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Abstract—Consider a channel with an input alphabet that is
finite but not necessarily binary. A method for approximating
such a channel having a large output alphabet size by a degraded
version of it having a smaller output alphabet size is presented
and analyzed. The approximation method is used to construct
polar codes for both single-user and multiple-access channels
with prime input alphabet sizes.

I. INTRODUCTION

Polar codes [1] have recently been invented by Arıkan. In
his seminal paper, Arıkan introduced polar codes in the context
of a binary-input, memoryless, output-symmetric channel over
which information is to be sent. The definition of polar
codes was soon generalized to a channel with prime input
alphabet size in [2]. A further generalization to a polar coding
scheme for a multiple-access channel (MAC) with prime input
alphabet size is presented in [3] and [4].

The merits of the polar coding schemes presented in
[1], [2], [3], and [4] are as follows. Firstly, the schemes
are both explicit and symmetric-capacity achieving (sum-rate
symmetric-capacity achieving in the MAC setting). Secondly,
they have corresponding encoding and decoding algorithms
that are efficient. To date, no other family of codes attains
all of these properties. However, a major shortcoming of the
above schemes is that, although the constructions are explicit,
the corresponding papers do not suggest an efficient method
of carrying them out. In fact, in a naive implementation, the
construction complexity is exponential in n, the codeword
length. Recently, an efficient construction algorithm for the
single-user binary-input channel was presented in [5] and
analyzed in [6]. Our aim in this paper is to generalize the
construction algorithm presented in [5] to single-user channels
and MACs with input alphabets having size p, where p is a
prime.

The main building block that our construction algorithm
will make use of, is a method to approximate a MAC by
another MAC. The utility of the approximation is that the new
MAC will have a reduced output alphabet size. As was the
case in [5], our method will have a tunable fidelity parameter,
allowing for an arbitrarily close approximation (in a sense
which will shortly be defined). Also, in contrast to the naive
implementation which requires running time exponential in n,
our construction algorithms will run in time linear in n. Let the
underlying MAC have an input alphabet of size p and t users

(t = 1 if we are in fact considering a single-user channel). We
would like to mention up-front that the running time of our
building-block method and thus of our whole algorithm grows
very fast in q = pt. Thus, our algorithm can only be argued
to be practical for small values of q.

The structure of our paper is as follows. In Section II
we setup the basic concepts and notation that will be used
later on. Section III introduces the sum-rate of a MAC,
and explains why we choose it as the figure of merit of
our approximation. Section IV contains our approximation
algorithm and Section V outlines how it is used as a building
block in constructing a polar code. In Section VI we introduce
a more refined analysis of our approximating algorithm.

II. PRELIMINARIES

A. Multiple-access channel

Since a single-user channel is a special case of a MAC, we
find it more general to consider MACs. Let W : X t → Y
designate a generic t-user MAC, where X = {0, 1, . . . , p−1}
is the input alphabet, p is prime, and Y is the finite output
alphabet. Denote a vector of user inputs by u ∈ X t, where
u = (u(i))ti=1. Our MAC is specified through the probability
function W , where W (y|u) is the probability of observing the
output y given that the user input was u.

B. Arıkan transforms

For input vectors u0 = (u
(i)
0 )ti=1 and u1 = (u

(i)
1 )ti=1, denote

by u0 ⊕p u1 the component-wise sum modulo p of u0 and
u1. That is,

u0 ⊕p u1 = (u
(i)
0 ⊕p u

(i)
1 )ti=1 .

Next, denote the Arıkan transforms of P as

W− =W �W and W+ =W �W ,

where

W− : X t → Y2 and W+ : X t → Y2 ×X t

are defined as follows:

W−(y0, y1|u0) =∑
u1∈X t

1

pt
W (y0|u0 ⊕p u1) ·W (y1|u1) , (1)



W+(y0, y1,u0|u1) =

1

pt
W (y0|u0 ⊕p u1) ·W (y1|u1) . (2)

C. Underlying and evolved MACs

Let the underlying MAC through which information is to
be transmitted be denoted by W : X t → Y . Denote the length
of the codewords to be used by n = 2m. Given an index
0 ≤ i < n, we recursively define W(m)

i , termed the ith MAC
to have evolved from m transforms, as follows. The base of
the recursion is the underlying channel:

W(0)
0 = W . (3)

The recursion step is given by:

W(m+1)
2i = (W(m)

i
�W(m)

i ) , (4)

W(m+1)
2i+1 = (W(m)

i
�W(m)

i ) . (5)

As explained in [3] and [4], polar coding is achieved through
the evolved MACs. Thus, they are the objects we will be
interested in.

D. Degradation

We define the notion of a degraded MAC in an analogous
way to that of a degraded single-user channel. Specifically, let
two t-user MACs W : X t → Y and Q : X t → Y ′ be given.
We say that Q is degraded with respect to W and denote this
as Q � W if there exists a function P : Y → Y ′ such that
the following holds. First, P must be a probability function in
the following sense: for all y ∈ Y and y′ ∈ Y ′ we must have
that P (y′|y) ≥ 0. More so, we must have for all y ∈ Y that∑

y′∈Y′
P (y′|y) = 1 .

Secondly, the concatenation of P to W must result in Q. That
is, for all y′ ∈ Y ′ and u ∈ X t we require that

Q(y′|u) =
∑
y∈Y

W (y|u) · P (y′|y) .

The following lemma is essentially a restatement of [7,
Lemma 4.7].

Lemma 1: Let two t-user MACs W : X t → Y and Q :
X t → Y ′ be such that Q � W . Denote by Q− and Q+ the
result of applying the Arıkan transforms to Q and let W−

and W+ be the result of applying the same transforms on W .
Then,

Q− �W− and Q+ �W+ .

Namely, degradation is preserved by both Arıkan transforms.

III. THE SUM-RATE CRITERION

Let a t-user MAC W be given. Next, let U = (U (i))ti=1 be
a random variable uniformly distributed over X t. Let Y be the
random variable one gets as the output of W when the input
is U. The sum-rate of W is defined as the mutual information

R(W ) = I(U;Y ) .

We first mention the following simplification. As shown in
[3, Appendix A], there is a conceptually simple coding scheme
in which the sum of the rates of all users1 can be made to
approach R(W ). In short: code for user i assuming that the
previous i−1 users are known to the receiver and the next t−i
users are treated as noise. In this scheme, the coding problem
essentially reduces to coding for a single-user channel, and we
can effectively consider only the case t = 1 (which is solved in
[5] for p = 2). Note that in this scheme, we do not code using
the evolved MACs. However, the problem of coding directly
via the evolved MACs seems to also have merit, and so we
chose to consider the more general case of t ≥ 1.

In the next section, we show a method by which to ap-
proximate one MAC by another MAC with a smaller output
alphabet size. The figure of merit we chose to measure our
approximation by is the sum-rate. Namely, we give bounds
on how much the sum-rate might decrease due to the ap-
proximation. At this point, we would like to explain why
we chose the sum-rate as the figure of merit. In fact, there
are two complementary explanations. First, as was shown in
[3] and [4], although the mean symmetric-capacity region is
generally reduced after each polarization step, the sum-rate is
not. Namely, for every MAC W we have that

2R(W ) = R(W−) +R(W+) . (6)

This, together with the fact that [3] and [4] show that the
sum-rate can be approached by polar coding make R(W )
a natural figure of merit. Secondly, the following lemma
shows that a given fidelity of R(Q) with respect to R(W )
essentially implies the same fidelity with respect to the other
mutual informations associated with the MACs Q �W . Note
that these mutual informations do indeed play a role when
constructing a polar coding scheme for a MAC [3][4].

Lemma 2: Let W : X t → Y and Q : X t → Y ′ be a pair
of t-user MACs such that Q �W and

R(Q) ≥ R(W )− ε , (7)

where ε ≥ 0. Let U be uniformly distributed over X t. Denote
by Y and Y ′ the random variables one gets as the output of
W and Q, respectively, when the input is U. Let the sets A,
B, and C form a partition of the user index set {1, 2, . . . , t}.
Denote UA = (U (i))i∈A and UB = (U (i))i∈B . Then,

I(UA;UB , Y
′) ≥ I(UA;UB , Y )− ε . (8)

Proof: Let UC = (U (i))i∈C , and note that both

I(UA,UB ,UC ;Y ) =

I(UB ;Y ) + I(UA;UB , Y ) + I(UC ;UA,UB , Y ) , (9)

and

I(UA,UB ,UC ;Y
′) =

I(UB ;Y
′) + I(UA;UB , Y

′) + I(UC ;UA,UB , Y
′) . (10)

1In fact, the whole symmetric rate region can be attained using the method
in [3, Appendix A], either by time sharing or rate splitting.



By definition, since Q is degraded with respect to W , there
exists a corresponding intermediate channel P : Y → Y ′.
Thus, by the data processing inequality applied to Y and Y ′

through P , we get that each term on the RHS of (9) is an
upper bound on the corresponding term in (10). Since

ε ≥ I(UA,UB ,UC ;Y )− I(UA,UB ,UC ;Y
′) =

[I(UB ;Y )− I(UB ;Y
′)]+[I(UA;UB , Y )− I(UA;UB , Y

′)]

+ [I(UC ;UA,UB , Y )− I(UC ;UA,UB , Y
′)] , (11)

and each parenthesized difference term of the RHS is positive,
we deduce that

I(UA;UB , Y )− I(UA;UB , Y
′) ≤ ε .

IV. DEGRADED APPROXIMATION

We now start the exposition of our MAC approximation
algorithm. As before, consider a t-user MAC W : X t → Y ,
where X = {0, 1, . . . , p− 1}. Let the random variables U and
Y be as before, and define the function ϕW = ϕ : X t×Y →
[0, 1] as follows: for u ∈ X t and y ∈ Y ,

ϕ(u|y) = P(U = u|Y = y) =
P(U = u, Y = y)

P(Y = y)
. (12)

Note that in our definition of ϕ, we make the implicit assump-
tion that the output alphabet Y has been purged of all letters y
for which the denominator in (12) is zero, since these outputs
will never occur. Next, for y ∈ Y let us abuse notation and
denote ϕW (y) = ϕ(y) as shorthand for

ϕ(y) = P(Y = y) .

In the interest of brevity, denote

η(x) = −x log2 x .

Using the above notation, we have that

R(W ) = t log2 p−
∑
y∈Y

ϕ(y)
∑
u∈X t

η(ϕ(u|y)) . (13)

In a nutshell, our algorithm will merge output letters y1, y2 ∈
Y if they both fall into the same “bin”. We now show how to
place output letters into bins.

It is easy to prove that the function η(x) is ∩-concave on
0 ≤ x ≤ 1 and attains its maximum when x is equal to

α =
1

e
≈ 0.3679 .

For x = α the value of η(x) is denoted as

β =
1

e · ln 2
≈ 0.5307

(see Figure 1).
Let the positive real µ be a given fidelity parameter and

define
µ̂ = dβ · µe .
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Fig. 1. Functions η(x) = −x log2(x) and b(x) with µ = 6.5 and µ̂ =
dβ · µe = 4.

Next, define the following function b : [0, 1]→ {1, 2, . . . , 2µ̂}

b(x) =


j if x < α and j−1

µ ≤ η(x) <
j
µ ,

µ̂ if x = α ,

2µ̂+ 1− j if x > α and j−1
µ ≤ η(x) <

j
µ .

(14)
The next lemma is a simple consequence of the definition of
b(x).

Lemma 3: Let 0 ≤ x ≤ 1 and 0 ≤ x′ ≤ 1 be such that
b(x) = b(x′). Then,

|η(x)− η(x′)| ≤ 1

µ
.

We say that two output letters are in the same bin if for all
u ∈ X t we have that b(ϕ(u|y1)) = b(ϕ(u|y2)). The degrading
process consists of the following procedure.
• We count the number of non-empty bins, and then con-

struct an output alphabet Y ′, the size of which is the
number of non-empty bins.

• To each non-empty bin we associate a distinct letter in
Y ′. For a y′ ∈ Y ′, denote by B(y′) all the y ∈ Y in the
bin associated with y′.

• The degraded MAC is obtained from the original MAC
through an intermediate channel P : Y → Y ′. The
channel maps (with probability 1) each letter y ∈ Y to
the letter y′ ∈ Y ′ associated with the bin y is in. That is,
each member of B(y′) is mapped to y′.

Denote the MAC one gets by the above degrading procedure
applied to a MAC W by Q. By definition, Q is a t-user MAC
which is degraded with respect to W . Let Y ′ be the random
variable one gets as the output of Q when the input is U.
Clearly, for all y′ ∈ Y ′ and u ∈ U,

P(Y ′ = y′|U = u) =
∑

y∈B(y′)

P(Y = y|U = u) .

Lemma 4: Let µ be specified and y′ ∈ Y ′ be given. Then,
for all y ∈ B(y′) and for all u ∈ X t,

b(ϕW (u|y)) = b(ϕQ(u|y′)) .



That is, loosely speaking, if y′ were to be binned, it would
occupy the same bin as (any) y ∈ B(y′).

Proof: The main point to notice is that for a fixed 1 ≤
j ≤ 2µ̂, the set of x for which b(x) = j is contiguous (as
is exemplified in Figure 1). To see this, recall the definition
of b(x) in (14) and note that η(x) is strictly increasing for
0 ≤ x < α and strictly decreasing for α < x ≤ 1.

To finish the proof, it suffices to show that ϕQ(u|y′) is
a convex combination of ϕW (u|y), y ∈ B(y′), since this
implies that ϕQ(u|y′) is contained in the contiguous set all
the ϕW (u|y) are members of. Indeed, it can be easily seen
that

ϕQ(u|y′) =
∑

y∈B(y′)

ϕW (y)

ϕQ(y′)
· ϕW (u|y) (15)

and
ϕQ(y

′) =
∑

y∈B(y′)

ϕW (y) . (16)

Theorem 5: Let W be a t-user MAC and let Q be the MAC
one gets by applying the degrading operation described above
with fidelity criterion µ. Then,

R(Q) ≥ R(W )− pt

µ
.

Proof: By (13) and (16), we can write the difference
R(W )−R(Q) as

R(W )−R(Q) =∑
y′∈Y′

∑
y∈B(y′)

ϕ(y)
∑
u∈X t

[η(ϕQ(u|y′))− η(ϕW (u|y))] . (17)

Considering the innermost sum, we have by Lemma 4 that

b(ϕW (u|y)) = b(ϕQ(u|y′)) .

Thus, by Lemma 3 we conclude that each innermost term has
absolute value at most 1/µ. Plugging this in yields

R(W )−R(Q) ≤
∑
y′∈Y′

∑
y∈B(y′)

ϕ(y)
∑
u∈X t

1

µ
=

∑
y′∈Y′

∑
y∈B(y′)

ϕ(y) · p
t

µ
=
pt

µ
.

Recall that the point of running the degrading approximation
was to reduce the size of the output alphabet. The following
lemma gives an upper bound on its size.

Lemma 6: Let W : X t → Y be a t-user MAC and let
Q : X → Y ′ be the MAC one gets by applying the degrading
operation described above with fidelity criterion µ. Recall that
q = pt. Then,

|Y ′| ≤ (2µ̂)q ≤ (2µ)q .

Proof: Recall that two letters y1, y2 ∈ Y are in the same
bin if and only if b(ϕ(u|y1)) and b(ϕ(u|y2)) are equal for all
u ∈ X t. The proof follows by recalling that the number of
values u can take is q and the number of values b(·) can take
is 2µ̂.

V. CONSTRUCTION ALGORITHM

In this section we outline a construction method for polar
codes. Due to space limitations, we only show and analyze
the algorithm used to approximate W(m)

i . That is, we show
here the analog of [5, Algorithm A]. In order to actually
construct polar codes, one needs an analog of [5, Algorithm
C]. However, getting from one algorithm to the other, with [3],
[4], and [5] as references, should be rather straightforward.

For a given channel index 0 ≤ i < n, denote by i =
〈b1, b2, . . . , bm〉2 the binary representation of i, where b1 is
the most significant bit. Also, let degrading_merge(W,µ)
be the result of applying the approximation method outlined
in Section IV to a MAC W using the fidelity parameter µ.

Algorithm A: A high level description of the degrading
procedure

input : An underlying MAC W, a fidelity parameter µ,
an index i = 〈b1, b2, . . . , bm〉2.

output: A MAC that is degraded with respect to W(m)
i .

Q← degrading_merge(W, µ);1

for j = 1, 2, . . . ,m do2

if bj = 0 then3

W← Q � Q4

else5

W← Q � Q6

Q← degrading_merge(W, µ);7

return Q;8

Note that since we trim the output alphabet size after each
iteration, it does not grow out of control. Specifically, it is easy
to show that the output alphabet size of each MAC encountered
during the run of Algorithm A, except for possibly W, is at
most q · (2µ)2q . Thus, if p, t, and µ are regarded as constants,
and i ranges from 0 to n−1, the running time of the algorithm
(assuming calculations are shared) is a constant times n = 2m,
the codeword length.

The following theorem gives an upper bound on the average
loss in sum-rate due to running Algorithm A. It is a direct
consequence of Lemma 1 and Theorem 5

Theorem 7: Let an underlying t-user MAC W : X t → Y
be given, where X = {0, 1, . . . , p−1} and p is prime. Denote
by Q(m)

i the channel returned by running Algorithm A with
parameters i and µ. Then,

1

n

∑
0≤i<n

(
R(W(m)

i )−R(Q(m)
i )

)
≤ m · pt

µ
.

VI. IMPROVEMENTS

Recall that the bound derived in Theorem 5 came about by
bounding the difference in the innermost sum in (17) by 1/µ.
We now show how to rewrite the difference R(W )−R(Q) in
a slightly different manner, which will lead to a tighter bound.
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Fig. 2. Function η(x) = −x log2(x). The horizontal magenta lines are a
depiction of the improved bound one gets by the application of Lemma 8.

Rearranging the sums in (17) and recalling (16), we have that

R(W )−R(Q) =∑
y′∈Y′

∑
u∈X t

ϕQ(y
′)η(ϕQ(u|y′))−

∑
y∈B(y′)

ϕW (y)η(ϕW (u|y)) .

Next, recalling the definition of ϕQ(u|y′) given in (15), we
have that

R(W )−R(Q) =∑
y′∈Y′

ϕQ(y
′)
∑
u∈X t

η
 ∑
y∈B(y′)

ϕW (y)

ϕQ(y′)
· ϕW (u|y)

−
 ∑
y∈B(y′)

ϕW (y)

ϕQ(y′)
η(ϕW (u|y))

 .

We now focus on bounding the difference

η

 ∑
y∈B(y′)

ϕW (y)

ϕQ(y′)
· ϕW (u|y)

−
 ∑
y∈B(y′)

ϕW (y)

ϕQ(y′)
η(ϕW (u|y))

 . (18)

Recall that by the binning operation, we have that b(ϕW (u|y))
has the same value for all y ∈ B(y′). This observation implies
that the following is well-defined. Pick some y ∈ B(y′) and
denote by Iy′ the interval that is the pre-image of b(ϕW (u|y))
with respect to the binning function b:

Iy′ = {x : b(x) = b(ϕW (u|y)} , where y ∈ B(y′) .

The following lemma implies a simple upper bound on (18).
For a graphical representation, see Figure 2.

Lemma 8: Let W , u, and y′ be given. Denote by a and
b the infimum and supremum of Iy′ , respectively. Then, the
difference in (18) is at most

max
0≤θ≤1

{
η [θ · a+ (1− θ) · b]−

[θ · η(a) + (1− θ) · η(b)]
}
. (19)

More so, the θ maximizing the above expression is given by

θmax =
b− 1

e · 2
−(η(b)−η(a))

b−a

b− a
.

Proof: Obtaining the expression for θmax is an easy
application of calculus. We now focus on the first part of the
theorem, and begin by setting up some notation. Let,

γy =
ϕW (y)

ϕQ(y′)
, and δy = ϕW (u|y) .

Recall that ∑
y∈B(y′)

γy = 1 ,

and that for each δy there is a corresponding 0 ≤ θy ≤ 1 such
that

δy = θy · a+ (1− θy) · b .

Next, we set
θ =

∑
y∈B(y′)

γy · θy .

and rewrite (18) as,

η [θ · a+ (1− θ) · b]−

 ∑
y∈B(y′)

γy · η(δy)

 ≤
η [θ · a+ (1− θ) · b]− ∑

y∈B(y′)

γy · (θy · η(a) + (1− θy) · η(b))

 =

η [θ · a+ (1− θ) · b]− [θ · η(a) + (1− θ) · η(b)] ,

where the first step follows from Jensen’s inequality. Recall
that here we have set θ to a specific value, whereas in (19)
θ is optimized. Thus, the last displayed equation is a lower
bound on the expression given in (19).
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