lower bound of Theorem 11
is exactly equal to the lower bound proved in [10, Theorem 2].
As a result, this section will be rather short: we will first prove
two lemmas which are specific to the upgrading case, and
then use them to show that a key part of the proof of [10,
Theorem 2] is applicable to our setting.

We now fix some notation. Let W : X → Y and Q : X → Z
be two DMCs such that Q is upgraded with respect to W , that
is W 4 Q. We assume, again, without loss of generality, that
X ,Y and Z are disjoint and that an input distribution is fixed.
We can thus abuse notation and define

yx ,W (x|y) ,

zx , Q(x|z) ,
(44)

and the corresponding vectors y , (yx)x∈X , z , (zx)x∈X .
Since we will be using this notation heavily, we stress that
both y and z (boldfaced) are vectors whose x entries, x ∈ X ,
are the probabilities yx and zx, respectively, corresponding to
the (non-boldfaced) output letters y ∈ Y and z ∈ Z .

Let us think of Y as a “large” alphabet, that is reduced to a
“small” alphabet Z . For each z ∈ Z , we define Az as the set
of letters in Y that are closest to z, with respect to Euclidean
distance between posterior vectors. That is, for z ∈ Z

Az ,
{
y ∈ Y : z = arg min

z′∈Z
‖z′ − y‖22

}
, (45)

where ‖·‖2 is the Euclidean norm. We stress that the sets
{Az}z∈Z are disjoint. That is, “arg min” ties are broken in an
arbitrary yet consistent manner.

We now show how the sets Az can be used to derive a lower
bound on the cost of upgrading W to Q. As before, we use
the shorthand πy to denote π(y).

Lemma 12. Let the DMCs W : X → Y and Q : X → Z
satisfy W 4 Q. Assume a fixed input distribution. Then,

∆I� , I(Q,PX)− I(W,PX) ≥
∑
z∈Z

∆(Az) ,

where
∆(Az) ,

1

2

∑
y∈Az

πy ‖z − y‖22 . (46)

Proof: Using our notation,

∆I� =
∑
y∈Y

πyh(y)−
∑
z∈Z

πzh(z) , (47)

where
h(y) ,

∑
x∈X

η(yx) ,
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and η(·) was defined in (1). Since W 4 Q, there exists an
intermediate channel Φ : Z → Y such that concatenating Φ to
Q results in W . We now claim that this concatenation applies
also to posterior probabilities,

y =
∑
z∈Z

Φz|yz , (48)

where for y ∈ Y and z ∈ Z

Φz|y = Φ(z|y) ,
Φ(y|z) · πz

πy
(49)

is the “reverse” or “posterior” channel, often also called
the “test” channel. Note that (48) follows from (2) and an
application of Bayes’ rule. Moreover, by (49),

πz =
∑
y∈Y

Φz|yπy . (50)

Plugging (48) and (50) in (47) yields

∆I� =
∑
y∈Y

πy

(
h

(∑
z∈Z

Φz|yz

)
−
∑
z∈Z

Φz|yh (z)

)
. (51)

It easily follows from (49) that
∑
z∈Z Φz|y = 1. Hence,

since h(·) is concave, we can apply Jensen’s inequality to
the expression contained by the outer parentheses of (51)
and conclude that it is non-negative. However, as in [10,
Corollary 5], we invoke a stronger inequality, known as
Hölder’s defect formula [21, Page 94]. This yields

h

(∑
z∈Z

Φz|yz

)
−
∑
z∈Z

Φz|yh (z) ≥

1

2
λmin(−∇2h)

∑
z∈Z

Φz|y

∥∥∥z −∑
z′∈Z

Φz′|yz
′
∥∥∥2
2
,

where −∇2h is the negated Hessian matrix of h, and
λmin(−∇2h) is its smallest eigenvalue. Using (48) for the
term inside the norm and λmin(−∇2h) ≥ 1 (proved in [10,
Corollary 5]), we get

h

(∑
z∈Z

Φz|yz

)
−
∑
z∈Z

Φz|yh (z) ≥ 1

2

∑
z∈Z

Φz|y ‖z − y‖
2
2 .

Thus, by (51) and the above,

∆I� ≥
1

2

∑
y∈Y

πy
∑
z∈Z

Φz|y ‖z − y‖
2
2

≥ 1

2

∑
y∈Y

πy
∑
z∈Z

Φz|y

(
min
z′∈Z

‖z′ − y‖22

)
=

1

2

∑
y∈Y

πy min
z′∈Z

‖z′ − y‖22 .

Recall that the sets {Az}z∈Z partition Y . Thus, continuing the
above,

∆I� ≥
1

2

∑
z∈Z

∑
y∈Az

πy min
z′∈Z

‖z′ − y‖22

=
1

2

∑
z∈Z

∑
y∈Az

πy ‖z − y‖22

=
∑
z∈Z

∆(Az) ,

where the first and second equalities follow from (45) and (46),
respectively.

To coincide with the proof in [10, Theorem 2] we will further
lower bound ∆I� by making use of the following lemma.

Lemma 13. Let ∆(Az) be as defined in Lemma 12. Then,

∆(Az) ≥ ∆̃(Az) ,

where

∆̃(Az) ,
1

2

∑
y∈Az

πy ‖y − ȳz‖
2
2 , (52)

and ȳz is the weighted center of Az ,

ȳz ,

∑
y∈Az

πyy∑
y∈Az

πy
.

Proof: Define the function

V (u) ,
1

2

∑
y∈Az

πy ‖y − u‖22 .

Since the πy are non-negative, V (u) is easily seen to be convex
in u. Thus, the minimum is calculated by differentiating with
respect to u and equating to 0. Since V (u) is quadratic in u,
we have a simple closed-form solution,

u =

∑
y∈Az

πyy∑
y∈Az

πy
= ȳz ,

and the proof is finished.
We return to proving the main theorem of this section.

Proof of Theorem 11: According to [10, Claim 1], a
DMC W : X → Y is optimally degraded to a channel Q :
X → Z by partitioning Y to |Z| disjoint subsets, denoted
by {Az}z∈Z , and merging all the letters in each subset. It
is then shown in [10, Corollary 5] that the loss in mutual
information, as a result of this operation, can be lower bounded
by
∑
z∈Z ∆̃(Az), where ∆̃(Az) is defined as in (52). As a

final step, in [10, Section V] a specific sequence of channels
and input distributions is introduced and analyzed. For this
sequence,

∑
z∈Z ∆̃(Az) is lower bounded by the same bound

as in (43).
In our case, as a result of Lemma 12 and Lemma 13,

∆I� ≥
∑
z∈Z

∆̃(Az) . (53)

and we get the same expression as in [10, Corollary 5]. From
this point on, the proof is identical to [10, Section V].
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V. OPTIMAL BINARY UPGRADING

A. Main result

In this section we show an efficient algorithmic implemen-
tation of optimal upgrading for the BDMC case, |X | = 2. As
in the degrading case [8], the algorithm will be an instance of
dynamic programming. The following theorem is cardinal, and
is the main result of the section.

Theorem 14. Let a BDMC W : X → Y and an input
distribution be given. Denote by Q : X → Z and Φ : Z → Y
the optimizers of (4), for a given L. Denote by {y}y∈Y and
{z}z∈Z the posterior probabilities associated with the output
letters of W and Q, respectively. Assume without loss of
generality that all the {z}z∈Z are distinct. Then,

{z}z∈Z ⊆ {y}y∈Y . (54)

Moreover, recalling the notation in (44), Φ(y|z) > 0 implies
that z has either the largest z0 such that z0 ≤ y0 or the
smallest z0 such that z0 ≥ y0.

The theorem essentially states that the optimal upgraded
channel contains a subset of the output letters of the original
channel, each such letter retaining its posterior probability
vector. Moreover, any output letter y ∈ Y is generated by the
two output letters z ∈ Z neighboring it, when ordered on the
line which is the posterior probability simplex. Thus, if we
are told the optimal subset {z}z∈Z we can efficiently deduce
from it the optimal Q and Φ. That is, to find Q, note that
we can calculate the the probabilities {πz} using the RHS of
(50). After the above calculations are carried out, we have full
knowledge of the reverse Q, and can hence deduce Q. From
here, finding Φ is immediate: we can find the reverse Φ as in
equation (60), and then apply (49) to get the forward channel.

Note that if z(a) = z(b) for some two distinct letters
z(a), z(b) ∈ Z , then we can merge these letters and obtain an
equivalent channel [2, Section III] with L−1 letters. Repeating
this until all the {z}z∈Z are distinct allows us to assume
distinction while retaining generality.

We stress that Theorem 14 is only valid for BDMCs, while
for larger input alphabet sizes it can be disproved. For example,
let |X | = 3, and assume that the points {y}y∈Y are arranged
on a circle in the simplex plane. Note now that no point can be
expressed as a convex combination of the other points. Hence,
(48) cannot be satisfied if {z}z∈Z is a strict subset of {y}y∈Y .
This example can be easily extended to larger input alphabet
sizes using higher dimensional spheres.

B. Optimal intermediate channel

By definition, if W 4 Q then there exists a corresponding
intermediate channel Φ. Our aim now is to characterize the
optimal Φ by which ∆I∗� in (4) is attained. Recall from (48)
and (49) our definition of the “reverse” channel Φ(z|y) = Φz|y .
From (51),

∆I� =
∑
y∈Y

πyh(y)−
∑
y∈Y

πyiy , (55)

where
iy ,

∑
z∈Z

Φz|yh(z) . (56)

To recap, we have gained a simplification by considering
reversed channels: each output letter y ∈ Y decreases ∆I� by
πyiy .

In the following lemma we consider a simple yet important
case: an output letter y of the original channel W is obtained by
combining exactly two output letters of the upgraded channel
Q, denoted z1 and z2. Informally, the lemma states that the
closer the posterior probabilities of z1 and z2 are to y, the
better we are in terms of iy .

Lemma 15. Let y = [σ, 1− σ]T be fixed. For

0 < ζ1 < σ < ζ2 < 1 ,

define z1 = [ζ1, 1 − ζ1]T and z2 = [ζ2, 1 − ζ2]T . Next, let
φ(ζ1, ζ2) be such that

y = φ(ζ1, ζ2) · z1 + (1− φ(ζ1, ζ2)) · z2 . (57)

Define

iy(ζ1, ζ2) , φ(ζ1, ζ2) · h(z1) + (1− φ(ζ1, ζ2)) · h(z2) .

Then, iy(ζ1, ζ2) is increasing with respect to ζ1 and decreasing
with respect to ζ2.

Proof: To satisfy (57) we have

φ(ζ1, ζ2) =
ζ2 − σ
ζ2 − ζ1

.

Now using the derivative of iy we get,

∂iy
∂ζ1

=
∂φ

∂ζ1
· h(z1) + φ · (η′(ζ1)− η′(1− ζ1))− ∂φ

∂ζ1
· h(z2)

=
∂φ

∂ζ1
· [h(z1) + (ζ2 − ζ1)(η′(ζ1)− η′(1− ζ1))

− h(z2)]

=
∂φ

∂ζ1
· [−h(z2)− ζ2 log(ζ1)− (1− ζ2) log(1− ζ1)]

=
ζ2 − σ

(ζ2 − ζ1)2
dKL(ζ2||ζ1)

> 0 ,

where we defined

dKL(p||q) , p log
p

q
+ (1− p) log

1− p
1− q

, (58)

which is the binary Kullback-Leibler divergence. In the same
manner,

∂iy
∂ζ2

=
∂φ

∂ζ2
· h(z1)− ∂φ

∂ζ2
· h(z2)

+ (1− φ) · (η′(ζ2)− η′(1− ζ2))

=
∂φ

∂ζ2
· [h(z1)− h(z2)

+ (ζ2 − ζ1) (η′(ζ2)− η′(1− ζ2))]

=
∂φ

∂ζ2
· [h(z1) + ζ1 log(ζ2) + (1− ζ1) log(1− ζ2)]

= − σ − ζ1
(ζ2 − ζ1)2

d(ζ1||ζ2)

< 0 ,
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and the proof is finished.
The following lemma states that the second assertion of

Theorem 14 holds.

Lemma 16. Let a BDMC W : X → Y and an input
distribution be given. Denote by Q : X → Z and Φ : Z → Y
the optimizers of (4), for a given L. Assume without loss of
generality that all the {z}z∈Z are distinct. Then, Φ(y|z) > 0
implies that z has either the largest z0 such that z0 ≤ y0 or
the smallest z0 such that z0 ≥ y0.

Proof: Note that the input distribution is given. Thus,
the reverse channels corresponding to W , Q, and Φ are well
defined, and our proof will revolve around them. Since W 4 Q,
the reverse channel Φz|y satisfies (48), (50) and (55). Let us
assume to the contrary that y ∈ Y does not satisfy the assertion
in the lemma. Our plan is to find a reverse channel Φ′z|y that
attains a greater iy than the one attained by Φ, and thus arrive
at a contradiction.

As a first case, assume that there exists z∗ ∈ Z for which
z∗ = y. In this case, z∗0 = y0, and thus the lemma states that
the only non-zero term in {Φ(y|z)}z∈Z is Φ(y|z∗). Assume
the contrary. Thus, switching to the reverse channel, we note
that

{
Φz|y

}
z∈Z has at least two non-zero terms. Then, using

(56) and the strict concavity of h we get

iy < h

(∑
z∈Z

Φz|yz

)
= h(y) .

Note that this upper bound can be attained by simply choosing
Φ′z|y = 1 when z = z∗ and Φ′z|y = 0 otherwise. For all other
y′ 6= y, we define Φ′z|y′ as equal to Φz|y′ . Thus, using Φ′z|y and
(50), we obtain a new set of probabilities {π′z}z∈Z that together
with the reverse channel Q generate a new “forward” channel
Q′ : X → Z (applying Bayes’ rule). Since the reverse channels
satisfy Q′ <W , we have by (48) and the explanation following
it that the “forward” channels satisfy the same upgrading
relation. Yet Q′ attains a strictly lower ∆I�, a contradiction.

In the second case, we assume that z 6= y for all z ∈ Z
and define the sets

ZR = {z ∈ Z : z0 > y0} ,
ZL = {z ∈ Z : z0 < y0} .

Geometrically, if we draw y and {z}z∈Z as points on the line
s0 + s1 = 1 in the first quadrant of the (s0, s1) plane (the two
dimensional simplex), then the letters in ZR would be on the
right side of y and the letters in ZL on its left (see Figure 4).
Define also

z∗L , arg min
z∈ZL

‖y − z‖2 , z∗R , arg min
z∈ZR

‖y − z‖2 .

Namely, the closest neighboring letters from Z , one from
each side. The lemma states that the only non-zero terms
in {Φ(y|z)}z∈Z are Φ(y|z∗L) and Φ(y|z∗R). Assume again
the contrary. Thus, switching again to the reverse channel,
both

{
Φz|y

}
z∈ZL

and
{

Φz|y
}
z∈ZR

have non-zero terms. By

s1

s0

s
0 +
s
1 =

1

y

z(1)

z(2)

z(3)

z(4)

z(5)

z(6)

Fig. 4. The letters
{
z(i)

}6

i=1
of an upgraded BDMC Q and a letter y

from an initial BDMC W . In this example ZL =
{
z(1), z(2), z(3)

}
, ZR ={

z(4), z(5), z(6)
}

, z∗L = z(3), z∗R = z(4).

assumption, one such term corresponds to neither z∗L nor z∗R.
Note that we can write

iy =
∑
z∈ZL

Φz|yh(z) +
∑
z∈ZR

Φz|yh(z)

= φ
∑
z∈ZL

Φz|y

φ
h(z) + (1− φ)

∑
z∈ZR

Φz|y

1− φ
h(z) ,

where φ ,
∑
z∈ZL

Φz|y, and 0 < φ < 1. Using the strict
concavity of h we get

iy ≤ φ · h

(∑
z∈ZL

Φz|y

φ
z

)
+ (1− φ) · h

(∑
z∈ZR

Φz|y

1− φ
z

)
= φ · h(zL) + (1− φ) · h(zR) , (59)

where

zL ,
∑
z∈ZL

Φz|y

φ
z , zR ,

∑
z∈ZR

Φz|y

1− φ
z .

Note that the locations of zL and zR depend on the prob-
abilities

{
Φz|y

}
z∈Z . Since both zL and zR are convex

combinations of the letters in ZL,ZR, respectively, they have
to reside in the convex hull of those sets. Then, by assumption,
either zL 6= z∗L or zR 6= z∗R. Recall now that according to
Lemma 15, any choice of

{
Φz|y

}
z∈Z could be improved as

long as zL and zR are not the closest letters to y. Hence,

iy < φ′ · h(z∗L) + (1− φ′) · h(z∗R) ,

for the corresponding φ′. Once again, this upper bound can be
attained by choosing

Φ′z|y =


‖z∗R−y‖2
‖z∗R−z∗L‖2

z = z∗L ,

‖y−z∗L‖2
‖z∗R−z∗L‖2

z = z∗R ,

0 Otherwise .

(60)

Thus, as before, we have found a channel Q′ <W that attains
a strictly lower ∆I�, a contradiction.
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C. Optimal upgraded channel

Lemma 16 is meaningful for two reasons. First, now that we
know the optimal Φ for any given Q, we can minimize over
Q alone. Equivalently, as per the discussion after Theorem 14,
we can minimize over the subset {z}z∈Z . Second, any two
adjacent letters in {z}z∈Z (on the simplex line) exclusively
generate all the letters {y} that reside in the segment between
the two of them. Hence, our proof of Theorem 14 can be
“localized” in the sense that we can focus on two adjacent
segments and move the separating letter z between them, thus
only affecting the letters {y} in those two segments. We return
to the proof of our theorem.

Proof of Theorem 14: Since Lemma 16 has been proved,
all that is left is to prove the inclusion (54). Note that using
(48) and

∑
z∈Z Φz|y = 1, if W 4 Q then

{y}y∈Y ⊆ conv
{
{z}z∈Z

}
,

where conv denotes convex hull. Namely, each y can be
expressed as a convex combination of vectors {z} that
correspond to letters in Z .

Let us assume first that L = 2. That is, we need to find
two letters zmin and zmax whose convex hull contains all
the letters {y}y∈Y and ∆I� is minimized. Then, according to
Lemma 15, it is optimal to choose zmin and zmax with the
smallest possible convex hull containing {y}y∈Y . Hence, the
letters of the optimal Q are

zmin = ymin , zmax = ymax , (61)

where

ymin , arg min
y∈Y

y0 , ymax , arg max
y∈Y

y0 .

Namely, the leftmost and rightmost letters in {y}y∈Y , respec-
tively.

Assume now that L > 2 and let

z(1) = [ζ1, 1−ζ1]T , z = [ζ, 1−ζ]T , z(2) = [ζ2, 1−ζ2]T ,

be three adjacent points on the simplex line satisfying

0 ≤ ζ1 < ζ < ζ2 ≤ 1 .

Assume there is a subset Ỹ ⊆ Y of M letters in the interior of
conv

{
z(1), z(2)

}
. Thus, we stress that z(1) and z(2) are not

contained in Ỹ . Our aim is to show that an optimal choice
for z satisfies z ∈ Ỹ . That will ensure that there cannot be a
letter z ∈ Z such that z /∈ {y}y∈Y , except maybe for the two
extreme ones (since z is internal). However, as in the L = 2
case discussed previously, these two extreme letters must be
ymin and ymax, as defined above.

Note that if M = 0 then πz = 0, by Lemma 16. In this case,
without loss of generality, z can be removed from Z . Thus,
we henceforth assume that M > 0. Figure 5 illustrates some
of the sets and letters we will shortly define.

If z ∈ {y}y∈Y , then we are done. Henceforth, let us assume
this is not the case. We express each y as y = [y0, 1− y0]T ,
and partition Ỹ into the sets

ỸL ,
{
y ∈ Ỹ : y0 < ζ

}
, ỸR ,

{
y ∈ Ỹ : y0 > ζ

}
,

s1

s0

s
0 +
s
1 =

1

y(1)

y(2)

y(3)

y(4)

y(5)

z(1)

z

z(2)

Fig. 5. The letters z(1), z and z(2) of an upgraded BDMC Q, and
{
y(i)

}5

i=1
of an initial BDMC W . In this example, when z is picked as illustrated:
Ỹ =

{
y(i)

}5

i=1
, ỸL =

{
y(1), y(2)

}
, ỸR =

{
y(3), y(4), y(5)

}
, yL = y(2),

yR = y(3).

for a given ζ. Since M > 0, at least one subset is non-empty.
In fact, by similar reasoning to the L = 2 case, we deduce
that both ỸL and ỸR are non-empty. By (56) and Lemma 16,
the contribution of these subsets to ∆I� is

∆I�(Ỹ) ,
∑
y∈Ỹ

πyh(y)−
∑
y∈ỸL

πyiy −
∑
y∈ỸR

πyiy

=
∑
y∈Ỹ

πyh(y)

−
∑
y∈ỸL

πy

(
ζ − y0
ζ − ζ1

h(z(1)) +
y0 − ζ1
ζ − ζ1

h(z)

)

−
∑
y∈ỸR

πy

(
ζ2 − y0
ζ2 − ζ

h(z) +
y0 − ζ
ζ2 − ζ

h(z(2))

)
.

Thus,

∆I�(Ỹ) =
∑
y∈Ỹ

πy

(
h(y)− h(z(1))− h(z(2))

)
− C1

h(z)− h(z(1))

ζ − ζ1
+ C2

h(z(2))− h(z)

ζ2 − ζ
, (62)

where

C1 ,
∑
y∈ỸL

πy(y0 − ζ1) , C2 ,
∑
y∈ỸR

πy(ζ2 − y0) .

Recall that ỸL, ỸR were defined as a function of z. Hence,
they remain the same as long as z is strictly between the
rightmost letter in ỸL and the leftmost letter in ỸR, denoted
by yL , [yL0 , 1− yL0 ]T and yR , [yR0 , 1− yR0 ]T , respectively.

By definition, Ỹ does not contain z(1) and z(2). This implies
the following two points. First, we deduce that C1 and C2

are both positive. Next, by (62), ∆I�(Ỹ) is continuous and
bounded for yL0 ≤ ζ ≤ yR0 . The theorem will be proved if we
show that the minimum is attained by setting ζ to either yL0
or yR0 . Thus, we show that the minimum is not attained when
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ζ ∈ (yL0 , y
R
0 ). To that end, we take the derivative of ∆I�(Ỹ)

with respect to ζ and get

∂∆I�(Ỹ)

∂ζ
= −C1

(η′(ζ)− η′(1− ζ))(ζ − ζ1)

(ζ − ζ1)2

− C2
(η′(ζ)− η′(1− ζ))(ζ2 − ζ)

(ζ2 − ζ)2

+ C1
h(z)− h(z(1))

(ζ − ζ1)2
+ C2

h(z(2))− h(z)

(ζ2 − ζ)2

= C1
dKL(ζ1||ζ)

(ζ − ζ1)2
− C2

dKL(ζ2||ζ)

(ζ2 − ζ)2
.

We now recall that both C1 and C2 are positive. Thus,

∂∆I�(Ỹ)

∂ζ
= C2

dKL(ζ1||ζ)

(ζ − ζ1)2

(
C1

C2
− q(ζ)

)
,

where we defined

q(ζ) ,
dKL(ζ2||ζ)(ζ − ζ1)2

dKL(ζ1||ζ)(ζ2 − ζ)2
.

To achieve our goal, it suffices to show that q(ζ) is non-
decreasing in (ζ1, ζ2), thus ensuring that ∆I�(Ỹ) is either
monotonic or has a single maximum. The proof is given in
Appendix A.

D. Dynamic programming implementation

Theorem 14 simplifies the task of channel upgrading to
finding the optimal L-sized subset of Y . Note that such a
subset must contain the leftmost and rightmost letters of Y .

We can now use dynamic programming to efficiently find
the optimal subset. The key idea is to use the structure of (55)
and the ordering of the letters on the simplex. Each possible
L-sized subset partitions Y to L − 1 contiguous sets on the
simplex, with overlapping borders (the internal {z}). Since the
cost function (55) is additive in the letters Y , we can employ
a dynamic programming approach, similar to [8, Section IV]
and [9, Section III].

VI. UPPER BOUND ON BINARY OPTIMAL UPGRADING GAIN

Our final result is the fruit of combining Section III,
Section IV and Section V. Namely, an upper bound on ∆I∗� and
UC for |X | = 2. Once again, we use an iterative sub-optimal
upgrading algorithm called “greedy-split”, similar to the one
proposed in [11]. Implicitly, we apply the optimal upgrading
algorithm, to get from an alphabet of |Y| output letters to one
with |Y| − 1 output letters. This is done iteratively, until the
required number of letters, L, is reached. This simplifies to
the following. In each iteration we find the letter y ∈ Y that
minimizes

∆I� = πyh(y)− πyφh(yL)− πy(1− φ)h(yR) , (63)

where yL and yR are the left and right adjacent letters to y,
respectively, and

φ =
‖yR − y‖2
‖yR − yL‖2

,

as in Lemma 16. The minimizing letter y is then split between
yL and yR by updating

πyL ← πyL + φ · πy , πyR ← πyR + (1− φ) · πy ,

and then eliminating y. The following theorem is the main
result of this section.

Theorem 17. Let a BDMC W : X → Y satisfy |Y| > 8, and
let L ≥ 8. Then, for any fixed input distribution PX ,

∆I∗� = min
Q:Q<W,
|Q|≤L

I(Q,PX)− I(W,PX) = O
(
L−2

)
.

In particular,
∆I∗� ≤ 2ν(2) · L−2 ,

where ν(·) was defined in Theorem 1. This bound is attained
by greedy-split and is tight in the power-law sense.

As in Section III, we first prove the following theorem.

Theorem 18. Let a BDMC W : X → Y satisfy |Y| > 8, and
let a BDMC Q : X → Z be the result of upgrading W by
splitting a letter y ∈ Y . Then, for any fixed input distribution,
there exists a letter y ∈ Y for which the resulting Q satisfies

∆I� = O
(
|Y|−3

)
.

In particular,
∆I� ≤ 2µ(2) · |Y|−3 , (64)

where µ(·) was defined in Theorem 2.

Proof: Note that (63) has the form of (9). That is, yL
plays the role of α; yR plays the role of β; πyφ plays the
role of πα; πy(1− φ) plays the role of πβ ; y plays the role
of γ; the first πy in (63) plays the role of πγ .

Thus, (15) applies to our case as well, yielding

∆I� ≤ 2πy · d(yL,yR) , (65)

where d was defined in (16). As we did before, we narrow
the search to letters in Ysmall. Note that yL and yR cannot
be adjacent, hence we define Ypunctured as the subset of
Ysmall one gets by eliminating every other letter, starting
from the second letter, when drawing {y}y∈Ysmall

on the two
dimensional simplex. Thus, each pair of adjacent letters in
Ypunctured has a letter from Ysmall in its convex hull. This
operation of puncturing results in

|Ypunctured| ≥
|Ysmall|

2
≥ |Y|

4
. (66)

Using the same method as in Theorem 2, there exists a pair
yL, yR ∈ Ypunctured for which

d(yL,yR) ≤ 4 · r , (67)

where r was defined in (41). The factor of 4 is due to
the following. Since we are using Ypunctured, the proof
of Theorem 2 must be slightly changed towards the end.
Specifically, (39) changes to

|Y ′| ≥ |Ypunctured|
|X |

≥ |Ysmall|
2|X |

≥ |Y|
4|X |

> 1 .
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Then, the term |Y|/(2|X |) in (40) becomes |Y|/(4|X |). Thus,
the r needed for the starred equality in (40) to hold is 4 times
the original r. Now, plugging (67) in (65) and recalling that
πy ≤ 2/|Y| for y ∈ Ysmall, we get (64).

Proof of Theorem 17: The proof uses Theorem 18
iteratively, and is similar to Theorem 1, hence omitted. The
tightness in power-law is due to Theorem 11.

Note that the greedy-split algorithm can be implemented in
a similar manner to [2, Algorithm C]. Hence, it has the same
complexity, that is, O(|Y| log |Y|).

We now discuss the application of Theorem 17 to symmetric
channels, as we did in Section III-E. Assume that W is a
symmetric channel according to our definition in Section III-E.
To upgrade W to a symmetric channel Q, we slightly modify
the greedy-split algorithm as follows. Instead of searching
over all y ∈ Y , we limit the search to all y ∈ Y for which
W (0|y) < 1

2 and W (0|yR) ≤ 1
2 . Then, after splitting y to

yL and yR, we split ȳ to ȳL and ȳR where ȳ, ȳL and ȳR are
the corresponding “conjugate” letters in the partition of Y , as
defined in [2, Section II]. Using the same arguments as in the
proof of Theorem 10, we deduce that Theorem 18 holds for
the symmetric case as well.

APPENDIX A
LAST CLAIM IN THE PROOF OF THEOREM 14

Recall that the proof of Theorem 14 will be complete, once
the last step in it is justified. Thus, we state and prove the
following lemma.

Lemma 19. Fix 0 ≤ ζ1 < ζ2 ≤ 1. For ζ1 < ζ < ζ2, define

q(ζ) ,
dKL(ζ2||ζ)(ζ − ζ1)2

dKL(ζ1||ζ)(ζ2 − ζ)2
.

Then, q(ζ) is non-decreasing.

Proof: To prove that q(ζ) is non-decreasing, we consider
its derivative. Straightforward algebraic manipulations yield

dq

dζ
=

2(ζ − ζ1)(ζ2 − ζ)dKL(ζ1||ζ)dKL(ζ2||ζ)(ζ2 − ζ1)

[dKL(ζ1||ζ)(ζ − ζ2)2]
2

·
[
1− (ζ2 − ζ)2

2ζ(1− ζ)dKL(ζ2||ζ)
· ζ − ζ1
ζ2 − ζ1

−

(ζ1 − ζ)2

2ζ(1− ζ)dKL(ζ1||ζ)
· ζ2 − ζ
ζ2 − ζ1

]
. (68)

Note that the term outside the brackets is non-negative. For
the inner term, let us define the two-variable function

q2(τ, ζ) ,


(τ−ζ)2

2ζ(1−ζ)dKL(τ ||ζ) ζ 6= τ ,

1 ζ = τ .

For 0 < ζ < 1 fixed, q2(τ, ζ) is a continuous function of τ ,
where 0 < τ < 1. Indeed, this can be deduced by a double
application of L’Hôpital’s rule. As we will show, more is true:
for ζ and τ as above, q2(τ, ζ) is concave as a function of τ .
Namely, for every τ1, τ2, θ ∈ [0, 1],

q2(θτ1 + (1− θ)τ2, ζ)− θ · q2(τ1, ζ)− (1− θ) · q2(τ2, ζ) ≥ 0 .

By choosing τ1 = ζ2, τ2 = ζ1, and θ = ζ−ζ1
ζ2−ζ1 , we get the

non-negativity of the inner term in (68).
To prove the concavity of q2(τ, ζ) with respect to τ , we

will show that the second derivative ∂2q2
∂τ2 is non-positive. The

following identity is easily proved, and will be used to simplify
many otherwise unwieldy expressions:

(p− q)∂dKL(p||q)
∂p

= dKL(p||q) + dKL(q||p) . (69)

Using the above, we deduce that

∂q2
∂τ

=

{
(τ−ζ)[dKL(τ ||ζ)−dKL(ζ||τ)]

2ζ(1−ζ)(dKL(τ ||ζ))2 ζ 6= τ ,
1−2ζ

3ζ(1−ζ) ζ = τ ,

where the derivative for the case ζ = τ is obtained by
considering the limit

lim
τ→ζ

q2(τ, ζ)− q2(ζ, ζ)

τ − ζ
.

By an application of L’Hôpital’s rule, we deduce that ∂q2
∂τ is

continuous in τ .
We differentiate once again, using (69), simple algebra, and

similar reasoning to what was employed before. The result is

∂2q2
∂τ2

=


(τ−ζ)2

2ζ(1−ζ)dKL(τ ||ζ)3τ(1−τ)

·
(

2τ(1−τ)dKL(ζ||τ)2
(τ−ζ)2 − dKL(τ ||ζ)

)
ζ 6= τ ,

ζ−ζ2−1
9(1−ζ)2ζ2 ζ = τ ,

a continuous function.
Clearly, ∂2q2

∂τ2 is negative when ζ = τ , since 0 < ζ < 1.
Considering the case ζ 6= τ , we see that ∂2q2

∂τ2 is non-positive
when the bracketed term is non-positive,

2τ(1− τ)dKL(ζ||τ)2

(τ − ζ)2
≤ dKL(τ ||ζ) .

Note now that both sides go to zero as ζ → τ . The derivatives
of the LHS and RHS with respect to ζ are

4τ(1− τ)dKL(ζ||τ)dKL(τ ||ζ)

(ζ − τ)3

and
ζ − τ
ζ(1− ζ)

,

respectively. Both derivatives are positive when ζ > τ , negative
when ζ < τ and zero when ζ = τ . Thus, it suffices to show
that the ratio between the derivatives (left over right) is less
than 1. That is,

2ζ(1− ζ)dKL(τ ||ζ)

(ζ − τ)2
· 2τ(1− τ)dKL(ζ||τ)

(τ − ζ)2
≤ 1 ,

which is equivalent when taking the square root of both sides.
Using the AM-GM inequality it is enough to show that

1

2

2ζ(1− ζ)dKL(τ ||ζ)

(ζ − τ)2
+

1

2

2τ(1− τ)dKL(ζ||τ)

(τ − ζ)2
≤ 1 ,

which is equivalent to showing

q3(τ, ζ) , ζ(1− ζ)dKL(τ ||ζ) + τ(1− τ)dKL(ζ||τ)− (τ − ζ)2

≤ 0 .
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The function q3 can be shown to be twice continuously
differentiable with respect to τ for a fixed ζ ∈ (0, 1). Its
second derivative satisfies

∂2q3
∂τ2

(τ, ζ) = − (ζ − τ)2 + 2τ(1− τ)dKL(ζ||τ)

τ(1− τ)
≤ 0 ,

and thus q3 is concave with respect to τ . Moreover,

∂q3
∂τ

(ζ, ζ) = 0 ,

which means that q3 is maximal when τ = ζ, namely,

q3(τ, ζ) ≤ q3(ζ, ζ) = 0 ,

and the proof is finished.
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