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Abstract—Current deterministic algorithms for the construc-
tion of polar codes cannot be argued to be practical for channels
with input alphabets of moderate size. In this paper, we show
that any construction algorithm which follows the paradigm
of “degrading after each polarization step” will inherently be
impractical with respect to a certain “hard” underlying channel
having an input alphabet of moderate size. This result also sheds
light on why the construction of LDPC codes using density
evolution is impractical for channels with moderate sized input
alphabets.

Index Terms—Polar codes, construction, degrading cost.

I. INTRODUCTION

Polar codes [1] are a novel family of error correcting codes
which are capacity achieving and have efficient encoding and
decoding algorithms. Originally defined for channels with
binary input, they were soon generalized to channels with
arbitrary input alphabets [2].

The construction of a polar code is essentially equivalent
to the selection of “almost noiseless” channels out of a
pool of n synthesized channels, where n is the code length.
Since the synthesized channels have an output alphabet size
which grows exponentially in the code length n, calculating
their symbol error rates is intractable if approached directly.
To the author’s knowledge, currently, the only tunable and
deterministic methods of circumventing this difficulty involve
approximating some of the intermediate channels by channels
which have a manageable output alphabet size. Simply put:
before the first polarization step and after each polarization
step (up to a certain point), approximate the relevant channel
by another channel having a prescribed output alphabet size.

The above “approximate after each polarization step” idea
has its origins in density evolution [3, Page 217]. Density
evolution was suggested as a method of constructing polar
codes in [4]. In order to bound the symbol error rate of
a synthesized channel — as opposed to only approximating
it — one can force the approximating channel to be either
degraded or upgraded with respect to the synthesized channel
we are trying to approximate. An efficient algorithm for such
a degrading/upgrading approximation was introduced for the
binary-input case in [5] and analyzed in [6]. See also [7] for
an optimal degrading algorithm. Algorithms for degrading and
upgrading for the case in which the channel does not have
a binary input were given in [8] and [9], respectively. See
also [10]. In the case of a symmetric underlying channel and

a symmetric input distribution, a degraded approximation is
enough in order to derive a lower bound on the probability
of error. For simplicity of exposition, assume that we are
dealing with this case. On a related note, the construction of
polar codes was recently proven to be polynomial [11], for an
arbitrary but fixed input alphabet size.

For a fixed input distribution, a degrading approximation re-
sults in a channel with reduced mutual information between in-
put and output. This drop in mutual information should ideally
be kept small. That is, consider the synthesized channels that
are descendants of the approximating channel. The percentage
of these synthesized channels which the construction algorithm
will designate as “almost noiseless” is upper bounded by the
mutual information of the approximating channel.

Let q denote the input alphabet size. Think of q as being
not too small, say q ≥ 11. In this paper, we specify a channel
which is “hard to degrade”. Namely, in order to ensure a
drop in mutual information of at most ε, the size of the
output alphabet of the approximating channel must be at
least proportional to (1/ε)

q−1
2 , with respect to any degrading

algorithm. Namely, if we are to ensure a drop of at most
ε in mutual information, we must approximate by a channel
with an output alphabet size at least exponential in the input
alphabet size, the exponent being 1/

√
ε.

On a related note, we mention that if the quantization
operation in density evolution (a method of constructing LDPC
codes) is a degrading one, then the same problem manifests
itself. Namely, there are cases in which the quantization is
necessarily a bad approximation of the corresponding channel
(much smaller mutual information), when only a manageable
number of quantization levels are allowed, and no matter how
well the quantizer is constructed.

II. NOTATION AND PROBLEM STATEMENT

We denote a channel by W : X → Y . The probability of
receiving y ∈ Y given that x ∈ X was transmitted over W
is denoted W (y|x). All our channels will be defined over a
finite input alphabet X , with size q = |X |. Unless specifically
stated otherwise, all channels will have a finite output alphabet,
denoted out(W ) = Y . Thus, the channel output alphabet size
is denoted |out(W )|.

Each channel will typically have a corresponding input
distribution, denoted PX = P

(W )
X . Note that PX need not

necessarily be the input distribution achieving the capacity of



W . We denote the random variables corresponding to the input
and output of W by X = X(W ) and Y = Y (W ), respectively.
The distribution of Y is denoted PY = P

(W )
Y . That is, for

y ∈ Y ,
PY (y) =

∑
x∈X

PX(x)W (y|x) .

The mutual information between X and Y is denoted as

I(W ) = I(X;Y ) ,

and is henceforth measured in nats. That is, all logarithms
henceforth are natural. Note that I(W ) typically does not
equal the capacity of W .

We say that a channel Q : X → Z is (stochastically)
degraded with respect to W : X → Y if there exists a channel
Φ: Y → Z such that the concatenation of Φ to W yields Q.
Namely, for all x ∈ X and z ∈ Z ,

Q(z|x) =
∑
y∈Y

W (y|x)Φ(z|y) . (1)

We denote Q being degraded with respect to W as Q ≺W .
For input alphabet size q = |X | and specified output

alphabet size L, define the degrading cost as

DC(q, L) , sup
W,PX

min
Q : Q≺W,
|out(Q)|≤L

(I(W )− I(Q)) . (2)

Namely, both W and Q range over channels with input
alphabet X such that |X | = q; both channels share the same
input distribution PX , which we optimize over; the channel
Q is degraded with respect to W ; both channels have finite
output alphabets and the size of the output alphabet of Q is at
most L; we calculate the drop in mutual information incurred
by degrading W to Q, for the “hardest” channel W and its
best approximation Q.

The use of “min” instead of “inf” is justified in (2) by the
following claim, which is taken from [7, Lemma 1].

Claim 1: Let W : X → Y and PX be given. Let L ≥ 1 be
a specified integer for which |Y| ≥ L. Then,

inf
Q : Q≺W,
|out(Q)|≤L

(I(W )− I(Q))

is attained by a channel Q : X → Z for which it holds that
|out(Q)| = L and

Q(z|x) =
∑
y∈Y

W (y|x)Φ(z|y) , Φ(z|y) ∈ {0, 1} ,∑
z∈Z

Φ(z|y) = 1 .

Namely, Q is gotten from W by defining a partition (Ai)
L
i=1

of Y and mapping with probability 1 all symbols in Ai to a
single symbol zi ∈ Z , where Z = {zi}Li=1.

In [8], an upper bound on DC(q, L) is derived. Specifically,

DC(q, L) ≤ 2q ·
(

1

L

)1/q

.

This bound is constructive and stems from a specific quantiz-
ing algorithm. Note that for a fixed input alphabet size q and a
target difference ε such that DC(q, L) ≤ ε, the above implies

that we take L = d(2q/ε)qe. Namely, for say ε = 10−2, this
algorithm can only be proved to be effective for rather small
values of q, since the computational hardware must somehow
store the probabilities associated with the L output letters.

Our aim is to derive a lower bound on DC(q, L). Let σq−1

be the constant for which the volume of a sphere in Rq−1 of
radius r is σq−1r

q−1. The following is our main result.
Theorem 2: Let q and L be specified. Then,

DC(q, L) ≥

q − 1

2(q + 1)
·
(

1

σq−1 · (q − 1)!

) 2
q−1

·
(

1

L

) 2
q−1

. (3)

Thus, for a prescribed ε, the need to take very large L
for moderate values of q is not an artifact of the algorithm
presented in [8]: an optimal quantizing algorithm will have
this problem as well, for certain hard channels W . Namely, L
must be at least proportional to (1/ε)

q−1
2 .

III. PRELIMINARY LEMMAS

As a consequence of the data processing inequality, if Q is
degraded with respect to W , then I(W ) − I(Q) ≥ 0. In this
section, we derive a tighter lower bound on the difference. To
that end, let us first define η(p) as

η(p) = −p · ln p , 0 ≤ p ≤ 1 ,

where η(0) = 0. Next, for a probability vector p = (px)x∈X ,
define

h(p) =
∑
x∈X
−px · ln px =

∑
x∈X

η(px) .

For A = {y1, y2, . . . , yt} ⊆ Y , define the quantity ∆(A) as
the decrease in mutual information resulting from merging all
symbols in A into single symbol in Q. Namely, define

∆(A) , π

h
 t∑
j=1

θjp
(j)

−
 t∑
j=1

θjh
[
p(j)

] , (4)

where
π =

∑
y∈A

PY (y) , θj = PY (yj)/π , (5)

and
p(j) = (P (X = x|Y = yj))x∈X . (6)

The following claim is easily derived.
Claim 3: Let W , Q, PX , L, and (Ai)

L
i=1 be as in Claim 1.

Then,

I(W )− I(Q) =

L∑
i=1

∆(Ai) . (7)

As mentioned, by the concavity of h and Jensen’s inequality,
we deduce that ∆(Ai) ≥ 0. Namely, data processing reduces
mutual information. We will shortly make use of the fact that
h is strongly concave in order to derive a sharper lower bound.
To that end, we now state Hölder’s defect formula [12] (see
[13, Page 94] for an accessible reference).

As is customary, we will phrase Hölder’s defect formula
for ∪-convex functions, although we will later apply it to
h which is ∩-concave. We remind the reader that for twice



differentiable ∪-convex functions, f : D → R, D ⊆ Rn the
Hessian of f , denoted ∇2f(α) =

(
∂2f(α)
∂αi∂αj

)
i,j

, is positive

semidefinite on the interior of D [14, page 71]. We denote the
smallest eigenvalue of ∇2f(α) by λmin(∇2f(α)).

Lemma 4: Let f(α) : D → R be a twice differentiable
convex function defined over a convex domain D ⊆ Rn. Let
m ≥ 0 be such that for all α in the interior of D,

m ≤ λmin(∇2f(α))

Fix (αj)
t
j=1 ∈ D and let (θj)

t
j=1 be non-negative coefficients

summing to 1. Denote

α =

t∑
j=1

θjαj

and

δ2 =

t∑
j=1

θj ‖αj − α‖22 =
1

2

t∑
j=1

t∑
k=1

θjθk ‖αj − αk‖22

Then,
t∑

j=1

θjf [αj ]− f [
∑
j

θjαj ] ≥
1

2
mδ2 .

We now apply Hölder’s inequality in order to bound ∆(A).
For A = {y1, y2, . . . , yt} ⊆ Y , define

∆̃(A) ,
π

2

t∑
j=1

θj

∥∥∥p(j) − p̄
∥∥∥2

2

=
π

4

t∑
j=1

t∑
k=1

θjθk

∥∥∥p(j) − p(k)
∥∥∥2

2
, (8)

where π and θj are as in (5), p(j) is as defined in (6), and

p̄ =

t∑
j=1

θjp(j) .

The following is a simple corollary of Lemma 4
Corollary 5: Let W , Q, PX , L, and (Ai)

L
i=1 be as in

Claim 1. Then, for all 1 ≤ i ≤ L,

∆(Ai) ≥ ∆̃(Ai) . (9)

Thus,

I(W )− I(Q) ≥
L∑
i=1

∆̃(Ai) . (10)

IV. BOUNDING THE DEGRADING COST

We now turn to bounding the degrading cost. As a first step,
we define a channel W for which we will prove a lower bound
on the cost of degrading. That is, we show that W is “hard”
to degrade.

A. The channel W

For a specified integer M ≥ 1, we now define the channel
W = WM , where W : X → Y . The input alphabet is X =
{1, 2, . . . , q}, of size |X | = q. The output alphabet consists of
vectors of length q with integer entries, defined as follows:

Y =
{
〈j1, j2, . . . , jq〉 :

j1, j2, . . . , jq ≥ 0 ,

q∑
x=1

jx = M
}
. (11)

The channel transition probabilities are given by

W(〈j1, j2, . . . , jq〉|x) =
q · jx

M
(
M+q−1
q−1

) .
Lemma 6: The above defined W is a valid channel with

output alphabet size

|out(W)| =
(
M + q − 1

q − 1

)
. (12)

We take the corresponding input distribution as symmetric.
Namely, for all x ∈ X ,

P (X = x) =
1

q
.

As a result, all output letters are equally likely.
Denote the vector of a posteriori probabilities corresponding

to 〈j1, j2, . . . , jq〉 as

p(j1, j2, . . . , jq) = ( P (X = x|Y = 〈j1, j2, . . . , jq〉) )qx=1 .

A short calculation gives

p(j1, j2, . . . , jq) =

(
j1
M
,
j2
M
, . . . ,

jq
M

)
. (13)

In light of the above, let us define the shorthand

〈j1, j2, . . . , jq〉 , (j1/M, j2/M, . . . , jq/M) .

With this shorthand in place, the label of each output letter
〈j1, j2, . . . , jq〉 ∈ Y is the corresponding a posteriori probabil-
ity vector p(j1, j2, . . . , jq). Thus, we gain a simple expression
for ∆̃(A). Namely, for A ⊆ Y ,

∆̃(A) =
1

2
(
M+q−1
q−1

) ∑
p∈A
‖p− p̄‖22 , p̄ =

∑
p∈A

1

|A|
p .

We remark in passing that as M → ∞, W “converges”
to the channel Wq : X → X × [0, 1]q which we now define.
Given an input x, the channel picks ϕ1, ϕ2, . . . , ϕq as follows:
ϕ1, ϕ2, . . . , ϕq−1 are picked according to the Dirichlet distri-
bution D(1, 1, . . . , 1), while ϕq is set to 1−

∑q−1
x=1 ϕx. Then,

the input x is transformed into x+ i (with a modulo operation
where appropriate1) with probability ϕi. The transformed
symbol along with the vector (ϕ1, ϕ2, . . . , ϕq) is the output
of the channel.

1To be precise, x is transformed into 1 + (x− 1 + i mod q).



B. Optimizing A′

Our aim is to find a lower bound on ∆̃(A), where A ⊆ Y
is constrained to have a size |A| = t. Recalling (13), note that
all output letters p = (px)qx=1 ∈ Y must satisfy the following
three properties.

1) All entries px are of the form jx/M , where jx is an
integer.

2) All entries px sum to 1.
3) All entries px are non-negative.

Since all entries must sum to 1 by property 2, entry pq is
redundant. Thus, for a given p ∈ Y , denote by p′ the first
q−1 coordinates of p. Let A′ be the set one gets by applying
this puncturing operation to each element of A. Denote

∆̃(A′) ,
1

2
(
M+q−1
q−1

) ∑
p′∈A′

‖p′ − p̄′‖22 , (14)

One easily shows that

∆̃(A′) ≤ ∆̃(A) , (15)

thus a lower bound on ∆̃(A′) is also a lower bound on ∆̃(A).
In order to find a lower bound on ∆̃(A′) we relax constraint

3 above. Namely, a set A′ with elements p′ will henceforth
mean a set for which each element p′ = (px)q−1

x=1 has entries
of the form px = j/M , and each such entry is not required to
be non-negative. Our revised aim is to find a lower bound
on ∆̃(A′) where A′ holds elements as just defined and is
constrained to have size t. The simplification enables us to
give a characterization of the optimal A′. Informally, a sphere,
up to irregularities on the boundary.

Lemma 7: Let t > 0 be a given integer. Let A′ be the set
of size |A′| = t for which ∆̃(A′) is minimized. Denote by p̄′

the mean of all elements of A′. Then, A′ has a critical radius
r: all p′ for which ‖p′ − p̄′‖22 < r2 are in A′ and all p′ for
which ‖p′ − p̄′‖22 > r2 are not in A′.

Proof: We start by considering a general A′. Suppose
p′(1) ∈ A′ is such that r2 = ‖p′(1)− p̄′‖22. Next, suppose
that there is a p′(2) 6∈ A′ such that ‖p′(2)− p̄′‖22 < r2. Then,
for

B′ = A′ ∪ {p′(2)} \ {p′(1)} , ∆̃(B′) < ∆̃(A′) .

To see this, first note that∑
p′∈B′

‖p′ − p̄′‖22 <
∑

p′∈A′
‖p′ − p̄′‖22 . (16)

Next, note that the RHS of (16) is ∆̃(A′), but the LHS is not
∆̃(B′). Namely, p̄′ is the mean of the vectors in A′ but is not
the mean of the vectors in B′. However,

∑
p′∈B′ ‖p′ − u′‖22

is minimized for u′ equal to the mean of the vectors in B′ (to
see this, differentiate the sum with respect to every coordinate
of u′). Thus, the LHS of (16) is at least ∆̃(B′) while the RHS
equals ∆̃(A′).

The operation of transforming A′ into B′ as above can be
applied repeatedly, and must terminate after a finite number of
steps (proof omitted, but follows from the fact that the distance
between any two members of A′ can be bounded from above,
that ∆̃(A′) is invariant to vector translation, and that vector
entries are quantized to be multiples of 1/M ). The ultimate

termination implies a critical r as well as the existence of an
optimal A′.

Recall that a sphere of radius r in Rq−1 has volume
σq−1r

q−1, where σq−1 is a well known constant [15, Page
411]. Given a set A′, we define the volume of A′ as

Vol(A′) ,
|A′|
Mq−1

.

For optimal A′ as above, the following lemma approximates
Vol(A′) by the volume of a corresponding sphere.

Lemma 8: Let A′ be a set of size t for which ∆̃(A′) is
minimized. Let the critical radius be r and assume that r ≤ 4.
Then,

Vol(A′) = σq−1r
q−1 + εq−1(t) .

The error term εq−1(t) is bounded from both above and below
by functions of M alone (not of t) that are o(1) (decay to 0
as M →∞).

Proof: Let δ : Rq−1 → {0, 1} be the indicator function
of a sphere with radius r centered at p̄′. That is,

δ(p′) =

{
1 ‖p′ − p̄′‖22 ≤ r2

0 otherwise .

Note that 1) δ is a bounded function and 2) the measure of
points for which δ is not continuous is zero (the boundary of
a sphere has no volume). Thus, δ is Riemann integrable [16,
Theorem 14.5].

Consider the set Ψ′ which is [−4r, 4r]q−1 shifted by
p̄′. Since Ψ′ contains the above sphere, the integral of δ
over Ψ′ must equal σq−1r

q−1. We now show a specific
Riemann sum [16, Definition 14.2] which must converge
to this integral. Consider a partition of Ψ′ into cubes of
side length 1/M , where each cube center is of the form
(j1/M, j2/M, . . . , jq−1/M) and the jx are integers (the fact
that cubes at the edge of Ψ′ are of volume less than 1/Mq−1

is immaterial). Define [p′ ∈ A′] as 1 if the condition p′ ∈ A′
holds and 0 otherwise. We claim that the following is a
Riemann sum of δ over Ψ′ with respect to the above partition.∑

p′=(j1/M,j2/M,...,jq−1/M)∈Ψ′

1

Mq−1
[p′ ∈ A′]

To see this, recall that A′ has critical radius r.
The absolute value of the difference between the above

sum and σq−1r
q−1 can be upper bounded by the number of

cubes that straddle the sphere times their volume 1/Mq−1 (any
finer partition will only affect these cubes). Since r ≤ 4, this
quantity must go to zero as M grows, no matter how we let
r depend on M .

Lemma 9: Let A′ be a set of size t for which ∆̃(A′) is
minimized. Let the critical radius be r and assume that r ≤ 4.
Then,

∆̃(A′) =
(q − 1) · (q − 1)!

2(q + 1)
σq−1r

q+1 + εq−1(t) .

The error term εq−1(t) is bounded from both above and below
by functions of M alone (not of t) that are o(1) (decay to 0
as M →∞).



Proof: Let the sphere indicator function δ and the bound-
ing set Ψ′ be as in the proof of Lemma 8. Consider the sum∑
p′=(j1/M,j2/M,...,jq−1/M)∈Ψ′

1

Mq−1
‖p′ − p̄′‖22 · [p

′ ∈ A′] .

(17)
On the one hand, by (14), this sum is simply

2
(
M+q−1
q−1

)
Mq−1

∆̃(A′) . (18)

On the other hand, (17) is the Riemann sum corresponding to
the integral ∫

Ψ′
‖p′ − p̄′‖22 [p′ ∈ A′] dp′ ,

with respect to the same partition as was used in the proof of
Lemma 8. As before, the sum must converge to the integral,
and the convergence rate can be shown to be bounded by
expressions which are not a function of t.

All that remains is to calculate the integral. Denote by
sphereq−1(r) ⊆ Rq−1 the sphere centered at the origin with
radius r. After translating p̄′ to the origin, the integral becomes∫

sphereq−1(r)

(
x2

1 + x2
2 + · · ·+ x2

q−1

)
dx1dx2 · · · dxq−1

=
σq−1 · (q − 1) · rq+1

q + 1
, (19)

where the RHS is derived as follows. After converting the in-
tegral to generalized spherical coordinates we get an integrand
that is r2 times the integrand we would have gotten had the
original integrand been 1 (proof omitted). We know that had
that been the case, the integral would have equaled σq−1r

q−1.
Since (19) must equal the limit of (18), and since the

fraction in (18) converges to 2/(q − 1)!, the claim follows.

As a corollary to the above three lemmas, we have the
following result. The important point to note is that the RHS
is convex in Vol(A′).

Corollary 10: Let t > 0 be a given integer. Let A′ be a set
of size t and assume that

max
p′∈A′

‖p′ − p̄′‖22 ≤ 2 . (20)

Then,

∆̃(A′) ≥ (q − 1) · (q − 1)!

2(q + 1) · (σq−1)
2

q−1

·Vol(A′)
q+1
q−1 + o(1) , (21)

where the o(1) is a function of M alone and goes to 0 as
M →∞.

Proof: Let B′ be the set of size t for which ∆̃(B′) is
minimized. The proof centers on showing that the critical
radius of B′ is at most 4. All else follows directly from
Lemmas 8 and 9. Assume to the contrary that the critical radius
of B′ is greater than 4. Thus, up to translation, A′ is a subset
of B′. But this implies that ∆̃(A′) < ∆̃(B′), a contradiction.

C. Bounding DC(q, L)

We are now in a position to prove Theorem 2. Recall that
Ai is the set of output letters in Y which get mapped to the
letter zi ∈ Z . Also, recall that A′i is simply Ai with the last
entry dropped from each vector.

Proof of Theorem 2: By combining (2), (10), (15), and
(21), we have that as long as condition (20) holds for all A′i,
1 ≤ i ≤ L, the degrading cost DC(q, L) is at least

(q − 1) · (q − 1)!

2(q + 1) · (σq−1)
2

q−1

L∑
i=1

Vol(A′i)
q+1
q−1 + o(1) . (22)

Recalling that the elements of A are probability vectors, we
deduce that condition (20) must indeed hold. Next, recall that
Vol(A′i) = Vol(Ai), and thus

L∑
i=1

Vol(A′i) =
|out(W)|
Mq−1

=

(
M+q−1
q−1

)
Mq−1

. (23)

Note that the RHS converges to 1/(q − 1)! as M → ∞. By
convexity, we have that if we are constrained by (23), then the
sum in (22) is lower bounded by setting all Vol(A′i) equal to
the RHS of (23) divided by L. Thus, after taking M → ∞,
we get (3).
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