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Montréal, Qúebec, Canada La Jolla, California, USA

ABSTRACT

The recently-discovered polar codes are widely seen as a ma-
jor breakthrough in coding theory. These codes achieve the capacity
of many important channels under successive cancellation decoding.
Motivated by the rapid progress in the theory of polar codes, we pro-
pose a family of architectures for efficient hardware implementation
of successive cancellation decoders. We show that such decoders can
be implemented withO(n) processing elements andO(n) mem-
ory elements, while providing constant throughput. We also pro-
pose a technique for overlapping the decoding of several consecutive
codewords, thereby achieving a significant speed-up factor. We fur-
thermore show that successive cancellation decoding can be imple-
mented in the logarithmic domain, thereby eliminating the multipli-
cation and division operations and greatly reducing the complexity
of each processing element.

Index Terms— Polar codes, successive cancellation decoding,
hardware implementation, VLSI.

1. INTRODUCTION

Polar codes [1] are a family of error correcting codes with an explicit
construction and efficient encoding and decoding algorithms. More-
over, they achieve capacity (asymptotically in the code lengthn) if
the underlying channel is symmetric, memoryless, and has binary-
input. To date, no other family of codes possesses these attributes,
hence polar codes are seen as a major breakthrough in coding theory.
Not surprisingly, polar codes have garnered much interest recently
in the coding theory community. From a practical point of view, the
capacity of the channel can be approached at the expense of a large
code length (n = 220 bits). In some information theoretic applica-
tions, polar codes are the only known solution which is both explicit
and efficient: for example achieving the secrecy capacity of the
wiretap channel in the general case [2]. Polar codes have recently
been shown to have an efficient construction [3]. Recent results have
started to address the issue of long code length. It was shown in
[4] that applying belief propagation decoding on polar codes helps
in reducing the required code length at the expense of extra com-
plexity due to the iterative nature of belief propagation. Driven by
the recent rapid progress in the theory of polar codes our motivation
is to find efficient hardware architectures for SC decoding that will
allow high-throughput and low-area implementations. Despite the
numerous studies on polar codes construction and performance, the
issue of hardware implementation of SC decoders remains an open
problem. Initial results and a general framework for the implemen-
tation of belief propagation decoders for polar codes are given in
[5]. However, due to its lower complexity compared to belief prop-
agation, we are motivated to study the hardware implementation of
successive cancellation decoding. Arıkan [1] showed that the SC

decoding algorithm can be implemented in complexityO(n log2 n),
wheren is the code length.
In this paper, starting from the general framework proposed by
Arıkan [1], we show that SC decoding can actually be implemented
with hardware complexityO(n). We also propose to increase the
throughput by decoding several consecutive vectors at the same
time. Finally, in order to reduce the complexity further, we ad-
dress the implementation of the computational nodes by working in
the logarithmic domain, thereby eliminating the multiplication and
division operations. We show that the resulting transcendental func-
tions can be approximated by the minimum function with negligible
performance degradation.

2. POLAR CODES

Polar codes are linear block error-correcting codes. Assume
from here onward that the underlying channel has binary input,
is symmetric, and is memoryless. Fixn = 2m as the code
length. Denote byu = (u0, u1, . . . , un−1) the input bits, and
let c = (c0, c1, . . . , cn−1) be the corresponding codeword1. The
encoding operation has an FFT structure, depicted in Figure 1, for
m = 3. Note that the ordering of theui in Figure 1 is according to
the bit-reversal order: if we reverse the order of the bits in the binary
representation ofi, then we get the standard lexicographic ordering.

Recall thatu is encoded toc. Next, c is sent over the un-
derlying channel (the channel is usedn times). Denote byy =
(y0, y1, . . . , yn−1) the corresponding channel output. We now
wish to decodey. This is done in terms of asuccessive cancel-
lation decoder. That is, giveny, we first try to deduce the value
of u0, then that ofu1, and so forth up untilun−1. We do this
as follows. Assume that we are currently at stagei, and so, we
have already guessed the values ofu0, u1, . . . , ui−1; denote these
guesses aŝu0, û1, . . . , ûi−1. Next, for b ∈ {0, 1}, denote by
Pr(y|ûi−1

0 , ui = b) the probability thaty was transmitted, given
thatui−1

0 = ûi−1
0 , thatui = b, and thatui+1, ui+2, . . . , un−1 are

independent random variables with Bernoulli distribution of param-
eter1/2. If i is not in the frozen set (explained later), then we take
the guessed valuêui to be

ûi =

{

0, if
Pr(y|ûi−1

0
,ui=0)

Pr(y|ûi−1
0

,ui=1)
> 1,

1, otherwise,
(1)

Consider the case in which we are at stagei, andui−1
0 = ûi−1

0

— that is, we have guessed correctly up until now. Then, as shown in
[1], for almost all0 ≤ i < n we have that the probability of guessing
ui correctly is either extremely close to1 (very good), or extremely

1Note thatn input bits are encoded to a lengthn codeword. However, as
we will see later on, not all of then input bits carry information.
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Fig. 1. Encoder architecture forn = 8

close to1/2 (very bad). That is, there is apolarization effect, asn
tends to infinity. In order to keep the assumptionui−1

0 = ûi−1
0 valid

for all i (with very high probability), we freeze someui. That is, if
the probability of guessingui is not very good, then we set its value
to 0 in both the encoder and the decoder, and thus no information is
transmitted viaui. As shown in [1], the fraction of indicesi which
are not frozen (the effective code rate) tends to the capacity of the
underlying channel.

3. SUCCESSIVE CANCELLATION DECODER
IMPLEMENTATION

3.1. FFT structure

Arıkan showed that SC decoding can be efficiently implemented by
the factor graph of the code which has a structure resembling the
Fast Fourier Transform (FFT). In the remainder of the paper, we
will designate this decoder as the “FFT-like SC decoder”. Figure 2
shows the graph of the SC decoder forn = 8. Channel likelihood
ratios (LRs)λi are assumed to be available on the right hand side of
the graph while the estimated bitŝui are on the left hand side. The
SC decoder is composed ofm = log2 n stages each containingn
nodes. We refer to a specific node asN l,j wherel designates the
stage index(0 < l < m−1) andj designates the node index within
stagel (0 < j < n− 1). Each node updates its output according to
one of the two following update rules:

{

f(a, b) = 1+ab
a+b

or,
gûs

(a, b) = a1−2ûsb.
(2)

The valuesa andb are likelihood ratios whilêus is a bit that rep-
resents the partial modulo-2 sum of previously estimated bits. For
example, in nodeN 1,3, the partial sum iŝus = û4 ⊕ û5. The value
of ûs determines if functiong should be a multiplication or a di-
vision. These update rules are complex to implement in hardware
since they involve multiplications and divisions. In Section 4, we
propose to perform these operations in the logarithmic domain and
to apply an approximation to functionf . For now we will consider
f andg to be black boxes until we return to them in Section 4.
The sequential nature of the algorithm induces some data depen-
dence within the processing. We notice thatN 1,2 can not be up-
dated before the bit̂u1 is computed and a fortiori neither beforeû0

is known. In order to respect the data dependence, a scheduling has
to be defined. Arıkan proposed two schedulings for this decoding
framework [1]. In the left-to-right scheduling, nodes recursively call
their predecessors until an updated node is reached. The recursive
nature of this scheduling is especially suitable for software imple-
mentation. In the alternative right-to-left scheduling, any node up-
dates its value whenever its inputs are available. Each bitûi is suc-
cessively estimated by activating the spanning tree rooted atN 0,π(i).
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Fig. 2. FFT-like SC decoder architecture forn = 8

In Figure 2 the tree associated withû0 is highlighted. If we assume
that a pipeline register is inserted between each stage or equivalently
that each node processor can memorize its updated value, then some
results can be reused. For example, in Figure 2, bitû1 can be de-
coded by only activatingN 0,4 sinceN 1,0 andN 1,4 have already
been updated during the decoding ofû0. Despite this well-defined
structure and scheduling of the FFT-like decoder, in [1], Arıkan does
not assess the problem of resource sharing, memory management or
control generation that would be required for hardware implementa-
tion. This framework however suggests that it could be implemented
with n log2 n combinatorial node processors together withn regis-
ters between each stage to memorize intermediate results. In order to
store the channel information,n extra registers are included as well.
The total complexity of such a decoder is

CT = (Cnp + Cr)n log2 n+ nCr, (3)

whereCnp andCr are the hardware complexity of a node processor
and a register respectively. It can be shown that such a decoder with
the right-to-left scheduling would take2n−2 clock cycles to decode
n bits. The throughput in bits per second would then be

T =
n

(2n− 2)tnp
≈

1

2tnp
(4)

wheretnp is the propagation time in seconds through a node proces-
sor. It follows that every node processor is actually used once every
2n − 2 clock cycles. This motivates us to find a schedule to merge
some of the nodes into a single processing element.

3.2. Pipelined tree architecture

Looking further into the scheduling, we notice that whenever stage
l is activated, only2l nodes are actually updated. For example in
Figure 2, when stage 0 is enabled, only one node is updated. Then
then nodes of stage 0 can be implemented using a single process-
ing element (PE). We note that in general, for stagel, 2l processing
elements (PEs) are sufficient to update the nodes. However, this re-
source sharing does not necessarily guarantee that the memories as-
signed to the merged nodes can also be merged. The memory sharing
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Fig. 3. Pipelined tree SC architecture forn = 8.

CC 1 2 3 4 5 6 7 8 9 10 11 12 13 14

S2 f g
S1 f g f g
S0 f g f g f g f g

ûi û0 û1 û2 û3 û4 û5 û6 û7

Table 1. Schedule for the FFT-like and pipeline tree SC architectures
(n = 8).

depends on the liveness of generated variables. Table 1 shows the
stage activation during the decoding of one vectory. When stage
l is enabled, we indicate which function (f or g) is applied to the
2l activated nodes at stageSl during each clock cycle (CC). Every
generated variable is used twice during the decoding. For example,
the four variables generated in stage 2 at CC #1 are used on CC #2
and CC #5 in stage 1. This means that in stage 2, the four registers
associated with thef function can be reused at CC #8 to memorize
the four data values generated by theg function. This observation
is applicable to any stage in the decoder. The resulting proposed
architecture is shown in Figure 3 forn = 8. n registers are used
to store the LRsλi. The decoder is composed of a pipelined tree
structure that includesn − 1 PEs, Pl,j , andn − 1 registers, Rl,j
with 0 ≤ l ≤ m − 1 and0 ≤ j < 2l. A decision unit gener-
ates the estimated bit̂ui which is then broadcast back to every PE.
A PE is a configurable element that can perform either functionf
or g. It also includes thêus computation block that updates theûs

value with the last decoded bit̂ui only if the control bitbl,j = 1.
Another control bitbl is used to select functionf or g. Compared
to the FFT-like structure, the pipelined tree architecture performs the
same amount of computation with the same scheduling (see Table 1)
but with a reduced number of PEs and registers. Assuming that a PE
(implementingf andg) represents twice the complexity of a node
processor that implements a singlef or g function, the pipelined tree
decoder complexity is

CT = (n− 1)(2Cnp + Cr) + nCr. (5)

Moreover, one can notice that the routing network in the decoder is
much simpler in the tree architecture than in the FFT-like structure.
Connections between PEs are also local. This lowers the risk of con-
gestion during the wire routing phase of an integrated circuit design
and potentially increases the clock frequency and the throughput.

3.3. Line SC Architecture

Despite the low complexity of the pipelined tree architecture, it is
possible to further reduce the number of PEs. Looking at Table 1,
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Fig. 4. Line SC architecture forn = 8.

it appears that only one stage is activated at a time. In the worst
case (activation of stagem − 1), n

2
PEs have to be activated at the

same time. This means that the same throughput can be achieved
with only n

2
PEs. The resulting architecture is shown in Figure 4 for

n = 8. The processing elements Pj are arranged in an line while
registers keep a tree structure. Registers and PEs are connected via
multiplexing resources that emulate the tree structure. For example
since P2,0 and P1,0 (in Figure 3) are merged to P2 (in Figure 4), P2
should write either to R2,0 or R1,0 while it should also be able to
read from the channel registers or from R2,0 and R2,1. Theûs com-
putation block is moved out of Pj and kept close to the associated
register becausêus should also be forwarded to the PE. The overall
complexity of the line SC architecture is

CT = (n− 1)(Cr +Cûs
)+nCnp +

(n

2
− 1

)

3Cmux +nCr (6)

whereCmux represents the complexity of a 2-input multiplexer and
Cûs

is the complexity of thêus computation block. Despite the extra
multiplexing logic required to route the data through the PE line, the
savings in number of PEs makes this SC decoder less complex than
the pipelined tree architecture while achieving the same throughput
as computed in (4).
It is possible to further reduce the number of PEs with only a small
penalty in terms of throughput. Looking at Table 1, during the de-
coding of one vector, stagel is activated2m−l times. Consequently,
in the line architecture of Figure 4,n

2
stages are all activated at the

same time only twice during the decoding of a vector, regardless of
the code size. A decoder with onlyn

4
PEs would require only 2 ex-

tra clock cycles to decode a vector. Such a semi-parallel architecture
would improve the hardware efficiency at only a small decrease of
throughput.
The Line SC architecture can be seen as a tree architecture in which
complexity is reduced by merging some of the PEs. An alternative
would be to start from the same tree architecture and use the idle
stages to overlap the decoding of several codewords at once, enhanc-
ing the throughput.

3.4. Vector-overlapping SC architecture

Let’s assume that we want to use idle cycles in the pipelined tree
architecture in order to overlap the decoding ofP vectorsy. At CC
#1, y1 is fed into stage 2 of the pipelined tree decoder. At CC #2,
a second vectory2 is shifted into stage 2 whiley1 uses stage 1. At
CC #3,y1 andy2 are in stages 0 and 1 respectively. Then, a PE
conflict occurs at CC #4 when bothy1 andy2 need to access stage
0. This problem can be overcome by simply duplicating stage 0 so
no resource conflict happens. As shown in Table 2, by duplicating



CC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S2 y1 y2 y3 y1 y2 y3

S1 y1 y2 y3 y1 y2 y3 y1 y2 y3 y1 y2 y3

S0 y1 y1 y2 y1 y1 y2 y3 y1 y1 y2 y1 y1 y2 y3

S0d y2 y3 y3 y2 y3 y2 y3 y3 y2 y3

Table 2. Schedule for the vector-overlapping SC architecture (n = 8
andP = 3).
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Fig. 5. Vector-overlapping SC decoder forn = 8 andP = 3.

stage 0 (denoted asS0d), it is possible to overlap up to 3 vectors at
the same time. It would actually be possible to insert another vector
by using the remaining idle resources, but the routing of data across
the tree would lose its nice regular property, making the multiplex-
ing design more complex. Since several vectors are decoded at the
same time, each PE should have access to registers associated with
each vector. This means thatP register sets are required to decode
P vectors in parallel. A vector-overlapping SC decoder is shown in
Figure 5 forn = 8 andP = 3. The degree of parallelismP can ac-
tually be enhanced by further duplicating PE stages. It can be shown
that in order to reach parallelismP , each stagel should be dupli-
cated⌈P+1

2l+1 ⌉ times. This vector-overlapping architecture allows us
to reach a maximum parallelism value ofP = n− 1. The complex-
ity and the throughput of a vector-overlapping SC architecture with
parallelismP are

CT =

(

n+
P+1

2

[

log

(

P+1

2

)

−1

])

2Cnp+P (2n−1)Cr, (7)

and T =
P

2tnp
. (8)

This architecture provides a solution to enhance the parallelism of
the decoder without duplicating all the resources of the decoder.

4. MINIMUM APPROXIMATION

SC decoding, in its original version, was proposed in the likelihood
ratio domain in which the update rulesf andg require multiplication
and division. The hardware implementation of multipliers and di-
viders is very expensive and usually avoided in practical decoder de-
signs. We propose to perform SC decoding in the log-domain in or-
der to reduce the complexity of thef andg computation blocks. We
assume that the channel information is available as the log-likelihood
ratios (LLRs)Li. In the LLR domainf andg become

{

f(La, Lb) = 2 tanh−1
(

tanh
(

La

2

)

tanh
(

Lb

2

))

gûs
(La, Lb) = La(−1)ûs + Lb,

(9)

whereLa andLb are LLRs. In terms of hardware implemen-
tation,g can be easily mapped to an adder/subtractor controlled by

Arch. Cnp Cr T

FFT-like n log n n(1 + log n) 1
2tnp

Pipe. Tree 2n− 2 2n− 1 1
2tnp

Line n 2n− 1 1
2tnp

Overlap. ∼ n+ P

2
(log P

2
) P (2n− 1) P

2tnp

Table 3. Comparison of SC decoder architectures.

the bit ûs. However,f involves some transcendental functions that
are complex to implement in hardware. One can notice that thef
andg functions are identical to the update rules used in BP decoding
of LDPC codes. Consequently, similar to what is done in LDPC de-
coder implementation [6],f can be approximated with the minimum
function such that

f(La, Lb) ≈ sign(La) sign(Lb)min(|La|, |Lb|). (10)

In order to estimate the performance degradation incurred by this ap-
proximation we simulated the performance of different polar codes
on an AWGN channel with BPSK modulation. There was no signif-
icant performance loss.

5. CONCLUSION

In this paper we showed that the architecture proposed by Arıkan
in [1] can be improved by taking advantage of the scheduling in SC
decoding. Table 3 is a comparison of the complexity and through-
put of the FFT-like SC decoder with the proposed architectures. The
pipelined tree architecture and the line architecture allow us to reach
the same throughput while reducing the hardware complexity. We
also showed that throughput can be enhanced by decoding several
vectors in parallel in a vector overlapping architecture.
In this paper, we investigated fully-parallel architectures for SC de-
coders. For very large code lengths, it would be required to consider
semi-parallel architectures in which PEs are shared within the update
phase of the same stage as suggested in Section 3.3. The very regular
structure of polar codes makes semi-parallel architectures straight-
forward to implement.
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