HARDWARE ARCHITECTURES FOR SUCCESSIVE CANCELLATION DECODING OF
POLAR CODES

Camille Leroux!, Ido Tal?, Alexander Vardy?, Warren J. Gross!

I!McGill University 2University of California San Diego
Montréal, Qeebec, Canada La Jolla, California, USA
ABSTRACT decoding algorithm can be implemented in complegity: log, n),

vheren is the code length.
this paper, starting from the general framework proposed by
rikan [1], we show that SC decoding can actually be implemented

The recently-discovered polar codes are widely seen as a m
jor breakthrough in coding theory. These codes achieve the capaci

of many important channels under successive cancellation decoding. . .
ymp with hardware complexity)(n). We also propose to increase the

Motivated by the rapid progress in the theory of polar codes, we pro -)
pose a family of architectures for efficient hardware implementatioj.hroljghput by decoding several consecutive vectors at the same

of successive cancellation decoders. We show that such decaders ¢ ¢ me”‘”y’ In order to reduce the complexﬂy further, we ad-.
be implemented wittO(n) processing elements ar@(n) mem- dress the implementation of the computational nodes by working in
ory elements, while providing constant throughput. We also pro-the. nganthmlc_ domain, thereby ellmmatlng_ the multiplication and
pose atechnique for overlapping the decoding of several consecutif'vISIon operations. 'We show that th_e_resultlng ”f”‘”sce.”de”t"’!' f_unc-
codewords, thereby achieving a significant speed-up factor. We fu ions can be approximated by the minimum function with negligible
thermore show that successive cancellation decoding can be impl
mented in the logarithmic domain, thereby eliminating the multipli-
cation and division operations and greatly reducing the complexity 2. POLAR CODES
of each processing element.

gerformance degradation.

. . ._Polar codes are linear block error-correcting codes. Assume
Index Terms— Polar codes, successive cancellation decodingsrom here onward that the underlying channel has binary input,
hardware implementation, VLSI. is symmetric, and is memoryless. Fix = 2™ as the code
length. Denote byu = (uo,u1,...,un—1) the input bits, and
1. INTRODUCTION letc = (co,c1,...,cn1) be the corresponding codewérdThe
encoding operation has an FFT structure, depicted in Figure 1, for
Polar codes [1] are a family of error correcting codes with an explicity, = 3. Note that the ordering of the; in Figure 1 is according to
construction and efficient encoding and decoding algorithms. Morethe bit-reversal order: if we reverse the order of the bits in the binary
over, they achieve capacity (asymptotically in the code lengtii representation of then we get the standard lexicographic ordering.
the underlying channel is symmetric, memoryless, and has binary- Recall thatu is encoded toc. Next, ¢ is sent over the un-
input. To date, no other family of codes possesses these attributeferlying channel (the channel is usedtimes). Denote by =
hence polar codes are seen as a major breakthrough in coding theo(%, Y1,...,yn—1) the corresponding channel output. We now
Not surprisingly, polar codes have garnered much interest recentlyish to decodey. This is done in terms of auccessive cancel-
in the coding theory community. From a practical point of view, the|ation decoder. That is, givel, we first try to deduce the value
capacity of the channel can be approached at the expense of a largew,, then that ofu;, and so forth up untiku,_;. We do this
code length# = 2*° bits). In some information theoretic applica- as follows. Assume that we are currently at stagand so, we
tions, polar codes are the only known solution which is both explicithave already guessed the valuesugfui, . .., u;—1; denote these
and efficient: for example achieving the secrecy capacity of thgyuesses asio, @1,...,4%:;—1. Next, forb € {0,1}, denote by
wiretap channel in the general case [2]. Polar codes have recent}%(y|ag—17 u; = b) the probability thaty was transmitted, given
been shown to have an efficient construction [3]. Recent results ha\(aatuéfl = ﬁé*l‘ thatu; = b, and thatui1, wiys, ..., un_1 are
started to address the issue of long code length. It was shown ifdependent random variables with Bernoulli distribution of param-
[4] that applying belief propagation decoding on polar codes helpster1/2. If ¢ is not in the frozen set (explained later), then we take
in reducing the required code length at the expense of extra comhe guessed valu to be
plexity due to the iterative nature of belief propagation. Driven by v
the recent rapid progress in the theory of polar codes our motivation . 0. if Pr(y‘%:]aui:m >1
is to find efficient hardware architectures for SC decoding that will i = P Prvlag ui=1) T)
allow high-throughput and low-area implementations. Despite the 1, otherwise
numerous studies on polar codes construction and performance, the i1 ~ie1
issue of hardware implementation of SC decoders remains an open Consider the case in which we are at stagandu, = i,

problem. Initial results and a general framework for the implemen-_that Is, we have guessed correctly up until now. Then, as shownin

tation of belief propagation decoders for polar codes are given iILl]’ foralmostall0 < i < nwe have thatthe probability of guessing
[5]. However, due to its lower complexity compared to belief prop-ui correctly is either extremely close to(very good), or extremely

agation, we are motivated to study the hardware implementation of INote thatn input bits are encoded to a lengthcodeword. However, as
successive cancellation decoding. Arikan [1] showed that the S@e will see later on, not all of the input bits carry information.

uy T—>c 0 u

S/ 0 o
2

I/ VA = I

6 AN C3 4

u] C A

u jjf Vs ;Q; Py ! 2 U
5 €U % Cs

u ZL VARY VaAY ~

3 { N i N : i Cg u6
Uz ¢

4 ’21

Fig. 1. Encoder architecture for = 8 A

5 Us

6 123

close tol/2 (very bad). That is, there is@olarization effect, asn
tends to infinity. In order to keep the assumptign* = 44~ valid 7 40
for all ¢ (with very high probability), we freeze somg. That is, if

the probability of guessing, is not very good, then we set its value

to 0 in both the encoder and the decoder, and thus no information is
transmitted viau;. As shown in [1], the fraction of indiceswhich

are not frozen (the effective code rate) tends to the capacity of the Us

underlying channel.

Fig. 2. FFT-like SC decoder architecture for= 8

3. SUCCESSIVE CANCELLATION DECODER

IMPLEMENTATION In Figure 2 the tree associated with is highlighted. If we assume

that a pipeline register is inserted between each stage or equivalently
that each node processor can memorize its updated value, then some
Arikan showed that SC decoding can be efficiently implemented byesults can be reused. For example, in Figure 2{ibitan be de-

the factor graph of the code which has a structure resembling theoded by only activatingVo,4 sinceN'1,o and 1,4 have already

Fast Fourier Transform (FFT). In the remainder of the paper, wéeen updated during the decodingief Despite this well-defined

will designate this decoder as the “FFT-like SC decoder”. Figure Btructure and scheduling of the FFT-like decoder, in [1], Arikan does
shows the graph of the SC decoder for= 8. Channel likelihood not assess the problem of resource sharing, memory management o
ratios (LRs)\; are assumed to be available on the right hand side ogontrol generation that would be required for hardware implementa-
the graph while the estimated bis are on the left hand side. The tion. This framework however suggests that it could be implemented
SC decoder is composed of = log, n stages each containing with n log, n combinatorial node processors together withegis-
nodes. We refer to a specific node./&5 ; where! designates the ters between each stage to memorize intermediate results. In order to
stage indeX0 < | < m — 1) and; designates the node index within store the channel information,extra registers are included as well.
stagel (0 < j < n — 1). Each node updates its output according to The total complexity of such a decoder is

one of the two following update rules:
Cr = (Cnp + Cr)nlogyn + nCh, (3)

f(a,b) = 1@1“: or,
ga.(a,b) = a'~*"b.

3.1. FFT structure

2 whereC,,, andC; are the hardware complexity of a node processor
and a register respectively. It can be shown that such a decoder with
the right-to-left scheduling would take: — 2 clock cycles to decode

The valuesz andb are likelihood ratios whilei, is a bit that rep- . L9
B n bits. The throughput in bits per second would then be

resents the partial modulsum of previously estimated bits. For
example, in nodéV1 3, the partial sum igi, = @4 @ 5. The value n 1

of 4, determines if functiory should be a multiplication or a di- T= m ~ % (4)
vision. These update rules are complex to implement in hardware P P

since they involve multiplications and divisions. In Section 4, wewheret,,,, is the propagation time in seconds through a node proces-
propose to perform these operations in the logarithmic domain angor. It follows that every node processor is actually used once every

to apply an approximation to functiofi For now we will consider 2n, — 2 clock cycles. This motivates us to find a schedule to merge
f andg to be black boxes until we return to them in Section 4. some of the nodes into a single processing element.

The sequential nature of the algorithm induces some data depen-
dence within the processing. We notice ti\di » can not be up-
dated before the bit; is computed and a fortiori neither befoiig
is known. In order to respect the data dependence, a scheduling hlasoking further into the scheduling, we notice that whenever stage
to be defined. Arikan proposed two schedulings for this decoding is activated, only2’ nodes are actually updated. For example in
framework [1]. In the left-to-right scheduling, nodes recursivellf ¢ Figure 2, when stage 0 is enabled, only one node is updated. Then
their predecessors until an updated node is reached. The recursihe n nodes of stage 0 can be implemented using a single process-
nature of this scheduling is especially suitable for software impleing element (PE). We note that in general, for stag processing
mentation. In the alternative right-to-left scheduling, any node upelements (PEs) are sufficient to update the nodes. However, this re-
dates its value whenever its inputs are available. Each;b# suc- source sharing does not necessarily guarantee that the memories as-
cessively estimated by activating the spanning tree root&tat;. signed to the merged nodes can also be merged. The memory sharing

3.2. Pipelined tree architecture

Stage O Stage 1 Stage 2

b, by b ! !

Fig. 3. Pipelined tree SC architecture for= 8. Fig. 4. Line SC architecture fon = 8.

[CC[i1[2[3[4[5[6]7[8]9[10[11[12]13]14]

it appears that only one stage is activated at a time. In the worst

52 f g case (activation of stage — 1), 5 PEs have to be activated at the

1 f 9 f 9 same time. This means that the same throughput can be achieved
So flyg flyg J1g flg with only Z PEs. The resulting architecture is shown in Figure 4 for
a; [| Jaolaa] Taglas] | Jaalas] Jas|ar n = 8. The processing elements Bre arranged in an line while

registers keep a tree structure. Registers and PEs are connected via
Table 1. Schedule for the FFT-like and pipeline tree SC architecturesnultiplexing resources that emulate the tree structure. For example
(n = 28). since B,o and R o (in Figure 3) are merged to;Rin Figure 4), B

should write either to Ro or Ry,0 while it should also be able to

)) read from the channel registers or fromRand R.,;. Theus com-

depends on the liveness of generated variables. Table 1 shows thgiation block is moved out of Pand kept close to the associated
stage activation during the decoding of one vegtorwhen stage register because, should also be forwarded to the PE. The overall
[is enabled, we indicate which functioif or g) is applied to the complexity of the line SC architecture is
2! activated nodes at stagé during each clock cycle (CC). Every

generated variable is used twice during the decoding. For examplec,, — (n—1)(Ce + Ca.) +nCup + (ﬁ — 1) 3Cmux +nC: (6)
the four variables generated in stage 2 at CC #1 are used on CC #2 ° 2

and CC #5 in stage 1. This means that in stage 2, the four registeyghere .. represents the complexity of a 2-input multiplexer and
associated with th¢ function can be reused at CC #8 to memorize Cl. is the complexity of the., computation block. Despite the extra
the four data values generated by ghéunction. This observation mytiplexing logic required to route the data through the PE line, the
is applicable to any stage in the decoder. The resulting proposeghyings in number of PEs makes this SC decoder less complex than
architecture is shown in Figure 3 fer = 8. n registers are used the pipelined tree architecture while achieving the same throughput
to store the LRs\;. The decoder is composed of a pipelined treegg computed in (4).

structure that includea — 1 PEs, R, andn — 1 registers, R; |t is possible to further reduce the number of PEs with only a small
with 0 < I < m — 1and0 < j < 2'. A decision unit gener- penalty in terms of throughput. Looking at Table 1, during the de-
ates the estimated hit; which is then broadcast back to every PE. coding of one vector, stagés activated2™ ! times. Consequently,

A PE is a configurable element that can perform either funcfion i, the line architecture of Figure 4 stages are all activated at the

or g. It also includes théi; computation block that updates the same time only twice during the decoding of a vector, regardless of
value with the last decoded hif; only if the control bith;; = 1. the code size. A decoder with only PEs would require only 2 ex-
Another control bit; is used to select functiofi or g. Compared {5 clock cycles to decode a vector. Such a semi-parallel architecture
to the FFT-like structure, the pipelined tree architecture performs thg,q1q improve the hardware efficiency at only a small decrease of
same amount of computation with the same scheduling (see Table {Hroughput.

but with a reduced number of PEs and registers. Assuming that a Pfe Line SC architecture can be seen as a tree architecture in which
(implementingf and g) represents twice the complexity of a node complexity is reduced by merging some of the PEs. An alternative
processor that implements a singler g function, the pipelined tree ould be to start from the same tree architecture and use the idle
decoder complexity is stages to overlap the decoding of several codewords at once,cenhan

Cr = (n — 1)(2Cup + Cy) + nC:. (5) ing the throughput.

Moreover, one can notice tha; the routing network in the decoder ig 4. Vector-overlapping SC architecture

much simpler in the tree architecture than in the FFT-like structure. .) o
Connections between PEs are also local. This lowers the risk of coh£t's assume that we want to use idle cycles in the pipelined tree
gestion during the wire routing phase of an integrated circuit desigArchitecture in order to overlap the decodingfbtectorsy. At CC

and potentially increases the clock frequency and the throughput. #1,y1 is fed into stage 2 of the pipelined tree decoder. At CC #2,
a second vectay- is shifted into stage 2 whilg, uses stage 1. At

CC #3,y1 andy are in stages 0 and 1 respectively. Then, a PE
conflict occurs at CC #4 when bogh andy-» need to access stage

Despite the low complexity of the pipelined tree architecture, it is0. This problem can be overcome by simply duplicating stage 0 so
possible to further reduce the number of PEs. Looking at Table 1no resource conflict happens. As shown in Table 2, by duplicating

3.3. Line SC Architecture

[CC[[1[2[3]4[5]6] 78] 9[10[11[12[13[14[15[16] [Awch. || Cop & [T]

S2 [[y1lyzlys vilyz2lys FFT-like nlogn n(1l +logn) ﬁ
S1 Y1|y2|Y3|Y1|y2|Y3 Y1|¥2|Y3|¥Y1|y2|Y3 Pipe. Tree 2n —2 2n —1 =
So Y1 |¥1|Y2|Y1|Y1|Y2|Y¥3|Y1|Y1|Y2|Y1|Y1|Y2|Y3 Line n on—1 21p
Sod Y2|¥3|y3|y2|ys3 Y2|y3|¥3|y2|y3 B
Overlap. || ~n+ Z(log L) | P(2n—-1) 2£p

;’iglgisgc):hedule for the vector-overlapping SC architecture-(8 Table 3. Comparison of SC decoder architectures.

the bitus. However, f involves some transcendental functions that
are complex to implement in hardware. One can notice thaf the
andg functions are identical to the update rules used in BP decoding
of LDPC codes. Consequently, similar to what is done in LDPC de-
coder implementation [6]f can be approximated with the minimum
function such that

F(La, Lu) ~ sign(L,) sign(Ly) min(|Lal, |Ls)). (10)

In order to estimate the performance degradation incurred by this ap-
Fig. 5. Vector-overlapping SC decoder far= 8 andP = 3. proximation we simulated the performance of different polar codes
on an AWGN channel with BPSK modulation. There was no signif-
icant performance loss.
stage 0 (denoted &%,), it is possible to overlap up to 3 vectors at
the same time. It v_vo_uld_actually be possible to insgrt another vector 5 CONCLUSION
by using the remaining idle resources, but the routing of data across

the tree would lose its nice regular property, making the multiplexyp, this paper we showed that the architecture proposed by Arikan
ing des_.lgn more complex. Since several vectors are decod_ed at thf‘[l] can be improved by taking advantage of the scheduling in SC
same time, each PE should havg access to registers associated Vﬂgboding. Table 3 is a comparison of the complexity and through-
each vector. This means thitregister sets are required to decode pt of the FFT-like SC decoder with the proposed architectures. The
P vectors in parallel. A vector-overlapping SC decoder is shown inyipelined tree architecture and the line architecture allow us to reach
Figure 5 forn = 8 and P = 3. The degree of parallelisth can ac- the same throughput while reducing the hardware complexity. We
tually be enhanced by further duplicating PE stages. It can be showf)so showed that throughput can be enhanced by decoding several
that in order to reach parallelisi, each stagé should be dupli- yectors in parallel in a vector overlapping architecture.

cated[77t times. This vector-overlapping architecture allows us|n this paper, we investigated fully-parallel architectures for SC de-
to reach a maximum parallelism value Bf= n — 1. The complex- coders. For very large code lengths, it would be required to consider
ity and the throughput of a vector-overlapping SC architecture withsem-parallel architectures in which PEs are shared within the update

parallelismp are phase of the same stage as suggested in Section 3.3. The very regular
P+1 P+1 structure of polar codes makes semi-parallel architectures straight-
o= (22 o (221 1) 2z

H+T forward to implement.
and T = P . (8) 6. REFERENCES
2tnp
This architecture provides a solution to enhance the parallelism dfl] E. Arikan, “Channel polarization: A method for constructing
the decoder without duplicating all the resources of the decoder. capacity-achieving codes for symmetric binary-input memory-
less channels,1EEE Trans. on Inform. Theory, vol. 55, no. 7,
4. MINIMUM APPROXIMATION pp. 3051 -3073, Jul. 2009.

[2] H. Mahdavifar and A. Vardy, “Achieving the secrecy capacity
SC decoding, in its original version, was proposed in the likelihood of wiretap channels using polar codes,"|EEE IS T 2010, Jun.
ratio domain in which the update rulgsandg require multiplication 2010, pp. 913 -917.
and division. The hardware implementation of multipliers and di-[3] |. Tal and A. Vardy, “How to construct polar codes,” IEEE
viders is very expensive and usually avoided in practical decoder de- " | Tw 2010, Aug. 2010.
signs. We propose to perfprm SC decoding in the_ log-domain in Or[4] N. Hussami, R. Urbanke, and S.B. Korada, “Performance of
der to reduce the complexity of theandg computation blocks. We)

’ AR . o polar codes for channel and source coding,JEEE IS T 20009,

assume that the channel information is available as the log-likelihood

ratios (LLRs)L;. In the LLR domainf andg become Jun. ?009’ Pp. 1488 ~1492. o)))
[5] E. Arikan, “Polar codes: A pipelined implementation,” in

1SBC2010, Jul. 2010.

-1 Lo L
f(La, Ly) = 2 tanh (tanh (%) tanh (Tb)) @) [6] M.P.C. Fossorier, M. Mihaljevic, and H. Imai, “Reduced com-
Gy (La, Ly) = Lo (—1)% + L, plexity iterative decoding of low-density parity check codes

based on belief tion/EEE Trans. on C ., vol. 47
whereL, and L, are LLRs. In terms of hardware implemen- ngsg popn sséiepggpa%il,liglgg rans. on t-omm. vo '

tation, g can be easily mapped to an adder/subtractor controlled by

