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Abstract—Fast polarization is crucial for the performance
guarantees of polar codes. In the memoryless setting, the rate
of polarization is known to be exponential in the square root
of the block length. A complete characterization of the rate
of polarization for models with memory has been missing.
We consider polar codes for processes with memory that are
characterized by an underlying aperiodic and irreducible finite
state Markov chain. We show that the rate of polarization for
these processes is the same as in the memoryless setting, both to
the high and to the low-entropy sets. Thus, polar codes achieve
the Markov capacity in many information-theoretic applications.

I. INTRODUCTION

Memory is prevalent in many communication scenarios. In
this research we show that polar codes can be used directly
for a large class of scenarios with memory. This enables
leveraging the attractive properties of polar codes — such
as low complexity encoding and decoding, vanishing error
performance, and versatility — to scenarios with memory.

Polar codes [1] were first developed for binary-input,
symmetric, memoryless, channels. They employ successive
cancellation (SC) decoding, which consists of N successive
decoding operations. The polarization phenomenon is that for
large enough N , the decoding operations polarize to two sets:
a ‘low-entropy’ set and a ‘high-entropy’ set. The vanishing
error performance of polar codes is due to polarization
happening sufficiently fast. Fast polarization to the low-entropy
set for the memoryless setting was established in [1], [2].

Polar codes were extended to many other memoryless
scenarios, e.g., non-binary channels [3], [4], source coding [5],
[6], asymmetric channels and sources [7], and more. Many of
these applications are contingent upon fast polarization to the
high-entropy set; for memoryless settings, this was established
in [5] (see also [8] for a different proof that is closer to ours).

The study of polar codes for scenarios with memory began
in [4, Chapter 5], which showed that polarization occurs for
a certain class of processes with memory. In [9], polarization
was established for a more general class of processes with
memory. That paper further showed that polarization to the
low-entropy set is fast even for processes with memory. Fast
polarization to the high-entropy set was not addressed.

A practical decoding algorithm for polar codes for finite-state
channels was suggested in [10]. This algorithm is an extension
of SC decoding, taking into account an underlying state
structure. Its increase in complexity relative to the complexity
of SC decoding is polynomial with the number of states. The
authors also showed [10, Theorem 3] that their elegant scheme

from [7] can be applied to models with memory. To this end,
they required the additional (then unproved) assumption of fast
polarization both to the low and high-entropy sets.

This paper completes the picture. We show that for a large
class of processes with memory, polarization is fast both to
the low-entropy and high-entropy sets. Fast polarization to the
low-entropy set will follow from a specialization of [9]. Fast
polarization to the high-entropy set, Theorem 10, is the main
result of this paper. Consequently, polar codes can be used in
settings with memory with vanishing error probability.

Specifically, we consider stationary processes whose memory
can be encompassed by an underlying (hidden) aperiodic and
irreducible finite-state Markov chain. This family of processes
includes, as special cases, finite state Markov channels with
an ergodic state sequence, discrete ergodic sources with finite
memory, and many input-constrained systems (e.g., (d, k)-
runlength limited (RLL) constraint, with and without noise).

Due to space constraints, some proofs are omitted/shortened.
The full version of this paper [11] contains detailed proofs.

II. PRELIMINARIES

A. Distribution Parameters

Let random variables (U,Q) have joint distribution
PU,Q(u, q) = PQ(q)PU|Q(u|q). For simplicity, we assume
that U is binary. The random variable Q is some observation
dependent on U that takes values in a finite alphabet Q.

In the following equations, we define the Bhattacharyya
parameter of U given Q, Z(U|Q); the total variation distance
of U given Q, K(U|Q); and the conditional entropy of U given
Q, H(U|Q).

Z(U|Q) =
∑

q
2
√
PU,Q(0, q)PU,Q(1, q), (1)

K(U|Q) =
∑

q
|PU,Q(0, q)− PU,Q(1, q)| , (2)

H(U|Q) =
∑

q
PQ(q)

∑
u
PU|Q(u|q) log2 PU|Q(u|q). (3)

The three parameters take values in [0, 1].

Lemma 1. We have

K(U|Q) ≥
√

1−H(U|Q) ≥
√

1− Z(U|Q),

K(U|Q) ≤
√

1− Z(U|Q)2 ≤
√

1−H(U|Q)2.

Informally, as a consequence of the above lemma,

Z(U|Q) ≈ 0 ⇐⇒ H(U|Q) ≈ 0 ⇐⇒ K(U|Q) ≈ 1,

Z(U|Q) ≈ 1 ⇐⇒ H(U|Q) ≈ 1 ⇐⇒ K(U|Q) ≈ 0.
(4)



The definitions in Equations (1) to (3) naturally extend to
the case where there are multiple random variables related
to U. For example, consider a triplet of random variables
(U,Q,S) with joint distribution PU,Q,S(u, q, s) such that U is
binary and Q,S take values in finite alphabets Q, S. Then,
K(U|Q,S) =

∑
q,s |PU,Q,S(0, q, s) − PU,Q,S(1, q, s)|; the re-

maining parameters are similarly extended.

Lemma 2. The triplet (U,Q,S) satisfies K(U|Q) ≤
K(U|Q,S); Z(U|Q) ≥ Z(U|Q,S); and H(U|Q) ≥ H(U|Q,S).

B. Polar Construction

Let (Xj ,Yj), j = 1, 2, . . . be a stationary process, such that
Xj are binary and Yj ∈ Y, where Y is a finite alphabet. Random
variables Xj are to be estimated from observations Yj .

We denote Arıkan’s polarization matrix by GN , where N =
2n. Following [9], we define for i = 1, 2, . . . , N :

UN
1 = XN

1 GN , (5a)

VN
1 = X2N

N+1GN , (5b)

Qi = (Ui−1
1 ,YN

1 ), (5c)

Ri = (Vi−1
1 ,Y2N

N+1). (5d)

Note that these definitions apply to two consecutive blocks of
length N ; this will be useful in the sequel. By (5), we can write

(Ui,Qi) = f(XN
1 ,Y

N
1 ), (Vi,Ri) = f(X2N

N+1,Y
2N
N+1),

where function f depends solely on i. Due to stationarity,
PUi,Qi = PVi,Ri . Denoting Ti = Ui + Vi, we obtain

PTi,Vi,Qi,Ri(t, v, q, r) = PUi,Vi,Qi,Ri(t+ v, v, q, r). (6)

Let B1,B2, . . . be a sequence of independent and identically
distributed (i.i.d.) Bernoulli-1/2 random variables. Set i = 1 +
(B1B2 · · ·Bn)2, where (B1B2 · · ·Bn)2 =

∑n
j=1 Bj2

n−j . Thus,
i is a random variable that assumes any value in {1, 2, . . . , N}
with equal probability. Define the random variables

Kn = K(Ui|Ui−1
1 ,YN

1 ) = K(Ui|Qi),

Zn = Z(Ui|Ui−1
1 ,YN

1 ) = Z(Ui|Qi),

Hn = H(Ui|Ui−1
1 ,YN

1 ) = H(Ui|Qi)

whenever i = 1 + (B1B2 · · ·Bn)2. They denote the relevant
distribution parameters for a uniformly chosen index after n
polarization steps.

By the properties of GN [1, Section VII],

Kn+1 =

{
K(Ui + Vi|Qi,Ri), if Bn+1 = 0

K(Vi|Ui + Vi,Qi,Ri), if Bn+1 = 1.
(7)

Similar relationships hold for Hn+1 and Zn+1.

C. Polarization

Polarization occurs when the fraction of indices with
moderate conditional entropy |{i : H(Ui|Qi) ∈ (ε, 1− ε)}|/N
vanishes for large enough n, for any ε > 0.

Definition 1. Let An, n = 1, 2, . . . be a sequence of random
variables that take values in [0, 1].

1) The sequence An polarizes if it converges almost surely
to a {0, 1}-random variable A∞ as n→∞.

2) The sequence An polarizes fast to 0 with β > 0 if it
polarizes and limn→∞ P(An < 2−2

nβ

) = P (A∞ = 0).
3) The sequence An polarizes fast to 1 with β > 0 if it po-

larizes and limn→∞ P(An > 1− 2−2
nβ

) = P (A∞ = 1).

The following lemma [2], [4], is an important tool for
establishing fast polarization (see also [12]).

Lemma 3. [2], [4] Let Bn, n = 1, 2, . . . be an i.i.d. Bernoulli-
1/2 process and An, n = 1, 2, . . . be a [0, 1]-valued process
that polarizes to A∞. Assume that there exist k ≥ 1 and
d0, d1 > 0 such that An+1 ≤ kAdi

n if Bn+1 = i, for i = 0, 1.
Then, for any 0 < β < E = (log2 d0 + log2 d1)/2, we have

lim
n→∞

P(An < 2−2
nβ

) = P (A∞ = 0) . (8)

Arıkan showed in [1] that in the memoryless case (i.e.,
PXN1 ,YN1

(xN1 , y
N
1 ) =

∏N
j=1 PX,Y(xj , yj)) the process Hn polar-

izes. Fast polarization to the low-entropy set was established
in [2] by showing that Zn+1 ≤ 2Zn if Bn+1 = 0 and
Zn+1 = Z2

n if Bn+1 = 1, and using Lemma 3 and Equation (4).
Fast polarization to the high-entropy set is important for

many applications of polar codes. For example, it is integral
to source coding applications [5] and to channel coding
without symmetry assumptions [7]. Lemma 3 will be useful
for establishing fast polarization results to the high entropy set.

III. FINITE-STATE APERIODIC IRREDUCIBLE MARKOV
PROCESSES

We now introduce a class of processes with memory, de-
scribed using a hidden state sequence. We call them Finite-state
Apreiodic Irreducible Markov processes (FAIM processes).

Our model applies to many problems in information
theory that can be described using states. Examples include
compression of finite-memory sources and coding for input
constrained channels. Additionally, our model may be
applied to finite-state channels and channels with intersymbol
interference; in this case, the FAIM state sequence describes
both the channel state and input state. That is, FAIM processes
enable us to model non-i.i.d. input sequences.

A. Definition
Let (Xj ,Yj ,Sj), j ∈ Z be a stationary process, where Xj

is binary, Yj ∈ Y, and Sj ∈ S. Alphabets Y and S are finite,
and S = {1, 2, . . . , |S|}. We call Sj , j ∈ Z the state sequence.
It encompasses the memory of the process.

The process (Xj ,Yj ,Sj), j ∈ Z is described by the
conditional distribution PXj ,Yj ,Sj |Sj−1

, which, by stationarity,
is independent of j. We call it a FAIM process if

PXj ,Yj ,Sj |Sj−1
= PXj ,Yj ,Sj |Sj−1

−∞,Xj−1
−∞,Yj−1

−∞
,

and the state sequence Sj , j ∈ Z is a finite-state, homogeneous,
aperiodic, and irreducible Markov chain. For any N > M > 0,
with b denoting the value of the middle state SM ,

PXN1 ,YN1 ,SN |S0
=
∑

b
PXM1 ,YM1 ,SM ,XNM+1,Y

N
M+1,SN |S0

=
∑

b
PXNM+1,Y

N
M+1,SN |SM · PXM1 ,YM1 ,SM |S0

.
(9)



(Ui,Qi) = f(XN
1 ,Y

N
1 ) (Vi,Ri) = f(X2N

N+1,Y
2N
N+1)
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c

Fig. 1. Two adjacent length-N blocks of a FAIM process. Here, S0 = a,
SN = b, and S2N = c, where a, b, c ∈ S.

We use the following shorthand for the stationary distribution
of the state sequence: πN (a) = PSN (a), πN |M (b|a) =
PSN |SM (b|a), and πN,M (b, a) = PSN ,SM (b, a). By stationarity,
πN (a) = π0(a). By irreducibility and aperiodicity, π0(a) > 0
for all a ∈ S. Aperiodicity is assumed because periodic
processes may not polarize [9, Theorem 3].

B. Blocks of a FAIM Process

Typically, the state sequence is not observed by the encoder
or decoder. The joint distribution of (XN

1 ,Y
N
1 ) is given by

PXN1 ,YN1
(xN1 , y

N
1 ) =

∑
b,a
PXN1 ,YN1 ,SN |S0

(xN1 , y
N
1 , b|a)π0(a).

Definition 2 (Block). Let (Xj ,Yj ,Sj), j ∈ Z be a FAIM
process. We call (XM

L+1,Y
M
L+1) a block of the FAIM process,

with length M − L. State SL is the initial state of the block
and state SM is the final state of the block.

We emphasize that for block (XM
L+1,Y

M
L+1), the initial state

is SL and not SL+1.
The following lemma establishes that FAIM processes are a

special case of the family of processes considered in [9].

Lemma 4. If (Xj ,Yj ,Sj), j ∈ Z is a FAIM process, there
exists a non-increasing sequence ψ(N) with ψ(0) < ∞ and
ψ(N)→ 1 as N →∞, such that for any N > M ≥ L ≥ 1,

PXL1 ,YL1 ,XNM+1,Y
N
M+1
≤ ψ(M−L) ·PXL1 ,YL1

·PXNM+1,Y
N
M+1

. (10)

To see this, define

ψ(N) =

{
maxa,b πN |0(b|a)/π0(b), if N > 0

maxa 1/π0(a), if N = 0,
(11)

and use (9). A process satisfying (10) with ψ(N) → 1 as
N →∞ is called ψ-mixing.

Two adjacent blocks share a state: the final state of the first
block is the initial state of the second block. By (9), for any
N > M ≥ 1,

PXM1 ,YM1 ,XNM+1,Y
N
M+1|S0,SM ,SN

= PXM1 ,YM1 |S0,SMPXNM+1,Y
N
M+1|SM ,SN . (12)

We will use ascending letters to denote values of ordered
states. In Figure 1 we illustrate a useful case. A block of length
2N comprises two adjacent blocks of length N . State S0, the
initial state of the first block, takes value a. State SN , at the end
of the first block and the beginning of the second block, takes
value b. State S2N , at the end of the second block, takes value c.

C. Boundary State-Informed Parameters for FAIM Processes

Let (XN
1 ,Y

N
1 ) be a block of a FAIM process and let (U,Q) =

f(XN
1 ,Y

N
1 ), where function f(·, ·) is independent of the state

sequence and U is binary. We denote

P b
a(u, q) , PU,Q|SN ,S0

(u, q|b, a) =
PU,Q,SN |S0

(u, q, b|a)

πN |0(b|a)
. (13)

and further define P b
a(q) = PQ|SN ,S0

(q|b, a). We denote by
Zb
a(U|Q), Kb

a(U|Q), and Hb
a(U|Q) the results of replacing

PU,Q(u, q) with P b
a(u, q) in equations (1) to (3), respectively.

For example, Kb
a(U|Q) =

∑
q

∣∣P b
a(0, q)− P b

a(1, q)
∣∣ .

As PU,Q,SN ,S0(u, q, b, a) = P b
a(u, q) · πN,0(b, a), we respec-

tively define the boundary state-informed (BSI) total variation
distance, Bhattacharyya parameter, and conditional entropy, as

K(U|Q,SN ,S0) =
∑

a,b
πN,0(b, a)Kb

a(U|Q),

Z(U|Q,SN ,S0) =
∑

a,b
πN,0(b, a)Zb

a(U|Q),

H(U|Q,SN ,S0) =
∑

a,b
πN,0(b, a)Hb

a(U|Q).

BSI parameters are defined for blocks of the process; they
depend on the initial and final states of the block.

IV. FAST POLARIZATION FOR FAIM PROCESSES

We use the notation of Section II-B for FAIM processes. That
is, UN

1 ,V
N
1 ,Qi,Ri, i = 1, . . . , N are defined using (5). The

random variables B1, . . . ,Bn are Bernoulli-1/2 and i.i.d., and
i = 1 + (B1B2 · · ·Bn)2. Via i, we define the random variables
Kn = K(Ui|Qi), Hn = H(Ui|Qi), and Zn = Z(Ui|Qi).

Let K̂n, Ĥn, and Ẑn denote the BSI versions of Kn,Zn, and
Hn, respectively. That is, with i chosen randomly as above,

K̂n = K(Ui|Qi,SN ,S0),

Ẑn = Z(Ui|Qi,SN ,S0),

Ĥn = H(Ui|Qi,SN ,S0).

(14)

By Lemma 2, Kn ≤ K̂n, Zn ≥ Ẑn, and Hn ≥ Ĥn for any n.
Similar to (7), recalling that 2N = 2n+1, we have

K̂n+1 =

{
K(Ui + Vi|Qi,Ri,S0,S2N ), if Bn+1 = 0

K(Vi|Ui + Vi,Qi,Ri,S0,S2N ), if Bn+1 = 1.
(15)

Relationships akin to (15) hold for Ẑn+1 and Ĥn+1, with K

replaced with Z and H, respectively.

A. Polarization of FAIM Processes

Let
H?(X|Y) , lim

N→∞

1

N
H(XN

1 |YN
1 ).

This limit exists due to stationarity [13, Section 4.2] and the
identity H(XN

1 |YN
1 ) = H(XN

1 ,Y
N
1 ) − H(YN

1 ). In [9], the
following was shown:

Theorem 5. [9] For a stationary ψ-mixing process (Xj ,Yj),
j ∈ Z, with ψ(0) <∞:

1) Hn polarizes to H∞ with P (H∞ = 1) = H?(X|Y);
2) Zn polarizes fast to 0 with any β < 1/2.



Since FAIM processes are ψ-mixing, we obtain:

Corollary 6. Let (Xj ,Yj ,Sj), j ∈ Z be a FAIM process. Then,
1) Its conditional entropy process Hn polarizes to H∞ with

P (H∞ = 1) = H?(X|Y).
2) Its Bhattacharyya process Zn polarizes fast to 0 with

any β < 1/2.

Proof: By Lemma 4, FAIM processes are ψ-mixing and
satisfy the requirements of Theorem 5.

B. Polarization of the BSI Distribution Parameters

This section is concerned with proving that the BSI distri-
bution parameters polarize.

Theorem 7. Let (Xj ,Yj ,Sj), j ∈ Z be a FAIM process. The
BSI conditional entropy process Ĥn polarizes to Ĥ∞ and Ĥ∞ =
H∞ almost surely.

Proof: Consider two adjacent blocks of length N = 2n

and let i = 1 + (B1B2 · · ·Bn)2, as in Figure 1. By (12),

PUi,Vi|Qi,Ri,S0,SN ,S2N
= PUi|Qi,S0,SNPVi|Ri,SN ,S2N

. (16)

Thus,

Ĥn
(a)
=

1

2

(
H(Ui|Qi,S0,SN ) + H(Vi|Ri,SN ,S2N )

)
(b)
=

1

2
H(Ui,Vi|Qi,Ri,S0,SN ,S2N )

(c)
=

1

2
H(Ui + Vi,Vi|Qi,Ri,S0,SN ,S2N )

(d)
=

1

2

(
H(Ui + Vi|Qi,Ri,S0,SN ,S2N )

+ H(Vi|Ui + Vi,Qi,Ri,S0,SN ,S2N )
)

(e)
≤ 1

2

(
H(Ui + Vi|Qi,Ri,S0,S2N )

+ H(Vi|Ui + Vi,Qi,Ri,S0,S2N )
)

where (a) is by stationarity, (b) is by (16), (c) is because the
mapping (U,V) 7→ (U + V,V) is one-to-one and onto, (d) is
by the chain rule for entropies, and (e) is by Lemma 2.

Thus, recalling (15) (applied to the BSI conditional entropy),
Ĥn is a submartingale sequence. It is also bounded, as Ĥn ∈
[0, 1] for any n. Hence, it converges almost surely to some
random variable Ĥ∞ ∈ [0, 1].

Consequently, ∆Hn = Hn − Ĥn converges almost surely
to the random variable ∆H∞ = H∞ − Ĥ∞. By Lemma 2,
∆Hn ≥ 0 for any n, implying that ∆H∞ ≥ 0 almost surely.

The effect of knowing a block’s initial and final states
becomes negligible for sufficiently long blocks; thus, it can be
shown that limn→∞ E [∆Hn] = 0. For details, see [11, Lemma
10]. Since ∆Hn is a non-negative sequence that converges to
∆H∞ almost surely, by Fatou’s lemma,

0 ≤ E [∆H∞] = E
[
lim inf
n→∞

∆Hn

]
≤ lim inf

n→∞
E [∆Hn] = lim

n→∞
E [∆Hn] = 0.

In other words, E [∆H∞] = 0. By Markov’s inequality,
P(∆H∞ ≥ δ) ≤ E [∆H∞] /δ = 0 for any δ > 0; consequently,
P(∆H∞ = 0) = P(H∞ = Ĥ∞) = 1. That is, Ĥ∞ = H∞
almost surely.

Corollary 8.
1) The sequences Zn and Ẑn polarize to random variables

Z∞ and Ẑ∞, respectively. Moreover, Z∞ = Ẑ∞ = H∞
almost surely.

2) The sequences Kn and K̂n polarize to random variables
K∞ and K̂∞, respectively. Moreover, K∞ = K̂∞ =
1− H∞ almost surely.

This follows from Lemma 1, Corollary 6, and Theorem 7.

C. Fast Polarization to the High Entropy Set

In this section, we establish fast polarization to the high en-
tropy set. We do this by proving that the total variation process
Kn polarizes fast to 0, which implies that the Bhattacharyya
process Zn polarizes fast to 1.

Proposition 9. Let (Xj ,Yj ,Sj), j ∈ Z be a FAIM process.
Then, with ψ(0) as in (11),

K̂n+1 ≤

{
ψ(0)K̂2

n, if Bn+1 = 0

2K̂n, if Bn+1 = 1.
(17)

Proof of Proposition 9: Consider two adjacent blocks of
length N = 2n and let i = 1 + (B1B2 · · ·Bn)2, as in Figure 1.
By stationarity,

K̂n =
∑
a,b∈S

πN,0(b, a)Kb
a(Ui|Qi) =

∑
b,c∈S

π2N,N (c, b)Kc
b(Vi|Ri).

(18)
As in (13), we denote P c

a(u, q) = PUi,Qi|SN ,S0
(u, q|c, a) =

PVi,Ri|S2N ,SN (u, q|c, a), and P c
a(s) = P c

a(0, s) + P c
a(1, s); in

particular,
∑

s P
c
a(s) = 1. Further denote

µ(b) = π2N |N (c|b)πN |0(b|a)π0(a) =
π2N,N (c, b)πN,0(b, a)

πN (b)
.

For brevity, we omit the dependence of µ(b) on a, c. By (11),

µ(b) ≤ ψ(0) · π2N,N (c, b) · πN,0(b, a). (19)

Also, since πN (b) =
∑

a∈S πN,0(b, a) =
∑

c∈S π2N,N (c, b),∑
a
µ(b) = π2N,N (c, b),

∑
c
µ(b) = πN,0(b, a). (20)

By (9) and (13),

π2N,0(c, a)PUi,Vi,Qi,Ri|S2N ,S0
(u, v, q, r|c, a)

= π0(a)
∑

b
PUi,Qi,SN |S0

(u, q, b|a)PVi,Ri,S2N |SN (v, r, c|b)

=
∑

b
µ(b)P b

a(u, q)P c
b (v, r). (21)

Set Ti = Ui +Vi. Using (7), a single-step polarization from
K̂n to K̂n+1 becomes

K̂n+1 =


∑

a,c
π2N,0(c, a)Kc

a(Ti|Qi,Ri), if Bn+1 = 0∑
a,c
π2N,0(c, a)Kc

a(Vi|Ti,Qi,Ri), if Bn+1 = 1.



Here, Kc
a(Ti|Qi,Ri) and Kc

a(Vi|Ti,Qi,Ri) are computed for a
length-2N block with initial state S0 = a and final state S2N =
c. The state at the middle of the block is SN = b. Denote by (6),

P̄ c
a(t, v, q, r) = PTi,Vi,Qi,Ri|S2N ,S0

(t, v, q, r|c, a)

= PUi,Vi,Qi,Ri|S2N ,S0
(t+ v, v, q, r|c, a)

and P̄ c
a(t, q, r) =

∑1
v=0 P̄

c
a(t, v, q, r).

Consider first the case Bn+1 = 0:

π2N,0(c, a)Kc
a(Ti|Qi,Ri)

= π2N,0(c, a)
∑

q,r

∣∣P̄ c
a(0, q, r)− P̄ c

a(1, q, r)
∣∣

(a)
=
∑
q,r

∣∣∣∣∣∑
b

µ(b)

1∑
v=0

P c
b (v, r)(P b

a(v, q)− P b
a(v + 1, q))

∣∣∣∣∣
(b)
≤
∑
q,r,b

µ(b)

∣∣∣∣∣
1∑

v=0

P c
b (v, r)(P b

a(v, q)− P b
a(v + 1, q))

∣∣∣∣∣
=
∑

q,r,b
µ(b)

∣∣∣P b
a(0, q)− P b

a(1, q)
∣∣∣ · ∣∣∣P c

b (0, r)− P c
b (1, r)

∣∣∣
=
∑

b
µ(b)Kb

a(Ui|Qi)K
c
b(Vi|Ri)

(c)
≤ ψ(0)

∑
b

(
π2N,N (c, b)Kc

b(Vi|Ri)
)(
πN,0(b, a)Kb

a(Ui|Qi)
)

(d)
≤ ψ(0)

∑
b

π2N,N (c, b)Kc
b(Vi|Ri)

∑
b′

πN,0(b′, a)Kb′

a (Ui|Qi),

where (a) is by (21), (b) is by the triangle inequality, (c) is
by (19), and (d) is by the inequality

∑
j ajbj ≤

∑
j aj

∑
j′ bj′ ,

which holds for aj , bj ≥ 0. By (18), the sum over a, c ∈ S

yields ∑
a,c
π2N,0(c, a)Kc

a(Ti|Qi,Ri) ≤ ψ(0)K̂2
n.

Next, let Bn+1 = 1. We have

π2N,0(c, a)Kc
a(Vi|Ti,Qi,Ri)

= π2N,0(c, a)
∑

t,q,r

∣∣P̄ c
a(t, 0, q, r)− P̄ c

a(t, 1, q, r)
∣∣

(a)
=
∑
t,q,r

∣∣∑
b

µ(b)(P b
a(t, q)P c

b (0, r)− P b
a(t+ 1, q)P c

b (1, r))
∣∣

(b)
=

1

2

∑
t,q,r

∣∣∑
b
µ(b)P b

a(q)(P c
b (0, r)− P c

b (1, r))

+
∑

b
µ(b)P c

b (r)(P b
a(t, q)− P b

a(t+ 1, q))
∣∣

(c)
≤
∑

q,b
µ(b)P b

a(q)
(∑

r

∣∣P c
b (0, r)− P c

b (1, r)
∣∣)

+
∑

r,b
µ(b)P c

b (r)
(∑

q

∣∣P b
a(0, q)− P b

a(1, q)
∣∣)

=
∑

b
µ(b)Kc

b(Vi|Ri) +
∑

b
µ(b)Kb

a(Ui|Qi),

where (a) is by (21), (b) is by the equality

(αβ − γδ) =
(
(α+ γ)(β − δ) + (β + δ)(α− γ)

)
/2,

which holds for any four numbers α, β, γ, δ, and (c) is by the
triangle inequality. By (20),∑

a,b,c
µ(b)Kc

b(Vi|Ri) =
∑

b,c
π2N,N (c, b)Kc

b(Vi|Ri) = K̂n,∑
a,b,c

µ(b)Kb
a(Ui|Qi) =

∑
a,b
πN,0(b, a)Kb

a(Ui|Qi) = K̂n.

Thus, ∑
a,c
π2N,0(c, a)Kc

a(Vi|Ti,Qi,Ri) ≤ 2K̂n.

Theorem 10. Let (Xj ,Yj ,Sj), j ∈ Z be a FAIM process.
Then Kn polarizes fast to 0 and Zn polarizes fast to 1 for any
β < 1/2.

Proof: Fix β < 1/2. By Corollary 8 and (17), we can
invoke Lemma 3 for K̂n with E = 1/2. Consequently, K̂n

polarizes fast to 0, i.e.,

lim
n→∞

P(K̂n < 2−N
β

) = P(K̂∞ = 0)

= P (H∞ = 1) = H?(X|Y).

For any n, by Lemma 1 and Lemma 2,

1− Zn ≤
√

1− Zn ≤ Kn ≤ K̂n.

Thus, Kn polarizes fast to 0. Moreover, P(Zn > 1− 2−N
β

) ≥
P(K̂n < 2−N

β

). Taking limits, we obtain that limn→∞ P(Zn >

1− 2−N
β

) ≥ H?(X|Y).
On the other hand, by Corollary 6,

lim
n→∞

P(Zn < 2−N
β

) = 1−H?(X|Y).

Since P(Zn < 2−N
β

) +P(Zn > 1−2−N
β

) ≤ 1 for any n, we
must have

lim
n→∞

P(Zn > 1− 2−N
β

) = H?(X|Y).

Corollary 11. Let (Xj ,Yj ,Sj), j ∈ Z be a FAIM process.
Then Hn, Ĥn, Zn, Ẑn, Kn, and K̂n polarize fast both to 0 and
to 1 with any β < 1/2.
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V. ADDENDUM

There is a subtle error in the statement of Lemma 1. However,
the consequence (4) and thus the rest of the paper are correct.
For the correct statement of Lemma 1, see our journal paper.


