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Abstract—Bellare and Tessaro recently introduced a new cod-
ing scheme, based on cryptographic principles, that guarantees
strong security for a wide range of symmetric wiretap channels.
This scheme has numerous advantages over alternative construc-
tions, including constructions based on polar codes. However, the
BT coding scheme achieves secrecy capacity only under a certain
restrictive condition. Specifically, let V' be the main channel (from
Alice to Bob) and let W be wiretap channel (from Alice to Eve).
Suppose that 1/ has a finite output alphabet )/, and let X and Y
denote the input and output of 1V, respectively. Then the rate of
the BT scheme is upper-bounded by capacity(V') — ¥ (W), where

def

U(W) = log, |V - H(Y|X)

For symmetric channels, it clear that U (1) equals the capacity
of W if and only if uniform input to W produces uniform output.
Unfortunately, few symmetric DMCs satisfy this condition.

In this paper, we show how the Bellare-Tessaro coding scheme
can be extended to achieve secrecy capacity in the case where W
is an arbitrary symmetric DMC. To this end, we solve the follow-
ing problem. Given W and ¢ > 0, we construct another channel
Q such that IV is degraded with respect to () while the difference
between ¥ (Q) and the capacity of W is at most c.

I. INTRODUCTION

The wiretap setting was introduced by Wyner [1]. Figuratively,
it consists of three players, Alice, Bob, and Eve. Alice wishes
to send Bob confidential information, and this can be done
by using a channel C. However, everything that Alice inputs
to the channel C is also fed into the channel W : X — ),
from Alice to Eve. Eve plays the role of the eavesdropper.
Thus, in brief, Alice must code her information so that Bob
can decode it, but Eve cannot. In order to do so, Alice has
access to a private source of random bits.

Recently, Bellare, Tessaro, and Vardy introduced [?] a cod-
ing scheme by which the above can be attained. The distinction
of the BT scheme is that it guarantees semantic security, a
stronger form of security than was originally proposed by
Wyner in [1]. The notion of semantic security is described
fully in [?]. In brief, we say that a method achieves o bits of
semantic security if the following holds. For all distributions
on the message set of Alice, for all functions f of the message,
and for all strategies Eve might employ, the probability of Eve
guessing the value of f correctly increases by no more than
277 between the case in which Eve does not have access to
the output of W and the case that she does. That is, having
access to W hardly helps Eve, for sufficiently large o.
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The method by which Alice achieves this security is by
transmitting, apart from the message, r random bits. These
bits serve to garble the communication on the channel W. On
the other hand, since the main channel C' must be utilized in
order to transmit these random bits, which Bob doesn’t care
about, they can be thought of as overhead.

Semantic security is a strong form of security. In fact, it
is the “holly grail” of cryptography. In his seminal paper,
Wyner discussed a weaker form of security (which we will
not define). Loosely put, it was shown in [1] that in order to
achieve this security, asymptotically in n, the codeword length,
a fraction /n = I(W) of random bits is both required and
sufficient.

For the BT scheme, the number of random bits used is
closely tied to a function that we now define. Let W : X —
Y be a symmetric, discrete, memoryless channel (abbreviated
SDMC and defined shortly). The function (W) is defined as

def
(W) = logy [¥] + Y W(y|0)log, W(yl0) .
yey
Next, define W (y) as the probability of receiving y, assuming
that the input to W is uniform. That is,

W(y) = ﬁ S Wiyl) .

zeX
Since W is an SDMC, its capacity [2, Theorem 4.5.2.] is

I(W) =Y —W(y)logs W(y)—>_ —W(y|0)log, W(yl0) .
yey yeY

By a direct application of Jensen’s inequality, we have that
(W) =1(W). (1)

The above inequality is tight iff a uniform distribution on
the input to W does not result in the output being uniformly
distributed.

The following proposition links the number of random bits
r employed by the BT scheme to the number of security bits
o required and the codeword length n.

Proposition 1 (Restatment of [?]): Let W : X — ) be the
SDMC from Alice to Eve. Then, the BT scheme achieves at
least o bits of semantic security with a codeword length of n
and r random bits, provided that

r=2(c+1)+vnlog,(|Y|+3)v/2(c +3)+n- T (W) . (2)



Proposition 1 implies that, asymptotically in n, a fraction
of r/n = ¥ (W) random bits are needed in order to achieve
security in the BT scheme. In light of (1), this does not
compare favorably to Wyner’s original scheme, in which only
a fraction of I(W) random bits are needed.

The structure of this paper is as follows. In Section II we
define the concepts of an equivalent channel. We then show
a generic method by which an SDMC W can be replaced by
an equivalent SDMC @ for which ¥(Q) is arbitrarily close to
I(W). Since @ is equivalent to W, we may substitute W by
@ in Proposition 1 and show that, asymptotically, a fraction of
I(W) random bits are needed for the BT scheme to achieve
security, making it comparable to Wyner’s original scheme.
Recalling (2), we see that apart from the coefficient (V)
of n, there is also a coefficient of y/n, which is an increasing
function of the output alphabet size of W. Thus, when refining
to a non-asymptotic setting, we note that when we replace W
by @@ we must also be mindful of the output alphabet size
of (). Section III addresses the question of finding the best
equivalent (), when we constrain the output alphabet size of
Q. In fact, we need not constrict ourselves to replace W by
an equivalent @, it suffices for @) to be upgraded (a concept to
be defined) with respect to /. We show in Section IV that if
W has binary input, then this observation can greatly reduce
the number of random bits we are required to transmit.

II. SYMMETRIC CHANNELS AND LETTER SPLITTING

In this section, we first set up the basic notation and concepts
used throughout. We then prove the claim that a fraction of
I(W) random bits asymptotically suffices for security.

A. Channels

A discrete memoryless channel (DMC) W with input alpha-
bet X and output alphabet ) will be denoted as W : & — ).
Recall that W is a DMC if both X’ and ) are discrete, and the
probability of receiving a vector y = (y1,¥y2,...,Yn) € J"
given that the vector x = (z1,z9,...,2,) € X" was
transmitted over W is W (y|x) = [, W (y;|z;).

We say that the DMC W is symmetric (SDMC) if [2, Page
94] the set of output symbols ) can be partitioned into subsets
V1,Ya, ..., Y such that the following holds. For a each such
subset )y, let A; be the matrix for which the rows are indexed
by X, the columns by ), and for which entry (z,y) € X XV,
is equal to W (y|x). Then, each row of A; is a permutation
of each other row, and each column is a permutation of each
other column.

B. Degraded, Upgraded, and Equivalent Channels

A DMC W : X — Y is (stochastically) degraded with
respect to a DMC @ : X — Z, denoted W =< @, if there
exists an intermediate channel P : Z — ) such that

W(yle) = ) Q(zlr) - P(ylz) .
z€EZ

Namely, W is the result of concatenating the channel P to
Q. Alternatively, we say that ) is upgraded with respect

to W, and denote this as Q = W. If W is both upgraded
and degraded with respect to @, then we say that W and @
are equivalent, and denote this as ) = W. From the data-
processing inequality [3, Theorem 2.8.1] we have that

Q=W implies I(Q)>I1(W). 3)
Thus, Q@ = W implies 1(Q) = I(W).

The following is a corollary to Proposition 1. Its proof is
essentially: If Eve has the channel @), she can simulate having
the channel W.

Corollay 2: Let W : X — Y, o, r, and n be as in
Proposition 1. Suppose the SDMC @ : X — Z is upgraded
with respect to W. Then, we can substitute W by @ in
Proposition 1. That is, we can take

r=2(c+1)++vnlogy(|Z|+3)v/2(c +3)+n-¥(Q) . (4)

C. Letter Splitting

Let W : X — Y be a given SDMC with a corresponding
partition Vi, Ya,...,Ypr. We say that a function s : ) — N
from Y to the positive integers is an output letter split of W if
foralll1 <t < T andally,y € ); we have that s(y) = s(y').
Thus, the split function s assigns the same value to every letter
in a subset );, and we can thus abuse notation and define
$()) as that value. The SDMC corresponding to this split,
Q@ : X — Z is defined as follows. The output alphabet of ()
is gotten by duplicating each letter y € ) and making s(y)
distinct copies:

Z= U {y1. 92, ..

yeY

s | s=s(y)} -

The transition probabilities of () are given by

Qyilz) = W(ylz)/s(y) ,

Namely, each letter y is duplicated s(y) times, and the con-
ditional probability of receiving each copy is simply 1/s(y)
times the corresponding probability in the original channel W.

Note that since W is a SDMC, then so is (). Also, note that
W and @) are equivalent channels, W = Q.

Let an SDMC W : X — ) be given. As previously
discussed, a discrepancy between I(W) and W(W) arises
when a uniform distribution on the input to W does not result
in a uniform distribution on the output. We will now use
the above mentioned splitting operation to define a channel
Q : X — Z. The merit of @ will be that a uniform input
distribution results in an output distribution that is close to
uniform. The price we will pay for this quasi-uniformity is a
larger output alphabet, compared to that of W (recall that the
coefficient of v/n in (4) is an increasing function of the output
alphabet size).

Lemma 3: Let W : X — ) be an SDMC, and let M > 1
be a given positive integer. For each y € ), define

s(y)=[M-W(y)]l ,

(x,y:,) € X x Z.



and let @ : X — Z be the channel resulting from the applying
the letter splitting function s to W. Then,

¥(Q) - 107) = 9(@) - 1@ < 1oss (1457 ) . ©)
and
ZI <M+ Y. (6)
Proof: The bound (6) follows by
121=) s(y)=>_ [M-W(y)]
yey yey
<Y 14 M W) =Y+ M.
yey
We now prove (5). We start by simplifying ¥(Q) — I(Q) to
V(Q) — 1(Q) =logy |Z] + D Q(2)1og, Q(2) =
zEZ
w
logy |Z] + Z W (y)log, ( S(;y))) :
yey

We have already proved (6), and thus have an upper bound on
the first term. Thus, we concentrate now on the second term.

> Wiy 102( ) > Wiy logQ(m>

yey yeY
W(y) )
< W(y)lo ——2 ) = —log, M .

Z (y) log, (MW(y) [0

yey
Combining the above two bounds, we get

Y

U(Q)—I1(Q) < logy (|V| + M)—log, M = log, <1 + |]\4|> )

|

Combining Corollary 2 with Lemma 3 gives us the follow-
ing theorem.

Theorem 4: Let W : X — ), o, r, and n be as in
Proposition 1. Let M > 1 be a parameter we are allowed to
choose. Then, the number of random bits needed to achieve
semantic security is at most

=2(oc+ 1)+ vnlogy(M + |Y| + 3)v/2(0 + 3)+
n- (I(T/V)—l-log2 (1+|]\3;|>) )

Setting, say, M = n and taking n — oo gives us

lim — = I(W).

n—oo N,
III. OPTIMAL LETTER SPLITTING

Recall that Theorem 4 arises from choosing a specific letter-
splitting function, s(y) = [n - W(y)]. Although the theorem
states that this choice is a good choice asymptotically, a natural
direction to pursue now is the finite n case. That is, given
W, o, and n, we may ask what is the best letter-splitting
function one can choose so that (4) is minimized. We do
not know how to answer this question. However, let us pose

a related one. Namely, suppose W : X — } is such that
the subsets Vi, )s,...,Yr are all of the same size, p. For
example, if |X| = 2, then our assumption holds when ) does
not contain an erasure symbol, in which case we can always
find a partition for which 1 = 2. We now ask, suppose we are
given a parameter M which is a multiple of u, and wish to
find a letter-splitting function s for which >_ y, s(y) = M
and for which the resulting channel ) has a minimum ¥(Q)
value. We now show that a greedy algorithm can find such a
letter-splitting function efficiently.

Algorithm 1: Greedy algorithm to find optimal splitting
function

input : Channel W : X — Y, a partition Vi, Ya,...,Vr
where each subset is of size u, a positive integer
M which is a multiple of

output: A letter-splitting function s such that

> yey $(y) = M and ¥(Q) is minimal
// Initialization
s(V1)=s02)=-=3sr)=1
// Main loop
fori:172,...7%—Td0

s(V) =s(Qp) +1

return s

L t = argmaxyt<r Zyeyt W (y)log, (%)

Theorem 5: Given a valid input to Algorithm 1, the output

is a valid letter-splitting function s, such that ), .y, s(y) = M

and the resulting channel @ is such that \IJ(Q) is minimized.

Proof: First, note that after the initialization step, we have

> yey $(y) = p - T. Each iteration obviously increments the

sum by pu, so at the end we indeed have a letter-splitting
function s such that 3_ 4, s(y) = M.

With respect to optimality, first note that a channel @

which results from a splitting function has I(Q) = I(WW)

constant, since Q = W. Thus, minimizing ¥(Q) is equivalent

to maximizing
W(y)
1@ - Q) = Y W logs (50 ) <o .
yey Yy
Clearing away constant terms, our target function becomes
> W

yey

) log, s(y) -

Recall that we must have s(y) > 1 for all y € ). We now
rephrase our optimization problem in an equivalent manner.

Define the set
1+ 1
e ()

Then, finding the optimal s(y) is equivalent to choosing
M/u — T numbers from the set A such that their sum is
maximal, and they satisfy the following constraint: If d(y, )

M/p—T

a=U U {swi-

yey =1




was picked and ¢ > 1, then §(y,7 — 1) must be picked as
well. To see the equivalence, define s(y) as the largest ¢ such
that 0(y,) was picked, or as 1 if no such § was picked.
The important point to note now is that the last constraint is
redundant. That is, note that since log, is a concave function,
we have a “diminishing returns” effect

logy (i +2) —logy(i + 1) < logy(i + 1) — logy (i) -

Thus, the optimal solution will satisfy the constraint. There-
fore, we can forget about the constraint and simply pick the
M largest elements of A. It should now be easy to see that
that is exactly what Algorithm 1 does. [ |

We note that the complexity of Algorithm 1 is O(log(T) -
(M/w—T)), provided that one uses a heap as implemented
in [4, Chapter 6] to find the maximal element to add at each
iteration.

IV. OPTIMIZATION FOR CONTINUOUS ALPHABETS

Recall that Theorem 4 has given us a method by which,
asymptotically, only a fraction r/n = I(W) random bits need
to be utilized in order to achieve semantic security. However,
the underlying assumption was that that the channel W had a
finite output alphabet size. Specifically, Theorem 4 does not
apply if W : X — ) is the binary-input Gaussian channel
(BAWGN). More so, U(W) is undefined in this case, so we
cannot even fall back to relying on Proposition 1. However,
one need not go to such extremes. Even if W does have a
finite output alphabet, but that alphabet size is rather large,
we stand to lose much as implied by the coefficient of \/n
in (7). Luckily, if W is a channel with binary input, we can
derive a bound on r which is not a function of the output
alphabet size of W. Thus, in this section, we will assume that
|X] = 2.

Apart from our assumption on a binary input, symmetry (yet
to be defined in a non-DMC setting), and memorylessness, we
make the following assumption for simplicity of exposition.
Let the input alphabet of W be X = {—1,1} and let the
output alphabet be ) = R the real numbers. Let the p.d.f. of
W be f, and let it be symmetric:

f)=f(-y[-1), yeR. (8)
Next, we assume that
fll) = flyl-1), y=0, )

and also that the likelihood ratios increase with y. That is, for
y1 < y2 we have

f(y1[1) f(y2[1)

fFanl=1) = flpl=1)°
The above implicitly assumes that f(y|x) > 0 for every
(z,y) € X x Y. Note that the above conditions hold for the
BAWGN channel.

Recall that previously, we replaced W by an equivalent
channel . In this section, we will replace W by an upgraded
channel ). As in Section III our figure of merit will be

—o00o <y <Yz <oco. (10)

U (@Q). We should first note that we can build on prior art and
prior sections to upgrade W to @ such that ¥(Q) — I(W) is
arbitrarily small. Namely, [5, Section VI] contains a method
by which W can we upgraded to a DMC W’ with a finite
output alphabet size such that (W) — I(W’) is arbitrarily
small. With W’ at hand, we can use the method in Section II
to manufacture a DMC @ such that U(Q)—1 (W) is arbitrarily
small. Thus, we can combine the two methods and deduce that
we can manufacture a () such that U(Q) —I(W) is arbitrarily
small. However, as explained earlier, apart for the difference
U(Q) — I(W), we also care about the output alphabet size
of @. It turns out that if we were to use the above solution,
requiring that ¥(Q) — I(W) < 1/M would imply that the
output alphabet size of @ would be O(M?). In contrast, the
method we will now show requires an output alphabet size of
only 2M.

We start by recursively defining the following equi-probable
regions. Denote yo = 0. Next, for 1 < ¢ < M and an already
calculated y;_1, let y; > y;_1 be such that

—Yi—1 Yi 1
/ fudy+ [ fainydy =~ .
—Yi Yi—1 M

Lastly, by abuse of notation, we “define” y,; = co. Thus, for
1 <4 < M, the regions

Ai={y : —yi<y< -y} U{y :

form a partition of )V = R and are equi-probable with respect
to f(y|1) as well as f(y|—1), by the symmetry condition (8).
For future reference, let us define for 0 < i < M the sets

Yie1 <Y <y}

Bi={y : yi-1 <y <uyi}
Next, for 1 < i < M, define
N — f(yil1)
fnl=1)"

and let Aj; = oo. Then, by (10) and (9), we have for 1 < ¢ <
M that

o WD)

1<\ = —_—
P flyl - 1)

X

sup W
YyEB; f(y‘ - 1)
We now define the upgraded channel Q : X — Z and
Q' : X — Z. The output alphabet of Q is

<A (A1)

Z={2,721,%,%,...,2M, 2 } - (12)
The channel @ is defined as
m if z =2 and \; # o0,
1 i — 3. )
Q(z‘l): W le—ZZand)\Z#OO7 (13)
e if z=2; and \; = 0,
0 if z=2; and \; = o0,
and
Qlzil —1)=Q=[1), Qz|-1)=Q(z1). (14



For analysis purposes, we now define an additional SDMC
Q' : X — Z. Note that Q and Q' share the same output
alphabet. The channel @’ is defined similarly, but with an
“index shift”. That is, define Ay = 1. Then,

i .
= if 2=z,
Qum{mﬂﬁ>. - (15)
Sr{evaeEny; if z=12;,
and
Qzl —1)=Q' (=), Q(zl—-1)=Q (z]1). (16)

Lemma 6: The above channels satisfy Q' < W =< Q.
Proof: The proof of W < @ is given in [5, Lemma 16].
We now show that Q' < W. Since degradation is a transitive
relation, we start by degrading W to a channel ® : X — Z.
We define ® as follows.

1)d e B;,
(21 = Jyen fl)dy y
f_yeBi f(y|1) dy -y € B’L y Y 7& 0 )
and
D(z;]| — 1) =D(z]1) P(z]—1) = (2]1) .
To show that ® < W, we supply the intermediate channel:

Zi yEBi7
Pi(zly) = {_

Zi —yeB;, y#0.

We now note that by (12),

B(z[1) = / = / . m ) >

[ dea seu) = xatal - ).
YyeA;

Thus,

To finish the proof, we now show an intermediate channel
P, : Z — Z which degrades ® to @Q’. Specifically,

Py(7)z) = {1 T h

i 2=z, =z orz=7%,2 =z,

=2 =zorz=2 =%,

where
Aic1

o Ai _ Al—l
Pi = A+1 X1 +1 A +1
]

We are now ready to state our theorem, relating ¥(Q)) to
I(W).

Theorem 7: Let W : X — ) be a continuous channel as
defined above. For a given integer M, let @ : X — Z be the

upgraded channel described previously. Then, |Z| = 2M and
1
v -1 < —.
(@ —1W) < -

Proof: The claim |Z| = 2M is simply a restatement of
(12). Next, note that for all z € Z

o~ QED QG- 1

2 2M

Namely, a uniform input to () results in a uniform output, and
thus,

¥(Q) =1(Q) (17
Hence, we are to prove that
1
I -1 < —.
Q- 1W) < 5
By Lemma 6 and (3) we have that
Q) <IW)<I(Q) .
Thus, it suffices to prove that
1
I —I1(Q)==—. 1
Q-1Q)=+; (18)

To this end, define the function C as follows. For 0 < A < oo

A+1 A A+1

and (for continuity) we define C[oo] = 1. Now, a short
calculation shows that for any SDMC @ with output alphabet
Z = {z,%1,22,22,...,2M, 20} and input alphabet X =
{—1,1} we have that

A 1 1
CN =1— ——log, <1+> ———logy (A +1),

M
1(Q) =) Q(2)CIQ(=1)/Q(=] - 1)] . (19)
i=1
Specializing (19) to our ) gives
| M
Q) = MZC[)\Z'] )
i=1
while specialzing (19) to Q' gives
M
Hmzﬁgqmm

(CAm] = ClAo]) = !

1Q) - 1(Q) = -

Sia
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