
On Row-by-Row Coding for 2-D Constraints∗

Ido Tal Tuvi Etzion Ron M. Roth
Computer Science Department,
Technion, Haifa 32000, Israel.

Email: {idotal, etzion, ronny}@cs.technion.ac.il

Abstract— A constant-rate encoder–decoder pair is presented
for a fairly large family of two-dimensional (2-D) constraints.
Encoding and decoding is done in a row-by-row manner, and is
sliding-block decodable.

Essentially, the 2-D constraint is turned into a set of indepen-
dent and relatively simple one-dimensional (1-D) constraints; this
is done by dividing the array into fixed-width vertical strips. Each
row in the strip is seen as a symbol, and a graph presentation
of the respective 1-D constraint is constructed. The maxentropic
stationary Markov chain on this graph is next considered: a
perturbed version of the corresponding probability distribution
on the edges of the graph is used in order to build an encoder
which operates in parallel on the strips. This perturbation is
found by means of a network flow, with upper and lower bounds
on the flow through the edges.

A key part of the encoder is an enumerative coder for constant-
weight binary words. A fast realization of this coder is shown,
using floating-point arithmetic.

I. INTRODUCTION

Let G = (V, E, L) be an edge-labeled directed graph
(referred to hereafter simply as a graph), where V is the
vertex set, E is the edge set, and L : E → Σ is the edge
labeling taking values on a finite alphabet Σ [8, §2.1]. We
require that the labeling L is deterministic: edges that start at
the same vertex have distinct labels. We further assume that
G has finite memory [8, §2.2.3]. The one-dimensional (1-D)
constraint S = S(G) that is presented by G is defined as the
set of all words that are generated by paths in G (i.e., the words
are obtained by reading-off the edge labels of such paths).
Examples of 1-D constraints include runlength-limited (RLL)
constraints [8, §1.1.1], symmetric runlength-limited (SRLL)
constraints [4], and the charge constraints [8, §1.1.2]. The
capacity of S is given by

cap(S) = lim
`→∞

(1/`) · log2

∣
∣S ∩ Σ`

∣
∣ .

An M -track parallel encoder for S = S(G) at rate R is
defined as follows.

1) At stage t = 0, 1, 2, · · · , the encoder (which may be
state-dependent) receives as input M ·R (unconstrained)
information bits.

2) The output of the encoder at stage t is a word g
(t) =

(g
(t)
k)M

k=1 of length M over Σ.
3) For 1 ≤ k ≤ M , the kth track γk = (g

(t)
k)`−1

t=0 of any
given length `, belongs to S.

∗ This work was supported by grant No. 2002197 from the United-States–
Israel Binational Science Foundation (BSF), Jerusalem, Israel.

4) There are integers m and a ≥ 0 (and m + a + 1 > 0)
such that the encoder is (m, a)-sliding-block decodable
(in short, (m, a)-SBD): for t ≥ m, the M · R infor-
mation bits which were input at stage t are uniquely
determined by (and can be efficiently calculated from)
g

(t−m), g(t−m+1), . . . , g(t+a).

The decoding window size of the encoder is m+a+1, and it is
desirable to have a small window to avoid error propagation.
In this work, we will be mainly focusing on the case where
a = 0, in which case the decoding requires no look-ahead.

In [5], it was shown that by introducing parallelism, one can
reduce the window size, compared to conventional serial en-
coding. Furthermore, it was shown that as M tends to infinity,
there are (0, 0)-SBD parallel encoders whose rates approach
cap(S(G)). A key step in [5] is using some perturbation of
the conditional probability distribution on the edges of G,
corresponding to the maxentropic stationary Markov chain on
G. However, it is not clear how this perturbation should be
done: a naive method will only work for unrealistically large
M . Also, the proof in [5] of the (0, 0)-SBD property is only
probabilistic and does not suggest encoders and decoders that
have an acceptable running time.

In this work, we aim at making the results of [5] more
tractable. At the expense of possibly increasing the memory
of the encoder (up to the memory of G) we are able to
define a suitable perturbed distribution explicitly, and provide
an efficient algorithm for computing it. Furthermore, the
encoding and decoding can be carried out in time complexity
O(M log2 M log log M), where the multiplying constants in
the O(·) term are polynomially large in the parameters of G.

Denote by diam(G) the diameter of G (i.e., the longest
shortest path between two vertices in G) and let AG = (ai,j)
be the adjacency matrix of G, i.e., ai,j is the number of edges
in G that start at vertex i and terminate in vertex j. Our main
result, specifying the rate of our encoder, is given in the next
theorem.

Theorem 1: Let G be a deterministic graph with memory
m. For M sufficiently large, one can efficiently construct an
M -track (m, 0)-SBD parallel encoder for S = S(G) at a rate
R such that

R ≥ cap(S(G))
(

1 −
|V | diam(G)

2M

)

− O

(

|V |
2
log (M · amax/amin)

M − |V | diam(G)/2

)

,

where amin (respectively, amax) is the smallest (respectively,
largest) nonzero entry in AG.

II. TWO-DIMENSIONAL CONSTRAINTS

Our primary motivation for studying parallel encoding is to
show an encoding algorithm for a family of two-dimensional
(2-D) constraints.

The concept of a 1-D constraint can formally be generalized
to two dimensions (see [5, §1]). Examples of 2-D constraints
are 2-D RLL constraints [7], 2-D SRLL constraints [4], and the
so-called square constraint [9]. Let S be a given 2-D constraint
over a finite alphabet Σ. We denote by S[`, w] the set of all
` × w arrays in S. The capacity of S [7, Appendix] is given
by

cap(S) = lim
`,w→∞

1

` · w
· log2 |S[`, w]| .

Suppose we wish to encode information to an ` × w array
which must satisfy the constraint S; namely, the array must
be an element of S[`, w]. As a concrete example, consider the
square constraint [9]: its elements are all the binary arrays in
which an entry may equal ‘1’ only if all its eight neighbors
are ‘0’.

We first partition our array into two alternating types of
vertical strips: data strips having width wd and merging strips
having width wm. In our example, let wd = 4 and wm = 1
(see Figure 1).

0 0 1 0 0 1 0 1 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 1 0 0 1

Fig. 1. Binary array satisfying the square constraint, partitioned into data
strips of width wd = 4 and merging strips of width wm = 1.

Secondly, we select a graph G = (V, E, L) with a labeling
L : E → S[1, wd] such that S(G) ⊆ S, i.e., each path of
length ` in G generates a (column) word which is in S[`, wd].
We then fill up the data strips of our `×w array with `×wd

arrays corresponding to paths of length ` in G. Thirdly, we
assume that the choice of wm allows us to fill up the merging
strips in a row-by-row (causal) manner, such that our ` × w
array is in S. Any 2-D constraint S for which such wd, wm,
and G can be found, is in the family of constraints we can
code for (for example, the 2-D SRLL constraints belong to
this family [4]).

Consider again the square constraint: a graph which pro-
duces all ` × wd arrays that satisfy this constraint is given
in Figure 2. Also, for wm = 1, we can take the merging
strips to be all-zero. (There are cases, such as the 2-D SRLL
constraints, where determining the merging strips may be less
trivial [4].)

Suppose we have an (m, 0)-SBD parallel encoder for S =
S(G) at rate R with M = (w + wm)/(wd + wm) tracks. We
may use this parallel encoder to encode information in a row-
by-row fashion to our ` × w array: at stage t we feed M · R

information bits to our parallel encoder. Let g
(t) = (g

(t)
k)M

k=1

0000 0001

01000010

1000

1010 1001 0101

Fig. 2. Graph G whose paths generate all `× 4 arrays satisfying the square
constraint. The label of an edge is given by the label of the vertex it exits.

be the output of the parallel encoder at stage t. We write g
(t)
k

to row t of the kth data strip, and then appropriately fill up
row t of the merging strips. Decoding of a row in our array
can be carried out based only on the contents of that row and
the previous m rows.

The rate at which we encode information to the array is

R

wd + wm(1 − 1/M)
≤

cap(S(G))

wd + wm(1 − 1/M)
.

Taking larger values of wd (while keeping wm constant) will
typically improve the right-hand side of this inequality. For
example, if G is such that it produces all arrays with wd

columns in a given 2-D constraint S, then cap(S(G)) ≥
wd · cap(S). We point however, that typically, the number of
vertices and edges in G will grow exponentially with wd; so,
we must take wd to be reasonably small.

III. DESCRIPTION OF THE ENCODER

Let G be as in Section I and let AG = (ai,j) be the
adjacency matrix of G. Denote by 1 the 1 × |V | all-one row
vector. The description of our M -track parallel encoder for
S = S(G) makes use of the following definition. A |V |× |V |
nonnegative integer matrix D = (di,j)i,j∈V is called a (valid)
multiplicity matrix with respect to G and M if

1 · D · 1T ≤ M , (1)

1 · D = 1 · DT , and (2)

di,j > 0 only if ai,j > 0 . (3)

(While any multiplicity matrix will produce a parallel encoder,
some will have higher rates than others. In Section IV, we
show how to compute multiplicity matrices D that yield rates
close to cap(S(G)).)

Recall that we have at our disposal M tracks. However, we
will effectively be using only the first N = 1 · D · 1T tracks
in order to encode information. The last M − N tracks will
all be equal to the first track, say.

The N words γk = (g
(t)
k)`

t=1, 1 ≤ k ≤ N , that we will
be writing to the first N tracks are all generated by paths of
length ` in G. In what follows, we find it convenient to regard
the ` × N arrays (γk)N

k=1 = (g
(t)
k)`

t=1
N
k=1 as (column) words

of length ` of some new 1-D constraint, which we define next.
The N th Kronecker product of G = (V, E, L), denoted by

G⊗N = (V N , EN , LN), is defined as follows. The vertex set

V N is simply the N th Cartesian product of V ; that is,

V N = {〈v1, v2, . . . , vN 〉 : vk ∈ V } .

An edge e = 〈e1, e2, . . . , eN〉 ∈ EN goes from v =
〈v1, v2, . . . , vN 〉 ∈ V N to v

′ = 〈v′1, v
′
2, . . . , v

′
N 〉 ∈ V N and is

labeled LN(e) = 〈b1, b2, . . . bN〉 whenever for all 1 ≤ k ≤ N ,
ek is an edge from vk to v′k labeled bk.

Note that a path of length ` in G⊗N is just a handy way
to denote N paths of length ` in G. Accordingly, the ` × N
arrays (γk)N

k=1 are the words of length ` in S(G⊗N).
Write r = (ri)i∈V = 1 · DT . A vertex v = 〈vk〉

N
k=1 ∈ V N

is a typical vertex (with respect to D) if for all i, the vertex
i ∈ V appears as an entry in v exactly ri times. Also, an edge
e = 〈ek〉

N
k=1 ∈ EN is a typical edge with respect to D if for

all i, j ∈ V , there are exactly di,j entries ek which—as edges
in G—start at vertex i and terminate in vertex j.

A simple computation shows that the number of outgoing
typical edges from a typical vertex equals

∆ =

∏

i∈V ri!
∏

i,j∈V di,j ! · a
−di,j

i,j

(4)

(where 00 , 1). For example, in the simpler case where G
does not contain parallel edges (ai,j ∈ {0, 1}), we are in effect
counting in (4) permutations with repetitions, each time for a
different vertex i ∈ V .

The encoding process will be carried out as follows. We
start at some fixed typical vertex v

(0) ∈ V N . Out of the set of
outgoing edges from v

(0), we consider only typical edges. The
edge we choose to traverse is determined by the information
bits. After traversing the chosen edge, we arrive at vertex v

(1).
By (2), v

(1) is also a typical vertex, and the process starts
over. This process defines an M -track parallel encoder for
S = S(G) at rate

R = R(D) =
blog2 ∆c

M
.

This encoder is (m, 0)-SBD, where m is the memory of G.
Consider now how we map M · R information bits into an

edge choice e ∈ EN at any given stage t. Assuming again
the simpler case of a graph with no parallel edges, a natural
choice would be to use an instance of enumerative coding [3].
Specifically, suppose that for 0 ≤ δ ≤ n, an algorithm for
encoding information by an n-bit binary vector with Hamming
weight δ were given. Suppose also that V = {1, 2, . . . , |V |}.
We could use this algorithm as follows. First, for n = r1 and
δ = d1,1, the binary word given as output by the algorithm
will define which d1,1 of the possible r1 entries in e will be
equal to the edge in E from the vertex 1 ∈ V to itself (if no
such edge exists, then d1,1 = 0). Having chosen these entries,
we run the algorithm with n = r1 − d1,1 and δ = d1,2 to
choose from the remaining r1 − d1,1 entries those that will
contain the edge in E from 1 ∈ V to 2 ∈ V . We continue this
process, until all r1 entries in e containing an edge outgoing
from 1 ∈ V have been picked. Next, we run the enumerative
coder with n = r2 and δ = d2,1, and so forth. The more
general case of a graph containing parallel edges will include

a preliminary step: encoding information in the choice of the
di,j edges used to traverse from i to j (ai,j options for each
such edge).

A fast implementation of enumerative coding is presented in
Section V. The above-mentioned preliminary step makes use
of the Schönhage–Strassen integer-multiplication algorithm [1,
§7.5], and the resulting encoding time complexity is propor-
tional to M log2 M log log M . It turns out that this is also the
decoding time complexity. We omit further details due to space
limitations.

The next section shows how to find a good multiplicity
matrix, i.e., a matrix D such that R(D) is close to cap(S(G)).

IV. COMPUTING A GOOD MULTIPLICITY MATRIX

Throughout this section, we assume a probability distribu-
tion on the edges of G, which is the maxentropic stationary
Markov chain P on G [8]. Without real loss of generality, we
can assume that G is irreducible (i.e., strongly-connected), in
which case P is indeed unique. Let the matrix Q = (qi,j) be
the transition matrix induced by P , i.e., qi,j is the probability
of traversing an edge from i ∈ V to j ∈ V , conditioned on
currently being at vertex i ∈ V .

Let π = (πi) be the 1×|V | row vector corresponding to the
stationary distribution on V induced by Q; namely, πQ = π.
Let

M ′ = M − b|V | diam(G)/2c , (5)

and define

ρ = (ρi) , ρi = M ′πi , and P = (pi,j) , pi,j = ρiqi,j .

Note that ρ = 1 · (P)T and M ′ = 1 · P · 1T . Also, observe
that (1)–(3) hold when we substitute P for D. Thus, if all
entries of P were integers, then we could take D equal to P .
In a way, that would be the best choice we could have made:
by using Stirling’s approximation, we could deduce that R(D)
approaches cap(S(G)) as M → ∞. However, the entries of
P , as well as ρ, may be non-integers.

We say that an integer matrix P̃ = (p̃i,j) is a good
quantization of P = (pi,j) if

M ′ =
∑

i,j∈V pi,j =
∑

i,j∈V p̃i,j , (6)
⌊
∑

j∈V pi,j

⌋

≤
∑

j∈V p̃i,j ≤
⌈
∑

j∈V pi,j

⌉

, (7)

bpi,jc ≤ p̃i,j ≤ dpi,je , and— (8)
⌊∑

i∈V pi,j

⌋
≤
∑

i∈V p̃i,j ≤
⌈∑

i∈V pi,j

⌉
. (9)

Lemma 2: There exists a matrix P̃ which is a good quan-
tization of P . Furthermore, such a matrix can be found by an
efficient algorithm.

Proof: We recast (6)–(9) as an integer flow problem (see
Figure 3). Consider the following flow network, with upper
and lower bounds on the flow through the edges [2, §6.7].
The network has the vertex set

{uσ} ∪ {uω} ∪ {uτ} ∪ {u′
i}i∈V ∪

{
u′′

j

}

j∈V
,

uσuω

u′
1 u′

2 u′
i

u′
|V |

u′′
1 u′′

2 u′′
j u′′

|V |

uτ

(M ′, M ′)
(b
∑

j∈V pi,jc, d
∑

j∈V pi,je)

(bpi,jc, dpi,je)

(b
∑

i∈V pi,jc, d
∑

i∈V pi,je)

· · ·

· · ·

· · ·

· · ·

Fig. 3. Flow network for the proof of Lemma 2.

with source uσ and target uτ . Henceforth, when we talk about
the upper (lower) bound of an edge, we mean the upper (lower)
bound on the flow through it. There are four kinds of edges:

1) An edge uσ → uω with upper and lower bounds both
equaling to M ′.

2) uω → u′
i for every i ∈ V , with the upper and lower

bounds b
∑

j∈V pi,jc and d
∑

j∈V pi,je, respectively.
3) u′

i → u′′
j for every i, j ∈ V , with the upper and lower

bounds bpi,jc and dpi,je, respectively.
4) u′′

j → uτ for every j ∈ V , with the upper and lower
bounds b

∑

i∈V pi,jc and d
∑

i∈V pi,je, respectively.
We claim that (6)–(9) can be satisfied if a legal integer flow

exists: simply take p̃i,j as the flow on the edge from u′
i to u′′

j .
It is well known that if a legal real flow exists for a flow

network with integer upper and lower bounds on the edges,
then a legal integer flow exists as well [2, Theorem 6.5].
Moreover, such a flow can be efficiently found [2, §6.7]. To
finish the proof, we now exhibit such a legal real flow:

1) The flow on the edge uσ → uω is
∑

i,j∈V pi,j = M ′.
2) The flow on an edge uσ → u′

i is
∑

j∈V pi,j .
3) The flow on an edge u′

i → u′′
j is pi,j .

4) The flow on an edge u′′
j → uτ is

∑

i∈V pi,j .

For the remaining part of this section, we assume that P̃ is
a good quantization of P (say, P̃ is computed by solving the
integer flow problem in the last proof).

Lemma 3: Let ρ̃ = (ρ̃i) = 1 · (P̃)T and r̃ = (r̃i) = 1 · P̃ .
Then,

||r̃ − ρ̃|| ≤ |V | ,

where || · || denotes the L1 norm of a real vector.
Proof: From (7), we get that for all i ∈ V ,

b
∑

j∈V pi,jc ≤ ρ̃i ≤ d
∑

j∈V pi,je . (10)

Recall that (2) is satisfied if we replace D by P . Thus, by
(9), we have that (10) also holds if we replace ρ̃i by r̃i. We
conclude that |ρ̃i − r̃i| ≤ 1.

The matrix P̃ will be the basis for computing a good
multiplicity matrix D, as we demonstrate in the proof of the
next theorem.

Theorem 4: Let P̃ = (p̃i,j) be a good quantization of P .
There exists a multiplicity matrix D = (di,j) with respect to
G and M , such that

1) di,j ≥ p̃i,j for all i, j ∈ V , and—
2) M ′ ≤ 1 · D · 1T ≤ M

(where M ′ is as defined in (5)). Moreover, the matrix D can
be found by an efficient algorithm.

Partial proof: Consider a vertex i ∈ V . If r̃i > ρ̃i, then
we say that vertex i has a surplus of r̃i − ρ̃i. On the other
hand, if r̃i < ρ̃i then vertex i has a deficiency of ρ̃i − r̃i. Of
course, since

∑

i∈V ρ̃i =
∑

i∈V r̃i = M ′, the total surplus is
equal to the total deficiency, and both are denoted by Surp:

Surp =
∑

i∈V

max {0, r̃i − ρ̃i} = −
∑

i∈V

min {0, r̃i − ρ̃i} .

Our aim is to use the surplus in order to eventually make up
for the deficiency. We next show how this can be done.

Given ρ̃ and r̃, we build for θ = diam(G) the following
flow network. The vertex set of the network is given by

{uσ, uτ} ∪ {uh,i : 1 ≤ h ≤ θ + 2 , i ∈ V } ,

where uσ is the source and uτ is the sink. The edge set E ′

consists of the following edges:
1) Surplus edges: For i ∈ V ,

e′ = uσ →u1,i ∈ E′ iff r̃i > ρ̃i ,

with the upper and lower bounds on e′ both equaling
r̃i − ρ̃i.

2) Trellis edges: For 1 ≤ h < θ + 1 and i, j ∈ V ,

e′ = uh,i →uh+1,j ∈ E′ iff e = i→ j ∈ E ,

with upper and lower bounds ∞ and 0, respectively.
3) Identity edges: For i, i′ ∈ V and 1 ≤ h ≤ θ + 1,

e′ = uh,i′ →uθ+2,i ∈ E′ iff i′ = i ,

with upper and lower bounds ∞ and 0, respectively.
4) Deficiency edges: For i ∈ V ,

e′ = uθ+2,i →uτ ∈ E′ iff r̃i < ρ̃i ,

with the upper and lower bounds both equaling ρ̃i − r̃i.
Let ϕ : E′ → Z be a legal integer flow in our flow network

(we omit the details of why such a flow indeed exists). Define
the |V | × |V | matrix D = (di,j) by

di,j = p̃i,j +

θ∑

h=1

ϕ(uh,i →uh+1,j) .

This definition already implies that D satisfies (3), as well as
part 1 of the theorem. We next establish (2). On the one hand,

(1 · (D)T)i =
∑

j∈V

p̃i,j +
∑

j∈V

θ∑

h=1

ϕ(uh,i →uh+1,j)

= ρ̃i +
∑

j∈V

θ∑

h=1

ϕ(uh,i →uh+1,j) . (11)

On the other hand, denoting by ϕ(u) the total flow entering
(and leaving) vertex u, we have

(1 · D)i =
∑

k∈V

dk,i =
∑

k∈V

p̃k,i +
∑

k∈V

θ∑

h=1

ϕ(uh,k →uh+1,i)

= r̃i +
θ∑

h=1

ϕ(uh+1,i) = r̃i +
θ+1∑

h=2

ϕ(uh,i)

= r̃i − ϕ(u1,i) +

θ+1∑

h=1

ϕ(uh,i)

= r̃i − ϕ(u1,i) + ϕ(uθ+2,i)
︸ ︷︷ ︸

ρ̃i

+
∑

j∈V

θ∑

h=1

ϕ(uh,i →uh+1,j) .

Hence, 1 · (D)T = (1 · D).
The first inequality in part 2 of the theorem follows from

the fact that di,j ≥ p̃i,j for all i, j ∈ V ; specifically,

M ′ = 1 · P · 1T (7)
= 1 · P̃ · 1T ≤ 1 · D · 1T .

Next we turn to the second inequality in part 2. By (11),

1 · D · 1T = M ′ +
∑θ

h=1

∑

i∈V ϕ(uh,i) .

From the structure of the flow network we get that for 1 ≤
h ≤ θ,

∑

i∈V

ϕ(uh,i) ≤ ϕ(uσ) = Surp = 1
2 ||r̃ − ρ̃|| ≤ 1

2 |V | ,

where the last inequality follows from Lemma 3. Thus,

1 · D · 1T ≤ M ′ + θ · Surp ≤ M ′ + |V | diam(G)/2 = M .

Observe that part 2 implies (1).
Proof sketch of Theorem 1: Let ∆̃ be as in (4), where

we replace di,j by p̃i,j and ri by ρ̃i. Since di,j ≥ p̃i,j for all
i, j ∈ V , we have

R(D) ≥
blog2 ∆̃c

M
=

M ′

M
·
blog2 ∆̃c

M ′
.

We may now bound blog2 ∆̃c/M ′ from below using Stirling’s
approximation. The proof ends by taking into account the
various quantization errors introduced into P̃ .

V. FAST ENUMERATIVE CODING

Recall from Section III that in the course of our encoding
algorithm, we encode information into fixed-length binary
words of constant weight. A way to do this would be to
use enumerative coding [3]. Immink [6] showed a method
to significantly improve the running time of an instance of
enumerative coding, with a typically negligible penalty in
terms of rate. We now briefly show how to tailor Immink’s
method to our needs.

Denote by n and δ the length and Hamming weight, respec-
tively, of the binary word we must encode into. Assume our
variables are floating-point numbers with a mantissa of µ bits
and an exponent of ε bits: each floating-point number is of the
form x = a·2b where a is an integer such that 0 ≤ a−2µ < 2µ

and b is an integer such that −2ε−1 ≤ b < 2ε−1. Note that
µ + ε bits are needed to store such a number.

We assume the presence of two look-up tables. The first
will contain the floating-point approximations of 1!, 2!, . . . , n!.
The second will contain the floating-point approximations of
f(0), f(1), . . . , f(δ), where

f(χ) = 1 −
32χ + 16

2µ+1
.

Notice that in our case, we can bound both n and δ from
above by the number of tracks M . Thus, we will actually build
beforehand two look-up tables of size 2M(µ + ε) bits.

Let x denote the floating-point approximation of x, and
let ∗ and ÷ denote floating-point multiplication and division,
respectively. For 0 ≤ χ ≤ κ ≤ n we define

[
κ

χ

]

=
⌈

(κ! ∗ f(χ)) ÷ (χ! ∗ (κ − χ)!)
⌉

.

Note that since we have stored the relevant numbers in our
look-up table, the calculation of the above function takes only
O(µ2 + ε) time. The encoding algorithm is given in Figure 4,
and is clearly invertible. Since we must take ε = O(log n) and
µ = O(log δ), its running time is O(n log2 n).

Name: EnumEncode(n, δ, ψ)

Input: Integers n, δ, ψ such that 0 ≤ δ ≤ n and 0 ≤ ψ <
ˆ
n

δ

˜
.

Output: A binary word of length n and weight δ.

if (δ == 0) // stopping condition:
return 00 . . . 0

| {z }

n

;

for (ι← 1; ι ≤ n − δ + 1; ι++) {
if (ψ <

ˆ
n−ι

δ−1

˜
)

return 00..0
| {z }

ι−1

1‖EnumEncode(n− ι, δ − 1, ψ);

else
ψ ← ψ −

ˆ
n−ι

δ−1

˜
;

}

Fig. 4. Enumerative encoding algorithm for constant-weight binary words.

REFERENCES

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of
Computer Algorithms. Reading, Massachusetts: Addison-Wesley, 1974.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows. Engelwood
Cliffs, New Jersey: Prentice Hall, 1993.

[3] T. Cover, “Enumerative source coding,” IEEE Trans. Inform. Theory, 19
(1973), 73–77.

[4] T. Etzion, “Cascading methods for runlength-limited arrays,” IEEE Trans.
Inform. Theory, 43 (1997), 319–324.

[5] S. Halevy and R. M. Roth, “Parallel constrained coding with application
to two-dimensional constraints,” IEEE Trans. Inform. Theory, 48 (2002),
1009–1020.

[6] K. A. S. Immink, “A practical method for approaching the channel
capacity of constrained channels,” IEEE Trans. Inform. Theory, 43 (1997),
1389–1399.

[7] A. Kato and K. Zeger, “On the capacity of two-dimensional run-length
constrained code,” IEEE Trans. Inform. Theory, 45 (1999), 1527–1540.

[8] B. H. Marcus, R. M. Roth, and P. H. Siegel, “Constrained systems and
coding for recording channels,” in Handbook of Coding Theory, V. Pless
and W. Huffman, Eds. Amsterdam: Elsevier, 1998, pp. 1635–1764.

[9] W. Weeks and R. E. Blahut, “The capacity and coding gain of certain
checkerboard codes,” IEEE Trans. Inform. Theory, 44 (1998), 1193–1203.

