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Consider a single-user or multiple-access channel with a
large output alphabet. A method to approximate the channel
by an upgraded version having a smaller output alphabet is
presented and analyzed. The gain in symmetric channel capacity
is controlled through a fidelity parameter. The larger the fidelity
parameter, the better the approximation on the one hand, but
the larger the new output alphabet on the other.

The approximation method is instrumental when constructing
polar codes. No assumption is made on the symmetry of the
original channel, and the input alphabet need not be binary.
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I. INTRODUCTION

Polar codes have recently been invented by Arıkan [1]. In
his seminal paper, Arıkan treated the following channel model,
over which information is to be sent: a binary-input, memory-
less, output-symmetric channel. The definition of polar codes
was soon generalized to channels with prime input alphabet
size [2]. A further generalization to a polar coding scheme for
a multiple-access channel (MAC) with prime input alphabet
size is presented in [3] and [4].

The communication schemes in [2]–[4] are explicit, have
efficient encoding and decoding algorithms, and achieve sym-
metric capacity (sum-rate symmetric capacity in the MAC
setting). However, [2]–[4] do not discuss how an efficient
construction of the underlying polar code is to be carried out.
The problem of constructing polar codes for these settings
was discussed in [5], in which a degraded approximation of
the bit-channels is derived. The current paper is the natural
counterpart of [5], since we now derive an upgraded approxi-
mation.

In addition to single-user and multiple-access channels, po-
lar codes have been used to tackle many classical information
theoretic problems. Of these, we single-out the wiretap channel
[6], since the results in this paper are especially relevant when
using polar codes to code for the wiretap setting, as was done
in [7]–[10]. Namely, in brief, if we are to transmit information
over a bit-channel, it must be an almost pure-noise channel
to Eve. In order to validate this property computationally, it
suffices to show that an upgraded version of the bit-channel
is almost pure-noise.

The same problem we consider in this paper — approximat-
ing a channel with an upgraded version having a prescribed

output alphabet size — was recently considered by Ghayoori
and Gulliver in [11]. Broadly speaking, the method presented
in [11] builds upon the pair and triplet merging ideas presented
in [12] and analyzed in [13]. In [11], it is stated that the
resulting approximation is expected to be close to the original
channel. As yet, we are not aware of an analysis making
this claim precise. In this paper, we present an alternative
upgrading approximation method which seems easier to an-
alyze. Thus, with respect to our method, we are able to derive
an upper bound on the gain in symmetric capacity. The bound,
is given as Theorem 1 below, and is the main analytical result
of this paper.

Let the underlying MAC have an input alphabet of size p
and t users (t = 1 if we are in fact considering a single-user
channel). We would like to mention up-front that the running
time of our upgradation algorithm grows very fast in q = pt.
Thus, our algorithm can only be argued to be practical for
small values of q.

The structure of this paper is as follows. In Section II
we set up the basic concepts and notation that will be used
later on. Section III describes the binning operation as it is
used in our algorithm. The binning operation is a preliminary
step used later on to define the upgraded channel. Section IV
contains our approximation algorithm, as well as the statement
of Theorem 1. Section V is devoted to proving Theorem 1. The
full paper [14] is available online, and contains the proof of
all the statements in this paper.

II. PRELIMINARIES

A. Multiple Access Channel
Let W : X t → Y designate a generic t-user MAC, where
X = {0, 1, . . . , p − 1} is the input alphabet, p is a positive
integer1, and Y is the finite2 output alphabet. Denote a vector
of user inputs by u ∈ X t, where u = (u(l))tl=1. Our MAC is
defined through the probability function W , where W (y|u) is
the probability of observing the output y given that the user
input was u.

B. Degradation and Upgradation
The notions of a (stochastically) degraded and upgraded

MAC are defined in an analogous way to that of a degraded

1Following the observation in [15], we do not constrain ourselves to an
input alphabet which is prime.

2The assumption that Y is finite is only meant to make the presentation
simpler. Our method readily generalizes to continuous output alphabet cases.
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and upgraded single-user channel, respectively. That is, we say
that a t-user MAC Q : X t → Z is degraded with respect to
W : X t → Y , if there exists a channel P : Y → Z such that
for all z ∈ Z and u ∈ X t,

Q(z|u) =
∑
y∈Y

W (y|u) · P(z|y) .

We write Q � W to denote that Q is degraded with respect
to W .

Conversely, we say that a t-user MAC Q
′

: X t → Z ′ is
upgraded with respect to W : X t → Y if W is degraded with
respect to Q

′
. We denote this as Q

′ �W . If Q satisfies both
Q �W and Q �W , then Q and W are said to be equivalent.
We express this by W ≡ Q.

C. The Sum-Rate Criterion
Let a t-user MAC W : X t → Y be given. Next, let U =

(U (l))tl=1 be a random variable uniformly distributed over X t.
Let Y be the random variable one gets as the output of W
when the input is U. The sum-rate of W is defined as the
mutual information

R(W ) = I(U;Y ) .

Note that by the data-processing inequality [16, Theorem
2.8.1], we have that W � Q implies that R(W ) ≤ R(Q).
Whereas W ′ � Q implies that R(W ′) ≥ R(Q). Thus,
equivalent MACs have the same sum-rate.

In Section IV we show how to obtain an upgraded ap-
proximation of W . The original MAC W : X t → Y is
approximated by another MAC Q

′
: X t → Z ′ with a

smaller output alphabet size. Then, we bound the difference
(increment) in the sum-rate. Our use of the sum-rate as the
figure of merit is justified by [5, Lemma 2].

III. THE BINNING OPERATION

A. Regions and Bins
In [5], a binning operation was used to approximate a given

channel by a degraded version of it. Our algorithm uses a
related yet different binning rule, as a preliminary step towards
upgrading the channel W : X t → Y .

Let the random variables U and Y be as earlier. Assume
that the output alphabet Y has been purged of all letters y
with zero probability, since these outputs never occur. Thus,
we can define the function ϕW : X t × Y → [0, 1] as the a
posteriori probability (APP):

ϕW (u|y) = P(U = u|Y = y) =
W (y|u)∑

v∈X t

W (y|v)
, (1)

for every input u ∈ X t and every letter in the (purged) output
alphabet y ∈ Y . Next, for y ∈ Y let us denote pW (y) =
P(Y = y) , and define η : [0, 1] → R by η(x) = −x · lnx ,
where ln(·) stands for natural logarithm. Thus, the sum-rate
can be expressed as

R(W ) = ln q −
∑
y∈Y

pW (y)H(U|Y = y)

= ln q −
∑
y∈Y

pW (y)
∑
u∈X t

η (ϕW (u|y)) ,
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Fig. 1. Functions η(x) = −x · lnx and R(x). The fidelity parameter µ is
set to µ = 17.2, which results in the number of regions being M = 20. The
bold-faced regions have a horizontal increment (width) of exactly 1/µ, while
their vertical increment is less than 1/µ, as the horizontal dotted lines in the
figure demonstrate for region 6. As a leftover effect, the last region, 20, has
horizontal and vertical increments which are both less than 1/µ.

where H(U|Y = y) is the conditional entropy of U given
that Y = y (measured in natural units).

As a first step towards the definition of our bins, we quantize
the domain of η(x) with resolution specified by a fidelity
parameter µ, where

µ ≥ max(5, q(q − 1)) . (2)

The interval [0, 1) is partitioned into M = Mµ non-empty
regions of the form [bi, bi+1) , i ∈ {1, 2, . . . ,M} . Starting
from b1 = 0, the endpoint of the ith region is given by

bi+1 = max

 0 < x ≤ 1 :

x ≤ bi + 1
µ ,

|η(x)− η(bi)| ≤ 1
µ

 .(3)

And so it is inferred that for all regions 1 ≤ i < M (all regions
but the last), there is either a horizontal or vertical increment
of 1/µ . That is, bi+1 − bi = 1

µ or |η(bi+1)− η(bi)| = 1
µ ,

but typically not both (Figure 1).
Denote the region to which x belongs by R(x) = Rµ(x).

Namely, R(x) = i iff x ∈ [bi, bi+1) , with the exception
of x = 1 belonging to the last region, meaning R(1) = M .

Based on the quantization regions defined above, we define
our binning rule. Two output letters y1, y2 ∈ Y are said to be in
the same bin if for all u ∈ X t we have that R(ϕW (u|y1)) =
R(ϕW (u|y2)) .

B. Merging of letters in the same bin

Recall that our ultimate aim is to approximate the original
channel W : X t → Y by an upgraded version having a smaller
output alphabet. As we will see, the output alphabet of the
approximating channel will be a union of two sets. In this
subsection, we define one of these sets, denoted by Z .

Figuratively, we think of Z as the result of merging together
all the letters in the same bin. That is, the size of Z is the
number of non-empty bins, as each non-empty bin corresponds
to a distinct letter z ∈ Z . Denote by B(z) the set of letters in
Y which form the bin associated with z. Thus, all the symbols
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y ∈ B(z) can be thought of as having been merged into one
symbol z.

As we will see, the size of Z can be upper-bounded by an
expression that is not a function of |Y|.

C. The APP measure ψ

In this subsection, we define an a posteriori probability
measure on the input alphabet X t, given a letter from the
merged output alphabet Z . We denote this APP measure as
ψ(u|z), defined for u ∈ X t and z ∈ Z . The measure ψ(u|z)
will be used in Section IV in order to define the approximating
channel.

For each bin define the leading input as

u∗ = u∗(z) , arg max
u∈X t

[
max
y∈B(z)

ϕW (u|y)

]
, (4)

where ties are broken arbitrarily. For z ∈ Z , let

ψ(u|z) = min
y∈B(z)

ϕW (u|y) for all u 6= u∗, (5a)

ψ(u∗|z) = 1−
∑
u6=u∗

ψ(u|z) . (5b)

Informally, we note that if the bins are “sufficiently narrow”
(if µ is sufficiently large), then ψ(u|z) is close to ϕW (u|y),
for all u ∈ X t, z ∈ Z , and y ∈ B(z). The above will be made
exact in Lemma 9 below.

IV. THE UPGRADED APPROXIMATION

Now we are in position to define our t-user MAC approx-
imation Q

′
: X t → (Z ∪K), where K is a set of additional

symbols to be specified in this section. We refer to these new
symbols as “boost” symbols; that is, noiseless symbols.

Let y ∈ Y and u ∈ X t be given, and let z correspond to
the bin B(z) which contains y. Define the quantity αu(y) as

αu(y) ,

{
ψ(u|z)
ϕW (u|y) ·

ϕW (u∗|y)
ψ(u∗|z) if ϕW (u|y) 6= 0 ,

1 if ϕW (u|y) = 0 .
(6)

As stated in Sub-section V-C, αu(y) is indeed well defined
and is between 0 and 1. Next, for u ∈ X t, let

εu ,
∑
y∈Y

(1− αu(y))W (y|u) . (7)

We now define K, the set of output “boost” symbols.
Namely, we define a boost symbol for each non-zero εu,

K = { ku : u ∈ X t , εu > 0 } .
Lastly, the probability function Q

′
of our upgraded MAC is

defined as follows. With respect to non-boost symbols, define
for all z ∈ Z and u ∈ X t,

Q
′
(z|u) =

∑
y∈B(z)

αu(y)W (y|u) . (8a)

With respect to boost symbols, define for all κv ∈ K and
u ∈ X t,

Q
′
(κv|u) =

{
εu if u = v ,

0 otherwise .
(8b)

Note that if a boost symbol κu is received at the output of
Q
′

: X t → (Z ∪K), we know for certain that the input was
U = u.

The following theorem presents the properties of our up-
graded approximation of W . The proof concludes Section V.
Theorem 1. Let W : X t → Y be a t-user MAC, and let µ be
a given fidelity parameter that satisfies (2) . Let Q

′
: X t →

(Z∪K) be the MAC obtained from W by the above definition
(8). Then,

(i) The MAC Q
′

is well defined and is upgraded with
respect to W .

(ii) The increment in sum-rate is bounded by

R(Q
′
)−R(W ) ≤ q − 1

µ
(2 + q · ln q) .

(iii) The output alphabet size of Q
′

is bounded by (2µ)q+q.
Note that the input alphabet size q is usually considered to

be a given parameter of the communications system. There-
fore, we can think of q as being a constant. In this view,
Theorem 1 claims that our upgraded-approximation has a sum-
rate deviation of O( 1

µ ), and an output-alphabet of size O(µq).

V. ANALYSIS

We now examine the algorithm step by step, and state the
relevant lemmas and properties for each step (proved in [14]).
This eventually leads up to the proof of Theorem 1.

A. Quantization Properties

In Section III-A, we have quantized the domain of the
function η(x) = −x · lnx for the purpose of binning. Now,
we would like to discuss a few properties of this definition,
which are exemplified in Figure 1.
Lemma 2. Let the extreme points {bi : 1 ≤ i ≤ M + 1}
partition the domain interval 0 ≤ x ≤ 1 into quantization
regions (intervals), as in Section III-A (see (3)). Thus,

(i) if 0 ≤ bi < bi+1 <
1
e2 , then η(bi+1)− η(bi) = 1/µ .

(ii) Otherwise, if 1
e2 ≤ bi < bi+1 < 1 , then bi+1−bi = 1/µ .

The following corollary will be used to bound the number
of bins, namely |Z|, later on.
Corollary 3. The number of quantization regions M = Mµ

is bounded by M ≤ 2µ .
The corollary, following the lemma below, will play a

significant role in the proof of Theorem 1.
Lemma 4. Given x ∈ [0, 1), let i = R(x). That is, bi ≤ x <
bi+1 . Also, let 0 < δ ≤ bi+1 − bi , such that x + δ ≤ 1.
Then, |η(x+ δ)− η(x)| ≤ 1

µ .
The corollary below is an immediate consequence of

Lemma 4.
Corollary 5. All x1 and x2 that belong to the same quantiza-
tion region (that is: R(x1) = R(x2)) satisfy

|η(x1)− η(x2)| ≤ 1

µ
.

The following lemma claims that each quantization interval,
save the last, is at least as wide as the previous intervals.
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Lemma 6. Let the width of the ith quantization interval be
denoted by ∆i = bi+1 − bi , for i = 1, 2, . . . ,M . Then
the sequence {∆i}M−1i=1 (the last interval excluded) is a non-
decreasing sequence.

Following the quantization definition, the output letters in Y
were divided into bins (Section III-B). Each bin is represented
by a single letter in Z . The following lemma upper bounds
the size of Z .

Lemma 7. The size of Z is bounded by |Z| ≤ (2µ)q .

Consider a given bin (and a given z ∈ Z). Depending on
u ∈ X t, all y ∈ B(z) share the same

i(u) = iz(u) , R (ϕW (u|y)) . (9)

Thus the bin can be characterized by the set of region-indices
{ iz(u) : u ∈ X t } . The following lemma claims that the
leading input, defined in (4), is in the leading region.

Lemma 8. Consider a given z ∈ Z . Let i(u) be given by (9)
for all u ∈ X t, and let u∗ be as in (4). Then

i(u∗) = max
{
i(u) : u ∈ X t

}
.

B. Properties of ψ

Recall that the APP measure ψ(u|z) was defined in Sub-
section III-C. We start this subsection by claiming that ψ is
“close” to the APP of the original channel.

Lemma 9. For each z ∈ Z , let u∗ = u∗(z) be the leading-
input defined by (4), and let ψ(u|z) be the probability measure
on u ∈ X t defined in (5). Then, for all z ∈ Z and y ∈ B(z),

|η (ϕW (u|y))− η (ψ(u|z)) | ≤
{

1
µ if u 6= u∗ ,
q−1
µ if u = u∗ .

Let z ∈ Z and y ∈ B(z) be given. Thus, we claim without
proof that

ψ(u∗|z) ≥ ϕW (u∗|y) ≥ 1

q
− 1

µ
> 0 . (10)

The following lemma states that ψ and ϕW are close in a
multiplicative sense as well, when we are considering u∗.

Lemma 10. Consider a given z ∈ Z . Then, for all y ∈ B(z),

0 ≤ 1− q(q − 1)

µ
≤ ϕW (u∗|y)

ψ(u∗|z) ≤ 1 .

C. The MAC W
′

We now define the channel W
′

: X t → (Y ∪ K), an
upgraded version of W : X t → Y . The definition makes
heavy use of αu(y) , defined in (6). We show in [14], using
(10) and the above definitions, that αu(y) is well defined for
all y ∈ Y , and that

0 ≤ αu(y) ≤ 1 . (11)

We now define W
′

: X t → (Y ∪K), an upgraded version
of W . For all y ∈ Y and for all u ∈ X t, define

W
′
(y|u) = αu(y) ·W (y|u) . (12a)

Whereas, for all κv ∈ K and for all u ∈ X t, define

W
′
(κv|u) =εu =

∑
y∈Y

(1− αu(y))W (y|u) if u = v ,

0 otherwise.
(12b)

We conclude this subsection with two lemmas that will be
useful in the proof of Theorem 1.
Lemma 11. The MAC W

′
: X t → (Y∪K) is well-defined and

is upgraded with respect to W : X t → Y . That is, W
′ �W .

Lemma 12. Let εu be given by (7) for all u ∈ X t. Then,

1

q

∑
u∈X t

εu ≤
q(q − 1)

µ
.

D. Consolidation

In the previous section, we defined W
′

: X t → (Y ∪ K)
which is an upgraded version of W : X t → Y . Note that
the output alphabet of W

′
is larger than that of W , and our

original aim was to reduce the output alphabet size. We do
this now by consolidating letters which essentially carry the
same information.

Consider the output alphabet Y ∪K of our upgraded MAC
W
′
, compared to the original output alphabet Y . Note that,

while the output letters y ∈ Y are the same output letters
we started with, their APP values are modified and satisfy the
following.
Lemma 13. Let W

′
: X t → (Y ∪ K) be the MAC defined

in Subsection V-C. Then, all the output letters y ∈ B(z) have
the same modified APP values (for each u ∈ X t separately).
Namely, for all u ∈ X t, and for all z ∈ Z and y ∈ B(z), we
have that ϕW ′ (u|y) = ψ(u|z) .

Note that consolidating symbols with equal APP values
results in an equivalent MAC (proof is omitted). Thus, we
consolidate (map w.p.1) all the members of B(z) to z :

Q
′
(z|u) =


∑

y∈B(z)
W
′
(z|u) if z ∈ Z ,

W
′
(z|u) if z ∈ K .

(13)

for all z ∈ Z∪K and for all u ∈ X t. Based on (12), it can be
easily shown that the alternative definition above agrees with
the definition of Q

′
: X t → (Z ∪K) in (8).

The rest of this section is dedicated to proving Theorem 1.
Proof of Theorem 1:

We first prove part (i). Since Q
′

: X t → (Z∪K) is a result
of applying consolidation on W

′
: X t → (Y ∪K), it follows

that Q
′

is well defined as well.
According to Lemma 11, W

′ � W . Since W
′

and Q
′

are equivalent, and since upgradation transitivity immediately
follows from the definition, it follows that Q

′ �W .
We now move to part (ii) of the theorem, which concerns

the sum-rate difference. Recall that the random variable Y has
been defined as the output of W : X t → Y when the input is
U. Similarly, define Z ′ as the output of Q

′
: X t → (Z ∪K)

when the input is U.
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To estimate the APPs for Q
′

: X t → (Z ∪ K), we may
use (1) and (13). By Lemma 13, we have that ϕQ ′ (u|z) =
ψ(u|z) , for all u ∈ X t and for all z ∈ Z (for all non-boost
output symbols). Whereas for boost-symbols, ϕQ ′ (u|κ) ∈
{0, 1} for all u ∈ X t and for all κ ∈ K. Denote the entropy
of the probability distribution defined in Section III-C by
Hψ(U|Z = z) =

∑
u∈X t η [ψ(u|z)] . Thus,

R(Q
′
) = ln q −

∑
z∈Z

pQ ′ (z)Hψ(U|Z = z)

−
∑
κ∈K

pQ ′ (κ)H(U|Z ′ = κ) .

However, the last term is zero due to the following observation.
Given that the output of the MAC Q

′
is κv for some v ∈ X t,

the input U is known to be v (it is deterministic). Hence
H(U|Z ′ = κv) = 0 for all κv ∈ K. Hence

R(Q
′
) = ln q −

∑
z∈Z

pQ ′ (z)Hψ(U|Z = z) . (14)

Next we define a new auxiliary quantity to ease the proof.
But first, define the random variable Z as the letter in the
merged output alphabet Z corresponding to Y . Namely, the
realization Z = z occurs whenever Y is contained in B(z).
The probability of that realization is

pB(z) , P(Z = z) =
∑

y∈B(z)

pW (y) . (15)

Note that the joint distribution pB(z) · ψ(u|z) does not
necessarily induce a true MAC (for a uniformly distributed
input vector U). Nevertheless, we plug this joint distribution
into the sum-rate expression, with due caution. In other words,
we define a new quantity J(U;Z), which is a surrogate for
mutual information. Namely, define

J(U;Z) , ln q −
∑
z∈Z

pB(z) ·Hψ(U|Z = z)

= ln q −
∑
z∈Z

pB(z)
∑
u∈X t

η [ψ(u|z)] . (16)

Now, we would like to bound the increment in sum-rate. To
this end, we prove two bounds and then sum. First, note that

J(U;Z)−R(W ) =
∑
y∈Y

pW (y)
∑
u∈X t

η(ϕW (u|y))

−
∑
z∈Z

pB(z)
∑
u∈X t

η(ψ(u|z)) =∑
z∈Z

∑
y∈B(z)

pW (y)
∑
u∈X t

[η(ϕW (u|y))− η(ψ(u|z))] ≤
∑
z∈Z

∑
y∈B(z)

pW (y) · |η(ϕW (u∗|y))− η(ψ(u∗|z))| +
∑
z∈Z

∑
y∈B(z)

pW (y)
∑
u6=u∗

|η(ϕW (u|y))− η(ψ(u|z))| ≤

2 · q − 1

µ
, (17)

where the last inequality is due to Lemma 9.

For the second bound, we subtract (16) from (14) to get

R(Q
′
)− J(U;Z) =

∑
z∈Z

(pB(z)− pQ ′ (z))Hψ(U|Z = z)

By (8a), (11), and (15), the parenthesized difference on the
RHS is non-negative. Thus,

R(Q
′
)− J(U;Z) ≤ ln q ·

∑
z∈Z

(pB(z)− pQ ′ (z)) =

ln q ·
[

1−
∑
z∈Z

pQ ′ (z)

]
= ln q · 1

q
·
∑
u∈X t

[
1−

∑
z∈Z

Q
′
(z|u)

]
=

ln q · 1

q
·
∑
u∈X t

εu .

Hence, by Lemma 12 we have a second bound:

R(Q
′
)− J(U;Z) ≤ ln q · q(q − 1)

µ
. (18)

The proof follows by adding the bounds (17) and (18).
Our last task is to prove part (iii) of the theorem, which

bounds the output alphabet size. Recall that |Z| is bounded
by Lemma 7. Recalling that the number of boost symbols is
bounded by |K| ≤ |X t| = q, the proof easily follows.
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