
1

List Decoding of Polar Codes
Ido Tal Alexander Vardy

University of California San Diego,
La Jolla, CA 92093, USA

Email: idotal@ieee.org, avardy@ucsd.edu

Abstract—We describe a successive-cancellation list decoder for
polar codes, which is a generalization of the classic successive-
cancellation decoder of Arıkan. In the proposed list decoder, up to
L decoding paths are considered concurrently at each decoding
stage. Simulation results show that the resulting performance
is very close to that of a maximum-likelihood decoder, even
for moderate values of L. Thus it appears that the proposed
list decoder bridges the gap between successive-cancellation and
maximum-likelihood decoding of polar codes.

The specific list-decoding algorithm that achieves this perfor-
mance doubles the number of decoding paths at each decoding
step, and then uses a pruning procedure to discard all but the L
“best” paths. In order to implement this algorithm, we introduce
a natural pruning criterion that can be easily evaluated. Never-
theless, straightforward implementation still requires O(L · n2)
time, which is in stark contrast with the O(n logn) complexity
of the original successive-cancellation decoder. We utilize the
structure of polar codes to overcome this problem. Specifically,
we devise an efficient, numerically stable, implementation taking
only O(L · n logn) time and O(L · n) space.

I. INTRODUCTION

Polar codes, recently discovered by Arıkan [1], are a major
breakthrough in coding theory. They are the first and currently
only family of codes known to have an explicit construc-
tion and efficient encoding and decoding algorithms, while
also being capacity achieving over binary input symmetric
memoryless channels. Their probability of error is known to
approach O(2−

√
n) [2], with generalizations giving even better

asymptotic results [3].
Of course, “capacity achieving” is an asymptotic property,

and the main sticking point of polar codes to date is that their
performance at short to moderate block lengths is disappoint-
ing. As we ponder why, we identify two possible culprits:
either the codes themselves are inherently weak at these
lengths, or the successive cancellation (SC) decoder employed
to decode them is significantly degraded with respect to
Maximum Likelihood (ML) decoding performance. More so,
the two possible culprits are complementary, and so both may
occur.

In this paper we show an improvement to the SC decoder,
namely, a successive cancellation list (SCL) decoder. Our list
decoder has a corresponding list size L, and setting L = 1
results in the classic SC decoder. As can be seen in Figure 1,
our algorithm improves upon the classic SC decoder. Indeed,
Figure 1 shows a wide range in which our algorithm has
performance very close to that of the ML decoder1, even for

1The lower bound on ML was got by performing decoding with L = 32,
and counting the number of times the decoded codeword was more likely
than the transmitted one.

10−4

10−3

10−2

10−1

W
or

d
er

ro
r

ra
te

1.0 1.5 2.0 2.5 3.0
Signal-to-noise ratio (Eb/N0) [dB]

n= 2048, L= 1
n= 2048, L= 2
n= 2048, L= 4
n= 2048, L= 8
n= 2048, L= 16
n= 2048, L= 32
n= 2048, ML bound

Legend:

10−6

10−5

10−4

10−3

10−2

10−1

W
or

d
er

ro
r

ra
te

1.0 1.5 2.0 2.5
Signal-to-noise ratio (Eb/N0) [dB]

n= 8192, L= 1
n= 8192, L= 2
n= 8192, L= 4
n= 8192, L= 8
n= 8192, L= 16
n= 8192, L= 32
n= 8192, ML bound

Legend:

Fig. 1. Word error rate of a length n = 2048 (top) and n = 8192 (bottom)
rate 1/2 polar code optimized for SNR=2 dB under various list sizes. Code
construction was carried out via the method proposed in [4].

moderate values of L. Thus as we have suspected, the sub-
optimality of the SC decoder plays a role in the disappointing
performance of polar codes.

The structure of this paper is as follows. In Section II, we
present Arıkan’s SC decoder in a notation that will be useful to
us later on. In Section III, we show how the space complexity
of the SC decoder can be brought down from O(n log n) to
O(n). This observation will later help us in Section IV, where
we presents our successive cancellation list decoder with time
complexity O(L · n log n).

II. FORMALIZATION OF THE SUCCESSIVE CANCELLATION
DECODER

The Successive Cancellation decoder is due to Arıkan [1].
In this section, we recast it using our notation, for future
reference. However, let us start by stating some conventions
and defining the underlying bit channels [1].

Let the polar code under consideration have length n = 2m

and dimension k. Thus, the number of frozen bits is n−k. We
denote by u = (ui)

n−1
i=0 the information bits vector (including

the frozen bits), and by c = (ci)
n−1
i=0 the corresponding code-

word, which is sent over a binary-input channel W : X → Y ,
where X = {0, 1}. At the other end of the channel, we get
the received word y = (yi)

n−1
i=0 . A decoding algorithm is



2

then applied to y, resulting in a decoded codeword ĉ having
corresponding information bits û.

For layer 0 ≤ λ ≤ m, denote hereafter Λ = 2λ. Recall that
for 0 ≤ ϕ < 2λ, bit channel W (ϕ)

λ is a binary input channel
with output alphabet YΛ ×Xϕ, the conditional probability of
which we generically denote as W (ϕ)

λ (zΛ−1
0 ,uϕ−1

0 |uϕ). In our
context, zΛ−1

0 is always a contiguous subvector of y.
For 1 ≤ λ ≤ m, recall the recursive definition of a bit

channel [1, Equations (22) and (23)] : let 0 ≤ 2ψ < Λ, then

W
(2ψ)
λ (zΛ−1

0 ,u2ψ−1
0 |u2ψ)

=
∑
u2ψ+1

1

2
W

(ψ)
λ−1(z

Λ/2−1
0 ,u2ψ−1

0,even ⊕ u2ψ−1
0,odd |u2ψ ⊕ u2ψ+1)︸ ︷︷ ︸

even branch
·W (ψ)

λ−1(zΛ−1
Λ/2 ,u

2ψ−1
0,odd |u2ψ+1)︸ ︷︷ ︸

odd branch

(1)

and

W
(2ψ+1)
λ (zΛ−1

0 ,u2ψ
0 |u2ψ+1)

=
1

2
W

(ψ)
λ−1(z

Λ/2−1
0 ,u2ψ−1

0,even ⊕ u2ψ−1
0,odd |u2ψ ⊕ u2ψ+1)︸ ︷︷ ︸

even branch
·W (ψ)

λ−1(zΛ−1
Λ/2 ,u

2ψ−1
0,odd |u2ψ+1)︸ ︷︷ ︸

odd branch

(2)

with “stopping condition” W (0)
0 (z|u) = W (z|u).

For 0 ≤ λ ≤ m define the following quotient/remainder
shorthand. Let 0 ≤ ϕ < 2λ and 0 ≤ β < 2m−λ, then

〈ϕ, β〉λ = ϕ+ 2λ · β .
Note that each integer 0 ≤ i < 2m has a unique representation
as i = 〈ϕ, β〉λ. For reasons which will become clear, we call
ϕ and β the phase and branch parts of i, respectively. Thus,
we will say that layer λ has 2λ phases, each phase consisting
of 2m−λ branches.

Our first implementation of the SC decoder (Algorithms 1–
3) will be straightforward, but somewhat wasteful in terms of
space. It will make use of two sets of arrays. The first set
of arrays is defined as follows. For each 0 ≤ λ ≤ m, we
will have a probabilities array, denoted by Pλ, of length 2m,
indexed by an integer 0 ≤ i < 2m. Each element Pλ[i] will
contain a probability pair, indexed as Pλ[i][0] and Pλ[i][1]. The
second set consists of bit arrays, denoted by Bλ. They have the
same length and indexing of probability arrays. However, each
element Bλ[i] of a bit array consists of a single bit. Initially,
most array elements will be uninitialized, and will become
initialized as the algorithm runs its course. Note that the total
space needed for these arrays is O(n log n). In the interest
of brevity, for a generic array A we abbreviate Aλ[〈ϕ, β〉λ]
as Aλ[〈ϕ, β〉]. Also, we use the shorthand Aλ[〈ϕ, ∗〉] to
symbolize all the elements Aλ[〈ϕ, β〉] for 0 ≤ β < 2m−λ.

Due to space limitations, we will not give a full proof
of the correctness of our implementation, but rather a short
explanation. For λ > 0 and 0 ≤ ϕ < 2λ, recall the recursive
definition of W (ϕ)

λ (zΛ−1
0 ,uϕ−1

0 |uϕ) given in either (1) or (2),

Algorithm 1: First implementation of SC decoder

1 for β = 0, 1, . . . , n− 1 do // Initialization
2 P0[〈0, β〉][0]←W (yβ |0), P0[〈0, β〉][1]←W (yβ |1)

3 for ϕ = 0, 1, . . . , n− 1 do // Main loop
4 recursivelyCalcP(m,ϕ)
5 if ûϕ is frozen then
6 set Bm[〈ϕ, 0〉] to the frozen value
7 else
8 if Pm[〈ϕ, 0〉][0] > Pm[〈ϕ, 0〉][1] then
9 set Bm[〈ϕ, 0〉]← 0

10 else
11 set Bm[〈ϕ, 0〉]← 1

12 if ϕ mod 2 = 1 then
recursivelyUpdateB(m,ϕ)

13 return the decoded codeword: ĉ = (B0[〈0, β〉])n−1
β=0

Algorithm 2: recursivelyUpdateB(λ, ϕ)

Require: ϕ is odd
1 set ψ ← bϕ/2c
2 for β = 0, 1, . . . , 2m−λ − 1 do
3 Bλ−1[〈ψ, 2β〉]← Bλ[〈ϕ− 1, β〉]⊕Bλ[〈ϕ, β〉]
4 Bλ−1[〈ψ, 2β + 1〉]← Bλ[〈ϕ, β〉]
5 if ψ mod 2 = 1 then
6 recursivelyUpdateB(λ− 1, ψ)

depending on the parity of ϕ. In both cases, the channel
W

(ψ)
λ−1, ψ = bϕ/2c is used with two different outputs. Thus,

we need a simple way of defining which set of outputs we
are referring to. We do this by specifying, apart from the
layer λ and the phase ϕ which define the channel, the branch
number 0 ≤ β < 2m−λ. Since the channel W (ϕ)

m has only one
vector pair of outputs associated with it, (yn0 , û

ϕ−1
0 ), we give

a branch number of β = 0 to each such pair. Next, we proceed
recursively as follows. Consider a channel W (ϕ)

λ with outputs
(zΛ−1

0 ,uϕ−1
0 ) and corresponding branch number β. The output

(z
Λ/2−1
0 ,u2ψ−1

0,even ⊕ u2ψ−1
0,odd) associated with W (ψ)

λ−1 will have a
branch number of 2β, while the output (zΛ−1

Λ/2 ,u
2ψ−1
0,odd) will

Algorithm 3: recursivelyCalcP(λ, ϕ)

1 if λ = 0 then return // Stopping condition
2 set ψ ← bϕ/2c
// Recurse first, if needed

3 if ϕ mod 2 = 0 then recursivelyCalcP(λ− 1, ψ)
4 for β = 0, 1, . . . , 2m−λ − 1 do // calculation
5 if ϕ mod 2 = 0 then // apply Equation (1)
6 for u′ ∈ {0, 1} do
7 Pλ[〈ϕ, β〉][u′]← ∑

u′′
1
2Pλ−1[〈ψ, 2β〉][u′ ⊕ u′′] ·

Pλ−1[〈ψ, 2β + 1〉][u′′]
8 else // apply Equation (2)
9 set u′ ← Bλ[〈ϕ− 1, β〉]

10 for u′′ ∈ {0, 1} do
11 Pλ[〈ϕ, β〉][u′′]← 1

2Pλ−1[〈ψ, 2β〉][u′ ⊕ u′′] ·
Pλ−1[〈ψ, 2β + 1〉][u′′]



3

have a branch number of 2β + 1 (recall the even branch/odd
branch naming). Similarly to tagging the output of a channel
by the branch number β, we do the same for the input to it.

III. SPACE-EFFICIENT SUCCESSIVE CANCELLATION
DECODING

The running time of the SC decoder is O(n log n), and our
implementation is no exception. As we have previously noted,
the space complexity of our algorithm is O(n log n) as well.
However, we will now show how to bring the space complexity
down to O(n). The observation that one can reduce the space
complexity to O(n) was noted, in the context of VLSI design,
in [5].

As a first step towards this end, consider the probability
pair array Pm. By examining the main loop in Algorithm 1,
we quickly see that if we are currently at phase ϕ, then we
will never again make use of Pm[〈ϕ′, 0〉] for all ϕ′ < ϕ. On
the other hand, we see that Pm[〈ϕ′′, 0〉] are uninitialized for all
ϕ′′ > ϕ. Thus, instead of reading and writing to Pm[〈ϕ, 0〉],
we can essentially disregard the phase information, and use
only the first element Pm[0] of the array, discarding all the
rest. By the recursive nature of polar codes, this observation
— disregarding the phase information — can be exploited for
a general layer λ as well. Specifically, for all 0 ≤ λ ≤ m,
let us now define the number of elements in Pλ to be 2m−λ.
Accordingly, we must also replace all references of the generic
form Pλ[〈ϕ, β〉] by Pλ[β].

Note that the total space needed to hold the P arrays has
gone down from O(n log n) to O(n). We would now like to do
the same for the B arrays. However, as things are currently
stated, we can not disregard the phase, as can be seen for
example in line 3 of Algorithm 2. The solution is a simple
renaming. As a first step, let us define for each 0 ≤ λ ≤ m an
array Cλ consisting of bit pairs and having length n/2. Next,
let a generic reference of the form Bλ[〈ϕ, β〉] be replaced by
Cλ[ψ+β · 2λ−1][ϕ mod 2], where ψ = bϕ/2c. Note that we
have done nothing more than rename the elements of Bλ as
elements of Cλ. However, we now see that as before we can
disregard the value of ψ and take note only of the parity of
ϕ. So, let us make one more substitution: replace Cλ[ψ + β ·
2λ−1][ϕ mod 2] by Cλ[β][ϕ mod 2], and resize each array
Cλ to have 2m−λ bit pairs. The alert reader will notice that
a further reduction in space is possible, since for λ = 0 we
will always have that ϕ = 0 and thus its parity is always even.
However, this reduction does not affect the asymptotic space
complexity which is now indeed down to O(n).

The main loop of the new algorithm is given as Algorithm 4.
The helper functions are given as Algorithms 5 and 6, with
the added condition of ignoring the ` parameter (defined and
used in the next section) and any lines making reference to it.

We end this subsection by mentioning that although we were
concerned here with reducing the space complexity of our SC
decoder, the observations made with this goal in mind will
be of great use in analyzing the time complexity of our list
decoder.

Algorithm 4: Space efficient SC decoder, main loop
Input: the received vector y
Output: a decoded codeword ĉ

// Initialization
1 for β = 0, 1, . . . , n− 1 do
2 set P0[β][0]←W (yβ |0), P0[β][1]←W (yβ |1)

// Main loop
3 for ϕ = 0, 1, . . . , n− 1 do
4 recursivelyCalcP(m,ϕ)
5 if ûϕ is frozen then
6 set Cm[0][ϕ mod 2] to the frozen value
7 else
8 if Pm[0][0] > Pm[0][1] then
9 set Cm[0][ϕ mod 2]← 0

10 else
11 set Cm[0][ϕ mod 2]← 1

12 if ϕ mod 2 = 1 then
13 recursivelyUpdateC(m,ϕ)

14 return the decoded codeword: ĉ = (C0[β][0])
n−1
β=0

Algorithm 5: recursivelyCalcP(λ, ϕ, `)

// stopping condition
1 if λ = 0 then return
2 set ψ ← bϕ/2c
// Recurse first, if needed

3 if ϕ mod 2 = 0 then recursivelyCalcP(λ− 1, ψ)
// Perform the calculation

4 Pλ ← getArrayPointer_P(λ, `)
5 Pλ−1 ← getArrayPointer_P(λ− 1, `)
6 for β = 0, 1, . . . , 2m−λ − 1 do
7 if ϕ mod 2 = 0 then // apply Equation (1)
8 for u′ ∈ {0, 1} do
9 Pλ[β][u′]←∑

u′′
1
2Pλ−1[2β][u′ ⊕ u′′] · Pλ−1[2β + 1][u′′]

10 else // apply Equation (2)
11 Cλ ← getArrayPointer_C(λ, `)
12 set u′ ← Cλ[β][0]
13 for u′′ ∈ {0, 1} do
14 Pλ[β][u′′]←

1
2Pλ−1[2β][u′ ⊕ u′′] · Pλ−1[2β + 1][u′′]

Algorithm 6: recursivelyUpdateC(λ, ϕ, `)

Require: ϕ is odd

1 set Cλ ← getArrayPointer_C(λ, `)
2 set Cλ−1 ← getArrayPointer_C(λ− 1, `)
3 set ψ ← bϕ/2c
4 for β = 0, 1, . . . , 2m−λ − 1 do
5 Cλ−1[2β][ψ mod 2]← Cλ[β][0]⊕ Cλ[β][1]
6 Cλ−1[2β + 1][ψ mod 2]← Cλ[β][1]

7 if ψ mod 2 = 1 then
8 recursivelyUpdateC(λ− 1, ψ)



4

0 1

0 01 1

0 1 1 000 1 1

1 0 1 00 0 1 1

Fig. 2. Decoding paths of unfrozen bits for L = 4.

IV. SUCCESSIVE CANCELLATION LIST DECODER

In this section we introduce and define our algorithm, the
successive cancellation list (SCL) decoder. Our list decoder
has a parameter L, called the list size. Generally speaking,
larger values of L mean lower error rates but longer running
times. We note at this point that successive cancellation list
decoding is not a new idea: it was applied in [6] to Reed-
Muller codes2.

Recall the main loop of an SC decoder, in which at each
phase we must decide on the value of ûϕ. In an SCL decoder,
instead of deciding to set the value of an unfrozen ûϕ to either
a 0 or a 1, we inspect both options. Namely, at each phase,
when decoding a non-frozen bit, we split each decoding path
into two paths (see Figure 2). Of course, since the number
of paths grows exponentially, we must prune them, and the
maximum number of paths allowed is the specified list size,
L. Naturally, we would like to keep the best paths at each
stage, and thus require a pruning criterion.

Consider the following outline for a naive implementation of
an SCL decoder. Each time a decoding path is split in two, the
data structures used by the “parent” path are duplicated, with
one copy given to the first split and the other to the second.
Since the number of splits occurring is O(L ·n), and since the
size of the data structures used by each path is at least O(n),
the copying operation alone would take time at least O(L ·
n2). This running time is clearly impractical for all but the
shortest of codes. However, all known (to us) implementations
of successive cancellation list decoding have complexity at
least O(L · n2). Our main contribution in this section is the
following: we show how to implement SCL decoding with
time complexity O(L · n log n) instead of O(L · n2).

The key observation is as follows. Consider the P arrays of
the last section, and recall that the size of Pλ is proportional
to 2m−λ. Thus, the cost of copying Pλ grows exponentially
small with λ. On the other hand, when looking at the main
loop of Algorithm 4 and unwinding the recursion, we see
that Pλ is accessed only every 2m−λ incrementations of ϕ
in Algorithm 4. Put another way, the bigger Pλ is, the less
frequently it is accessed. The same observation applies to the
C arrays. This observation suggest the use of a “lazy copy”.
Namely, At each given stage, the same array may be flagged
as belonging to more than one decoding path. However, when
a given decoding path needs access to an array it is sharing
with another path, a copy is made.

2In a somewhat different version of successive cancellation than that of
Arıkan’s, at least in exposition.

The previous high level description translates into quite
a bit of book-keeping, through the use of auxiliary arrays
and queues. Unfortunately, space limitations prevent us from
furnishing all of the relevant pseudo code in this paper.
Algorithms 5–10 are all that we have managed to fit in,
and we hope the names of the missing functions give a
good hint as to what they do. Likewise, we do not elaborate
on how we have chosen the pruning function. Lastly, if
one were to try to implement our pseudo code, they would
quickly discover numerical problems; specifically underflow.
This can be overcome through careful normalization of the
probabilities. We close by promising that a full version of this
paper, with all the missing details and explanations, will be
posted on arXiv.

Algorithm 7: assignInitialPath

1 inactivePathIndices ← new queue
2 inactiveArrayIndices ← new array of size m, the

elements of which are queues
3 activePath ← new boolean array of size L
4 arrayReferenceCount ← new 2-D array of size m× L
5 pathIndexToArrayIndex ← new 2-D array of size m×L
6 arrayPointer P ← new 2-D array of size m× L, the

elements of which are array pointers
7 arrayPointer C ← new 2-D array of size m× L, the

elements of which are array pointers
// Initialization of data structures

8 for λ = 0, 1, . . . ,m do
9 for s = 0, 1, . . . , L− 1 do

10 arrayPointer P[λ][s] ← new array of float pairs
of size 2m−λ

11 arrayPointer C[λ][s] ← new array of bit pairs
of size 2m−λ

12 arrayReferenceCount[λ][s] ← 0
13 push(inactiveArrayIndices[λ], s)

14 for ` = 0, 1, . . . , L− 1 do
15 activePath[`] ← false
16 push(inactivePathIndices, `)

// Get the new path index, and mark its
arrays

17 ` ← pop(inactivePathIndices)
18 activePath[`] ← true
19 for λ = 0, 1, . . . ,m do
20 s ← pop(inactiveArrayIndices[λ])
21 pathIndexToArrayIndex[λ][`] ← s
22 arrayReferenceCount[λ][s] ← 1

23 return `

Algorithm 8: continuePaths FrozenBit(ϕ)

1 for ` = 0, 1, . . . , L− 1 do
2 if pathIndexInactive(`) then continue
3 Cm ← getArrayPointer_C(m, `)
4 set Cm[0][ϕ mod 2] to the frozen value of index ϕ



5

Algorithm 9: continuePaths UnfrozenBit(ϕ)

1 forksArray← new (float,bit,index)-triplets array of size
2L

2 i← 0
// populate forksArray

3 for ` = 0, 1, . . . , L− 1 do
4 if pathIndexInactive(`) then continue
5 Pm ← getArrayPointer_P(m, `)
6 forksArray [2i] ← (Pm[0][0], 0, `)
7 forksArray [2i+ 1]← (Pm[0][1], 1, `)
8 i← i+ 1

// pivot forksArray, possible in O(L) time
9 ρ← min(2i, L)

10 rearrange the entries of forksArray so that for all α < ρ
and β ≥ ρ we have that
forksArray[α][0] ≥ forksArray[β][0]
// Pick the best ρ forks

11 contForks← new (boolean,boolean)-pairs array of size
L

12 initialize all elements of contForks to (false,false)
13 for r = 0, 1, . . . , ρ− 1 do
14 `← forksArray[r][2]
15 b← forksArray[r][1]
16 contForks[`][b]← true
// Kill-off non-continuing paths

17 for ` = 0, 1, . . . , L− 1 do
18 if pathIndexInactive(`) then
19 continue
20 if

contForks[`][0] = false and contForks[`][1] = false
then

21 killPath(`)

// Continue relevant paths, and
duplicate if necessary

22 for ` = 0, 1, . . . , L− 1 do
23 if

contForks[`][0] = false and contForks[`][1] = false
then // both forks are bad, or invalid

24 continue
25 Cm ← getArrayPointer_C(m, `)
26 if contForks[`][0] = true and contForks[`][1] = true

then // both forks are good
27 set Cm[0][ϕ mod 2]← 0
28 `′ ← clonePath(`)
29 Cm ← getArrayPointer_C(m, `′)
30 set Cm[0][ϕ mod 2]← 1
31 else// exactly one fork is good
32 if contForks[`][0] = true then
33 set Cm[0][ϕ mod 2]← 0
34 else
35 set Cm[0][ϕ mod 2]← 1

Algorithm 10: SCL decoder, main loop
Input: the received vector y and a list size L as a global
Output: a decoded codeword ĉ

// Initialization
1 `← assignInitialPath()
2 P0 ← getArrayPointer_P(0, `)
3 for β = 0, 1, . . . , n− 1 do
4 set P0[β][0]←W (yβ |0), P0[β][1]←W (yβ |1)

// Main loop
5 for ϕ = 0, 1, . . . , n− 1 do
6 for ` = 0, 1, . . . , L− 1 do
7 if pathIndexInactive(`) then
8 continue
9 recursivelyCalcP(m,ϕ, `)

10 if ûϕ is frozen then
11 continuePaths_FrozenBit(ϕ)
12 else
13 continuePaths_UnfrozenBit(ϕ)

14 if ϕ mod 2 = 1 then
15 for ` = 0, 1, . . . , L− 1 do
16 if pathIndexInactive(`) then
17 continue
18 recursivelyUpdateC (m,ϕ, `)

// Find the best codeword in the list
19 `′ ← 0, p′ ← 0
20 for ` = 0, 1, . . . , L− 1 do
21 if pathIndexInactive(`) then
22 continue
23 Cm ← getArrayPointer_C(m, `)
24 Pm ← getArrayPointer_P(m, `)
25 if p′ < Pm[0][Cm[0][1]] then
26 `′ ← `, p′ ← Pm[0][Cm[0][1]]

27 set C0 ← getArrayPointer_C(0, `′)

28 return ĉ = (C0[β][0])
n−1
β=0

REFERENCES

[1] E. Arıkan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Trans. Inform. Theory, vol. 55, pp. 3051–3073, 2009.

[2] E. Arıkan and E. Telatar, “On the rate of channel polarization,” in Proc.
IEEE Int’l Symp. Inform. Theory (ISIT’2009), Seoul, South Korea, 2009,
pp. 1493–1495.

[3] S. B. Korada, E. Şaşoğlu, and R. Urbanke, “Polar codes: Characterization
of exponent, bounds, and constructions,” IEEE Trans. Inform. Theory,
vol. 56, pp. 6253–6264, 2010.

[4] I. Tal and A. Vardy, “How to construct polar codes,”
arXiv:1105.6164v1.

[5] C. Leroux, I. Tal, A. Vardy, and W. J. Gross, “Hardware ar-
chitectures for successive cancellation decoding of polar codes,”
arXiv:1011.2919v1.

[6] I. Dumer and K. Shabunov, “Soft-decision decoding of Reed-Muller
codes: recursive lists,” IEEE Trans. Inform. Theory, vol. 52, pp. 1260–
1266, 2006.


