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Abstract—We study polar coding over channels and sources
with memory. We show that ψ-mixing processes polarize under
the standard transform, and that the rate of polarization to deter-
ministic distributions is roughly O(2−

√
N ) as in the memoryless

case, where N is the blocklength. This implies that the error
probability guarantees of polar channel and source codes extend
to a large class of models with memory, including finite-order
Markov sources and finite-state channels.

Index Terms—Channels with memory, polar codes, periodic
processes, strong polarization.

I. INTRODUCTION

Polar codes were invented by Arıkan [1] as a low-
complexity method to achieve the capacity of symmetric
binary-input memoryless channels. The technique that under-
lies these codes, called polarization, is quite versatile, and has
since been applied to numerous classical memoryless problems
in information theory.

Many practical sources and channels are not well-described
by memoryless models. In wireless communication, for exam-
ple, memory in the form of intersymbol interference is quite
prominent due to multipath propagation. In practice, this type
of memory is most commonly handled by eliminating it, by
augmenting the transmitter/receiver appropriately to create an
overall memoryless channel. Memoryless coding techniques
are then used for communication. Channel equalization and
OFDM techniques are perhaps the most notable examples of
this approach.

In contrast, here we are interested in whether polar coding
can be used directly on channels and sources with memory,
which may help simplify system design. In polarization theory,
little is known for such settings. In particular, it was shown
in [2, Chapter 5] that the standard transform polarizes strongly
mixing processes with finite memory. In [3], it was shown that
the successive cancellation decoding complexity of polar codes
scales with the number of states of the underlying process,
and thus is practical if the amount of memory in the system
is modest. Whether polarization takes place sufficiently fast to
yield a coding theorem has been left open, however.

Here, we first give a simpler proof of polarization than the
one given in [2], for the more general class of ψ-mixing pro-
cesses. We then show that the asymptotic rate of polarization
to deterministic distributions is as in the memoryless case. This
lets us conclude that the usual error probability guarantees of
polar channel and source codes carry over to processes with

This work was done when Eren Şaşoğlu was at the Technion in June–July
2015.

memory, including well-behaved Markov sources as well as
finite-state channels. For example, the results here imply that
polar codes achieve the capacity of the Gilbert–Elliot channel
(see [4], [5], and also [6]).

II. SETTING

Let (Xi, Yi, Si), i ∈ Z, be a stationary process, where
Yi and Si take values in finite alphabets Y and S. We assume
Xi ∈ {0, 1} in order to keep the notation simple, but the
results here can be generalized to arbitrary finite alphabets
using standard techniques. See, for example, [2, Chapter 3].

We think of Xi as a sequence to be estimated, and Yi as
a sequence of observations related to Xi. In particular, Xi

may be the input sequence to a communication channel,
and Yi the corresponding output. Alternatively, Xi may be
the output of a data source to be compressed, and Yi the side
information available to the decompressor. A (possibly hidden)
state sequence Si may underlie the channel or the source.
Frequently, one assumes that the pair (Xi, Yi) is independent
of the history (Xi−1

1 , Y i−11 , Si−11 ) conditioned on the present
state Si.

We assume throughout that the process (Xi, Yi, Si) is ψ-
mixing. We follow1 [7, Page 169] and say that a process Ti is
ψ-mixing if there exists a sequence ψk → 1 as k → ∞ such
that

Pr(A ∩B) ≤ ψk Pr(A) Pr(B) (1)

for all A ∈ σ(T 0
−∞) and B ∈ σ(T∞k+1), where σ(·) denotes the

sigma-field generated by its argument. Therefore, ψ-mixing
implies that all pairs of events that are sufficiently far apart
are almost independent. Note that the dependence of ψk on
events A and B is only through the distance k between them.

Many source and channel models of practical importance
are captured by ψ-mixing. In particular,

(i) an independent and identically distributed (i.i.d.)
source Xi is ψ-mixing.

(ii) A finite-order, stationary, irreducible, aperiodic Markov
source Xi is ψ-mixing.

(iii) Let Xi be a stationary source with state Si, where the
next source symbol and state depend only on their current
values. That is,

p(si+1, xi|si−∞, xi−1−∞) = p(si+1, xi|si, xi−1) .

1To the best of our understanding, the first displayed equation on page 169
of [7] should be “

∑
v µ(uvw) ≤ · · · ”.



The process (Si, Xi) is Markov, and therefore if it is
also irreducible and aperiodic, then it is ψ-mixing by
(ii), and therefore so is Xi. This model covers sources
generated by a hidden Markov state sequence, described
by the conditional distributions

p(si, xi|si−1−∞, xi−1−∞) = p(si|si−1)p(xi|si) .

(iv) If Xi is an i.i.d. input sequence to a discrete memoryless
channel and Yi is the output sequence, then (Xi, Yi) is
i.i.d. and therefore ψ-mixing by (i).

(v) Let W be a finite-state channel with input sequence Xi,
output sequence Yi, and state sequence Si [8], all taking
values in finite but otherwise arbitrary sets. The current
output and the next state of the channel depend only on
the current state and input:

p(si, yi|xi−1−∞, si−1−∞, yi−1−∞) = W (si, yi|xi−1, si−1).

If the input Xi is Markov, then so is the process
(Xi, Yi, Si), and thus it is also ψ-mixing.

The parameter ψ0 plays an important role in this paper, and
can be computed easily for all of the cases above [7, Page
169].

We are interested in the effects of the standard polar trans-
form on the process. For this purpose, define the conditional
entropy rate of Xi as

HX|Y = lim
N→∞

1

N
H(XN

1 |Y N1 )

= lim
N→∞

1

N
H(XN

1 , Y
N
1 )− lim

N→∞

1

N
H(Y N1 )

The right-hand-side limits exist due to stationarity [9, The-
orem 4.2.1]. We let UN1 = XN

1 BNGN , where N = 2n,
n = 1, 2, . . . , GN is the nth Kronecker power of

(
1 0
1 1

)
and

BN is the N ×N bit-reversal matrix. We also define

Z(A|B) = 2
∑
b∈B

√
pAB(0, b)pAB(1, b)

for arbitrary random variables A ∈ {0, 1} and B. It is
well known that Z(A|B), sometimes called the Bhattacharyya
parameter, upper bounds the error probability of optimally
guessing A by observing B. See, for example [2, Proposi-
tion 2.2].

The main results of this paper are the following.

Theorem 1 (Polarization). If ψ0 <∞, then for all ε > 0

lim
N→∞

1

N

∣∣{i : H(Ui|U i−11 Y N1 ) > 1− ε
}∣∣ = HX|Y ,

lim
N→∞

1

N

∣∣{i : H(Ui|U i−11 Y N1 ) < ε
}∣∣ = 1−HX|Y .

Theorem 2 (Fast polarization). If ψ0 < ∞, then for all β <
1/2

lim
N→∞

1

N

∣∣{i : Z(Ui|U i−11 Y N1 ) < 2−N
β}∣∣ = 1−HX|Y .

S = 0

X ∼ Ber(1/2)

S = 1

X ∼ Ber(1/2)

S = 2

X = 0

S = 3

X = 0

Fig. 1. Non polarizing process with period 4. Output is Bernoulli 1/2 for
two phases and identically zero for next two phases.

Theorem 3 (Periodic processes may not polarize). The sta-
tionary periodic Markov process depicted in Figure 1 does not
polarize. Indeed, for all 5N

8 < i ≤ 6N
8 ,∣∣∣∣H(Ui|U i−11 )− 1

2

∣∣∣∣ ≤ εN , lim
N→∞

εN = 0 . (2)

We will prove these claims in the following sections.
Throughout, we will use the shorthand

Hb = H(Ui|Y N1 U i−11 ),

Zb = Z(Ui|Y N1 U i−11 ),

where b ∈ {0, 1}n is the n-bit binary expansion of i − 1 ∈
{0, . . . , N − 1}. We will omit the range of indices when it
is clear from context. The following are immediate from the
definition of BNGN :

Hb0 = H(U2i−1|Y 2N
1 U2i−2

1 )

Hb1 = H(U2i|Y 2N
1 U2i−1

1 )

for all b ∈ {0, 1}n. Of course, the above also holds when
the H are replaced by Z’s. Further, for all lengths n, one can
induce the uniform distribution on the set of Hb’s and Zb’s by
taking a sequence B1, B2, . . . of i.i.d. Ber(1/2) random vari-
ables and considering the random variables Hn = HB1...Bn

and Zn = ZB1...Bn . Theorems 1 and 2 are then equivalent to

Theorem 4. If ψ0 <∞, then for all ε > 0

lim
n→∞

P (Hn > 1− ε) = HX|Y ,
lim
n→∞

P (Hn < ε) = 1−HX|Y .

Theorem 5. If ψ0 <∞, then for all β < 1/2

lim
n→∞

P (Zn < 2−N
β

) = 1−HX|Y .

III. PROOF OF THEOREM 1

We will use the following shorthand in the rest of the paper:

UN1 = XN
1 BNGN

V N1 = X2N
N+1BNGN

Qi = Y N1 U i−11

Ri = Y 2N
N+1V

i−1
1

(3)



For the proof, we take the somewhat standard approach of
showing that Hn converges almost surely to a {0, 1}-valued
random variable. Recall that we have defined Hn through

Hn = H(Ui|Y N1 U i−11 ) whenever (B1 . . . Bn)2 = i− 1.

Observe that for a given realization of Hn, we have

Hn+1 =

{
H(Ui + Vi|Qi, Ri) if Bn+1 = 0

H(Vi|Qi, Ri, Ui + Vi) if Bn+1 = 1
.

Further, since we have

H(Ui + Vi|Qi, Ri) +H(Vi|Qi, Ri, Ui + Vi)

= H(Ui, Vi|Qi, Ri) ≤ 2H(Ui|Qi)
and since Hn ∈ [0, 1], it follows that H1, H2, . . . is a bounded
supermartingale and thus converges almost surely to a [0, 1]-
valued random variable H∞. It therefore remains to show that
H∞ ∈ {0, 1} almost surely. For this purpose, we will show
that for all ξ > 0 there exists γ(ξ) > 0 such that

H(Ui|Qi) ∈ (2ξ, 1− 2ξ)

implies
H(Ui + Vi|Qi, Ri)−H(Ui|Qi) > γ(ξ) ,

(4)

for almost all i. That is, for a fraction of i ∈ {1, . . . , N}
approaching 1 as N →∞.

The theorem will follow from this claim, since (4) is
equivalent to saying that if Hn is bounded away from 0 and 1,
then Hn+1 − Hn is almost surely bounded away from 0.
Therefore since Hn converges almost surely, it can do so only
to 0 or 1.

We now show (4). We know from [2, Chapter 3] that
the claim would hold for all N and i if (XN

1 , Y
N
1 ) and

(X2N
N+1, Y

2N
N+1) were independent. Our purpose here is to show

that in the present setting there is sufficient independence
between various random variables in neighboring blocks to
imply (4). (This is essentially the approach taken in [2, Chap-
ter 5], although the proof here is simpler and more general.)
In particular, we will need the following independence results.

Lemma 6. If ψ0 < ∞, then for any ε > 0, the fraction of
indices i for which

I(Ui;Ri|Qi) < ε

I(Vi;Qi|Ri) < ε

I(Ui;Vi|Qi, Ri) < ε

approaches 1 as N →∞.

Proof. We only prove the first and the third inequality, the
second follows by symmetry. We have

log(ψ0) ≥ E
[

log
pX2N

1 Y 2N
1

pXN1 Y N1 · pX2N
N+1Y

2N
N+1

]
= I(XN

1 Y
N
1 ;X2N

N+1Y
2N
N+1)

≥ I(UN1 ;V N1 Y 2N
N+1|Y N1 )

=

N∑
i=1

I(Ui;V
N
1 Y 2N

N+1|Y N1 U i−11 ).

Since all terms inside the sum are non-negative, it follows that
at most

√
log(ψ0)N (a vanishing fraction) of them are at most√

log(ψ0)/N . Observing that the ith term is greater than both
I(Ui;Ri|Qi) and I(Ui;Vi|Qi, Ri) concludes the proof.

Lemma 7. Let (Xi, Yi) be stationary and ψ-mixing. For all
ξ > 0, there exists N0 and δ(ξ) > 0 such that for all N > N0

and all {0, 1}-valued random variables A = f(XN
1 , Y

N
1 ) and

B = f(X2N
N+1, Y

2N
N+1)

pA(0) ∈ (ξ, 1− ξ) implies pAB(0, 1) > δ(ξ).

Proof. Define C = f(X3N
2N+1, Y

3N
2N+1). We have

2pAB(0, 1) = pAB(0, 1) + pBC(0, 1)

≥ pABC(0, 1, 1) + pABC(0, 0, 1)

= pAC(0, 1)

= pA(0)− pAC(0, 0)

≥ pA(0)(1− ψNpC(0))

= pA(0)(1− ψNpA(0))

where the first and last equalities are due to stationarity. Since
pA(0) ∈ (ξ, 1 − ξ) and ψN → 1, it follows that there exists
N0 such that the last term is away from 0 for all N > N0.
Further, since ψN is independent of A, so is N0. This yields
the claim.

We are ready to complete the proof by showing (4). Observe
that we need to show the claim for arbitrarily small but fixed ξ.
Let (Ũi, Ṽi) be random variables with

pŨiṼiQiRi(ui, vi, qi, ri)

= pUi|Qi(ui|qi)pVi|Ri(vi|ri)pQiRi(qi, ri) .
By definition,

H(Ũi|QiRi) = H(Ũi|Qi) = H(Ui|Qi) .
A corollary of Lemma 6 is

Corollary 8. If ψ0 < ∞, then any ε > 0, the fraction of
indices i for which

|H(Ũi + Ṽi|QiRi)−H(Ui + Vi|Qi, Ri)| < ε

approaches 1 as N →∞.

Therefore, it suffices to show that

H(Ũi|QiRi) ∈ (2ξ, 1− 2ξ)

implies

H(Ũi + Ṽi|QiRi)−H(Ũi|QiRi) > 2γ(ξ)

(5)

for all i in order to complete the proof. In order to do so,
we will use the following fact, whose proof follows from
convexity of binary entropy and is thus is omitted.

Lemma 9. Let A and B be independent binary random
variables. For every ξ > 0, there exists ∆(ξ) > 0 such that

max{H(A), H(B)} > ξ and

min{H(A), H(B)} < 1− ξ



imply

H(A+B) >
H(A) +H(B)

2
+ ∆(ξ).

For a given i, define the random variables HQi(Ũi),
HRi(Ṽi), and HQiRi(Ũi + Ṽi) that take the values

HQi(Ũi) = H(Ũi|Qi = qi)

HRi(Ṽi) = H(Ṽi|Ri = ri)

HQiRi(Ũi + Ṽi) = H(Ũi + Ṽi|(Qi, Ri) = (qi, ri))

whenever

(Qi, Ri) = (qi, ri).

Note that (5) is equivalent to:

E[HQi(Ũi)] ∈ (2ξ, 1− 2ξ) implies

E[HQiRi(Ũi + Ṽi)−HQi(Ũi)] ≥ 2γ(ξ).

We take 2γ(ξ) = δ(ξ)∆(ξ), where δ(ξ) and ∆(ξ) are as in
Lemmas 7 and 9, respectively. We will be done if we can show
that E[HQi(Ũi)] ∈ (2ξ, 1− 2ξ) implies

P
(

max{HQi(Ũi), HRi(Ṽi)} > ξ and

min{HQi(Ũi), HRi(Ṽi)} < 1− ξ
)
> δ(ξ) . (6)

Indeed, Lemma 9, and stationarity imply that

E[HQiRi(Ũi + Ṽi)−HQi(Ũi)]

= E

[
HQiRi(Ũi + Ṽi)−

HQi(Ũi) +HRi(Ṽi)

2

]
≥ δ(ξ)∆(ξ) .

Let us assume without loss of generality that δ(ξ) < ξ. Thus,
if P (HQi(Ũi) ∈ (ξ, 1 − ξ)) ≥ ξ, then (6) is immediate. Let
us suppose then that

P (HQi(Ũi) ∈ (ξ, 1− ξ)) < ξ .

Since HQi(Ũi) ∈ [0, 1] and E[HQi(Ũi)] ∈ (2ξ, 1 − 2ξ), it
follows by Markov’s inequality that

P (HQi(Ũi) > 1− ξ) ∈
(

ξ

1− ξ ,
1− 2ξ

1− ξ

)
⊆ (ξ, 1− ξ) .

Further, there exists a function f such that 1[HQi (Ũi)>1−ξ] =

f(XN
1 , Y

N
1 ) and 1[HRi (Ṽi)>1−ξ] = f(X2N

N+1, Y
2N
N+1). It there-

fore follows from Lemma 7 that

P
(
HQi(Ũi) > 1− ξ , HRi(Ṽi) ≤ 1− ξ

)
> δ(ξ) ,

implying (6). This completes the proof.

IV. PROOF OF THEOREM 2

Like most proofs of the speed of polarization, our proof
of Theorem 2 relies on the following result by Arıkan and
Telatar [10], although we need the more general form of the
result given in [2, Lemma 2.3].

Lemma 10 ([10],[2]). If Zn converges almost surely to a
random variable Z∞ and if there exists K <∞ such that

Zn ≤ KZn−1 if Bn = 0 (7)

Zn ≤ KZ2
n−1 if Bn = 1 (8)

then

lim
n→∞

P (Zn < 2−2
nβ

) = P (Z∞ = 0)

for all β < 1/2.

Recall from the proof of Theorem 1 that Hn almost surely
converges to a {0, 1}-valued random variable. It then follows
from the relations [11]

Z(A|B)2 ≤ H(A|B)

H(A|B) ≤ log(1 + Z(A|B))

that Zn also converges almost surely, and in particular Zn → 0
whenever Hn → 1, and Zn → 1 whenever Hn → 0. It then
suffices to show that Zn satisfies inequalities (7) and (8).

We claim that this is indeed the case with K = 2ψ0. To see
this, let X̂2N

1 , Ŷ 2N
1 be distributed as PXN1 Y N1 ·PX2N

N+1Y
2N
N+1

, and
define the corresponding variables Ûi, V̂i, Q̂i, R̂i as in (3). We
know from [1] that

Z(Ûi + V̂i|Q̂i, R̂i) ≤ 2Z(Ûi|Q̂i) (9)

Z(V̂i|Q̂i, R̂i, Ûi + V̂i) ≤ Z(Ûi|Q̂i)2 (10)

Now let (A,B) and (Â, B̂) be random variables that can
be written as

(A,B) = f(X2N
1 , Y 2N

1 )

(Â, B̂) = f(X̂2N
1 , Ŷ 2N

1 )

for some function f . Observe that the assumption (1) implies
PAB ≤ ψ0 · PÂB̂ . Therefore, for binary A we have

Z(A|B) = 2
∑
b

√
pAB(0, b)pAB(1, b)

≤ 2ψ0

∑
b

√
pÂB̂(0, b)pÂB̂(1, b)

= ψ0 · Z(Â|B̂) (11)

Defining A = Ui + Vi and Bi = (Qi, Ri) and combining
(11) with (9) implies (7) with K = 2ψ0. Similarly, defin-
ing A = Vi and Bi = (Qi, Ri, Ui + Vi) and combining
(11) with (10) implies (8) with K = ψ0. This proves
Theorem 2 since ψ0 <∞ by assumption.



(U2, U4) (U1, U3, U5) U6 vs. U5
1

S1 = 0 U4 = 0 U6 ⊥ U5
1

S1 = 1 i.i.d. U5 = U3 U6 = U4

S1 = 2 U4 = U2 U6 ⊥ U5
1

S1 = 3 i.i.d. U5 = U3 + U1 U6 = U4 + U2

TABLE I
DISTRIBUTION PROPERTIES OF U6

1 FOR N = 8 AND THE FOUR POSSIBLE
INITIAL STATES.

V. PROOF OF THEOREM 3

We give a sketch of the proof, which is divided into two
parts. In the first part, we consider H(Ui|U i−11 , S1 = s1).
Namely, we assume that the initial state S1 is know to equal
s1.

Lemma 11. Consider the stationary Markov process depicted
in Figure 1. Then, for N ≥ 8, the following holds.

For all
5N

8
< i ≤ 6N

8
we have that

H(Ui|U i−11 , S1 = s1) =

{
0 if s1 ∈ {1, 3}
1 if s1 ∈ {0, 2}

. (12)

Proof: The correctness of the lemma is straightforward to
validate for N = 8 (see the last column of Table I). A simple
induction, with N = 8 as the basis, is all that is needed for
the general case.

From the above, we clearly get that for relevant i,
H(Ui|U i−11 , S1) = 1/2, since all 4 states are equally likely as
initial states. What remains is to prove that S1 is essentially
known from U i−11 .

Lemma 12. Consider the stationary Markov process depicted
in Figure 1. Then, there exists an εN such that

for all
5N

8
< i ≤ 6N

8
we have that

H(S1|U i−11 ) ≤ εN , and lim
N→∞

εN = 0 . (13)

Proof: Consider the first two columns of Table I, and
note that U i−11 encodes N/8 i.i.d. realizations of U5

1 . Thus,
for N large, the first column allows us to differentiate between
S1 = 0, S1 = 2, and S1 ∈ {1, 3} with very high probability.
The second column allows us to differentiate between S1 = 1
and S1 = 3, with very high probability.
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