
Concave Programming Upper Bounds on the
Capacity of 2-D Constraints∗

Ido Tal Ron M. Roth
Computer Science Department,
Technion, Haifa 32000, Israel.

Email: {idotal, ronny}@cs.technion.ac.il

Abstract—The capacity of 1-D constraints is given by the
entropy of a corresponding stationary maxentropic Markov
chain. Namely, the entropy is maximized over a set of probability
distributions, which is defined by some linear requirements. In
this paper, certain aspects of this characterization are extended to
2-D constraints. The result is a method for calculating an upper
bound on the capacity of 2-D constraints.

The key steps are: The maxentropic stationary probability
distribution on square configurations is considered. A set of
linear equalities and inequalities is derived from this stationarity.
The result is a concave program, which can be easily solved
numerically. Our method improves upon previous upper bounds
for the capacity of the 2-D “no independent bits” constraint, as
well as certain 2-D RLL constraints.

I. INTRODUCTION

Let Σ be a finite alphabet. A two-dimensional (2-D) con-
straint is a set S of rectangular arrays over Σ. To be called a
constraint, S must satisfy some requirements, formally defined
in [1, §1]. Examples of 2-D constraints include the square
constraint [2], 2-D runlength-limited (RLL) constraints [3], 2-
D symmetric runlength-limited (SRLL) constraints [4], and the
“no isolated bits” constraint [5].

Let S be a given 2-D constraint over a finite alphabet Σ.
Denote by ΣM×N the set of M × N configurations over Σ,
and let

SM,N = S ∩ ΣM×N , SM = S ∩ ΣM×M .

The capacity of S is equal to

cap(S) = lim
M→∞

1
M2
· log2 |SM | . (1)

In this paper, we show a method for calculating an upper
bound on cap(S). Other methods for calculating upper bounds
on the capacity of 2-D constraints include the stripe method
and the method presented by Forchhammer and Justesen [6].

2-D constraints are a generalization of one-dimensional (1-
D) constraints (see [7]). In the case of 1-D constraints, it is
well-known that the capacity can be expressed as the output
value of an optimization program, where the optimization is
on the entropy of a certain stationary Markov chain, and is
carried out over the conditional probabilities of that chain
(see [7, §3.2.3]). We try to extend certain aspects of this
characterization of capacity to 2-D constraints. What results

∗ This work was supported by grant No. 2002197 from the United-States–
Israel Binational Science Foundation (BSF), Jerusalem, Israel.

is a (generally non-tight) upper bound on cap(S). Our method
improves upon previous upper bounds for the capacity of the 2-
D “no independent bits” constraint, as well as certain 2-D RLL
constraints (see Table I). Also, our method easily generalizes
to higher dimensions.

II. NOTATION

This section is devoted to setting up some notation.

A. Index sets and configurations

Denote the set of integers by Z. A (2-D) index set U ⊆ Z2

is a set of integer pairs. A 2-D configuration over Σ with an
index set U is a function w : U → Σ. We denote such a
configuration as w = (wi,j)(i,j)∈U, where for all (i, j) ∈ U,
we have that wi,j ∈ Σ. In many cases, the index set U will be
the M ×N rectangle

BM,N = {(i, j) : 0 ≤ i < M , 0 ≤ j < N} .

Also, denote

BM = BM,M = {(i, j) : 0 ≤ i, j < M} .

For integers α, β we denote the shifting of U by (α, β) as

σα,β(U) = {(i+ α, j + β) : (i, j) ∈ U} .

Moreover, by abuse of notation, let σα,β(w) be the shifted
configuration (with index set σ(U)):

σα,β(w)i+α,j+β = wi,j .

For a configuration w with index set U, and an index set V ⊆
U, denote the restriction of w to V by w[V] = (w[V]i,j)(i,j)∈V;
namely,

w[V]i,j = wi,j , where (i, j) ∈ V .

We denote the restriction of S to U by S[U]:

S[U] = {w : there exists w′ ∈ S such that w′[U] = w} . (2)

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

≺lex

1 2 3 4 5
16 17 18 19 20
6 7 8 9 10
21 22 23 24 25
11 12 13 14 15

≺irs

Fig. 1. An entry labeled i in the left (right) configuration precedes an entry
labeled j according to ≺lex (≺irs) iff i < j.

B. Strict total order

A strict total order ≺ is a relation on Z2 × Z2, satisfying
the following conditions for all (i1, j1), (i2, j2), (i3, j3) ∈ Z2.
• If (i1, j1) 6= (i2, j2), then either (i1, j1) ≺ (i2, j2) or

(i2, j2) ≺ (i1, j1), but not both.
• If (i1, j1) = (i2, j2), then neither (i1, j1) ≺ (i2, j2) nor

(i2, j2) ≺ (i1, j1).
• If (i1, j1) ≺ (i2, j2) and (i2, j2) ≺ (i3, j3), then

(i1, j1) ≺ (i3, j3).

For (i, j) ∈ Z2, define T
(≺)
i,j as all the indexes preceding (i, j).

Namely,

T
(≺)
i,j =

{
(i′, j′) ∈ Z2 : (i′, j′) ≺ (i, j)

}
.

In order to enhance the exposition, we give two running
examples.

Running Example I: Define the lexicographic order ≺lex

as follows: (i1, j1) ≺lex (i2, j2) iff
• i1 < i2, or
• (i1 = i2 and j1 < j2).
Running Example II: Define the “interleaved raster scan”

order ≺irs as follows: (i1, j1) ≺irs (i2, j2) iff
• i1 ≡ 0 (mod 2) and i2 ≡ 1 (mod 2), or
• i1 ≡ i2 (mod 2) and i1 < i2, or
• i1 = i2 and j1 < j2.

(See Figure 1 for both examples.)

III. A PRELIMINARY UPPER BOUND ON cap(S)

Let M be a positive integer and let W be a random variable
taking values on SM . We say that W is stationary if for all
U ⊆ BM , all α, β ∈ Z such that σα,β(U) ⊆ BM , and all
w′ ∈ S[U], we have that

Prob(W [U] = w′) = Prob(W [σα,β(U)] = σα,β(w′)) .

We state the following corollary of [8, Theorem 1.4] without
proof.

Theorem 1: There exists a series of random variables
(W (M))∞M=1 with the following properties: (i) Each W (M)

takes values on SM . (ii) The probability distribution of W (M)

is stationary. (iii) The normalized entropy of W (M) approaches
cap(S),

cap(S) = lim
M→∞

1
M2
·H(W (M)) . (3)

We now proceed towards deriving Lemma 2 below, which
gives an upper bound on cap(S), and makes use of the
stationarity property. We note in advance that this bound is
not actually meant to be calculated, but it will eventually lead
to a computable bound in the following sections.

For the rest of this section, fix positive integers r and s, and
define the index set

Λ = Br,s .

We will refer to Λ as “the patch.” The bound we derive in
Lemma 2 will be a function of the following:
• the strict total order ≺,
• the integers r and s, which determine the order r × s of

the patch Λ,
• an integer c, which will denote the number of “colors”

we encounter,
• a coloring function f : Z2 → {1, 2, . . . , c}, mapping each

point in Z2 to one of c colors,
• c indexes, (aγ , bγ)cγ=1, such that for all 1 ≤ γ ≤ c,

(aγ , bγ) ∈ Λ

(namely, each color γ has a designated point in the patch,
which may or may not be of color γ).

The function f must satisfy two requirements, which we
now elaborate on. Our first requirement is: for all 1 ≤ γ ≤ c,

lim
M→∞

{(i, j) ∈ BM : f(i, j) = γ}
M2

=
1
c
. (4)

Namely, as the orders of W (M) tend to infinity, each color is
equally1 likely. Our second requirement is as follows: there
exist index sets Ψ1,Ψ2, . . . ,Ψc ⊆ Λ such that for all indexes
(i, j) ∈ Z2,

σi′,j′(Ψγ) = T
(≺)
i,j ∩ σi′,j′(Λ) , (5)

where γ = f(i, j), i′ = aγ − i, and j′ = bγ − j. Namely, let
(i, j) be such that f(i, j) = γ, and shift Λ such that (aγ , bγ)
is shifted to (i, j). Now, consider the set of all indexes in the
shifted Λ which precede (i, j): this set must be equal to the
correspondingly shifted Ψγ .

Running Example I: Take r = 4 and s = 7 as the patch
orders. Let the number of colors be c = 1. Thus, we must
define f = flex as follows: for all (i, j) ∈ Z2, flex(i, j) = 1.
Take the point corresponding to the single color as (a1 =
3, b1 = 5). See also Figure 2(a).

Running Example II: As in the previous example, take
r = 3 and s = 5 as the patch orders. Let the number of colors
be c = 2. Define f = firs as follows:

firs(i, j) =

{
1 i ≡ 0 (mod 2)
2 i ≡ 1 (mod 2)

.

Take (a1 = 3, b1 = 5) and (a2 = 2, b2 = 4). See also
Figure 2(b).

1In fact, it is possible to generalize (4), and require only that the limit exists
for all γ. We have not found this generalization useful.

• •

•

lex irs

(a) (b)

γ = 1

γ = 2

Fig. 2. The left (right) column corresponds to Running Example I (II). The
configurations are of order r×s and represent the index set Λ. The • symbol
is in position (aγ , bγ). The shaded part is Ψγ .

Lemma 2: Let (W (M))∞M=1 be as in Theorem 1 and
define

X(M) = W (M)[Λ] .

Let ≺, r, s, c, f , (Ψγ)cγ=1, and (aγ , bγ)cγ=1 be given. For
1 ≤ γ ≤ c, define

Υγ = {(aγ , bγ)} ∪Ψγ .

Let
Yγ = X(M)[Υγ] and Zγ = X(M)[Ψγ]

(note that Yγ and Zγ are functions of M). Then,

cap(S) ≤ lim sup
M→∞

1
c

c∑
γ=1

H(Yγ |Zγ) .

Proof: Let X , W and Ti,j be shorthand for X(M), W (M)

and T
(≺)
i,j , respectively. First note that

Yγ = W [Υγ] and Zγ = W [Ψγ] .

We show that

lim
M→∞

1
M2

H(W) ≤ lim sup
M→∞

1
c

c∑
γ=1

H(Yγ |Zγ) .

Once this is proved, the claim follows from (3).
By the chain rule [9, Theorem 2.5.1], we have

H(W) =
∑

(i,j)∈BM

H(Wi,j |W [Ti,j ∩ BM]) .

We now recall (5) and define the index set ∂̄ to be the largest
subset of BM for which the following condition holds: for all
(i, j) ∈ ∂̄, we have that

σi′,j′(Ψγ) ⊆ BM , (6)

where hereafter in the proof, γ = f(i, j), i′ = aγ − i, and
j′ = bγ − j. Define ∂ = BM \ ∂̄. Note that since r and s are
constant, and Ψ1,Ψ2, . . . ,Ψc ⊆ Λ, then

|∂|
M2

= O(1/M) .

Thus, on the one hand, we have
1
M2

∑
(i,j)∈∂

H(Wi,j |W [Ti,j ∩ BM]) ≤ log2 |Σ| ·O(1/M) .

On the other hand, from (5) and (6) we have that for all (i, j) ∈
∂̄,

σi′,j′(Ψγ) ⊆ Ti,j ∩ BM .

Hence, since conditioning reduces entropy [9, Theorem 2.6.5],
1
M2

∑
(i,j)∈∂̄

H(Wi,j |W [Ti,j ∩ BM])

≤ 1
M2

∑
(i,j)∈∂̄

H(Wi,j |W [σi′,j′(Ψγ)])

=
1
M2

∑
(i,j)∈∂̄

H(W [{(i, j)} ∪ σi′,j′(Ψγ)]|W [σi′,j′(Ψγ)])

=
1
M2

∑
(i,j)∈∂̄

H(Yγ |Zγ) ,

where the last step follows from the stationarity of W (M).
Recalling (4), the proof follows.

The following is a simple corollary of Lemma 2.
Corollary 3: Let (W (M))∞M=1 be as in Theorem 1 and

define
X(M) = W (M)[Λ] .

Fix positive integers r and s. Let ` be a positive integer, and
let (ρ〈k〉)`k=1 be non-negative reals such that

∑`
k=1 ρ

〈k〉 = 1.
For every 1 ≤ k ≤ `, let ≺〈k〉, c〈k〉, f 〈k〉, (Ψ〈k〉γ)cγ=1, and
(a〈k〉γ , b

〈k〉
γ)cγ=1 be given. Also, for 1 ≤ γ ≤ c〈k〉, let

Υ〈k〉γ = {(a〈k〉γ , b〈k〉γ)} ∪Ψ〈k〉γ .

Define

Y 〈k〉γ = X(M)[Υ〈k〉γ] and Z〈k〉γ = X(M)[Ψ〈k〉γ]

(note that Y 〈k〉γ and Z〈k〉γ are functions of M). Then,

cap(S) ≤ lim sup
M→∞

∑̀
k=1

ρ〈k〉

c〈k〉

c〈k〉∑
γ=1

H(Y 〈k〉γ |Z〈k〉γ) .

Corollary 3 is the most general way we have found to state our
results. This generality will indeed help us later on. However,
almost none of the intuition is lost if the reader has in mind
the much simpler case of

` = 1 , ρ〈1〉 = 1 , c〈1〉 = 1 , ≺〈1〉=≺lex ,

(a〈1〉1 , b
〈1〉
1) = (r−1, t) , and Ψ〈1〉1 = Λ ∩ T

(a
〈1〉
1 ,b

〈1〉
1)

, (7)

where 0 ≤ t < s. This simpler case was demonstrated in
Running Example I.

IV. LINEAR REQUIREMENTS

Recall that X(M) = W (M)[Λ] is an r× s sub-configuration
of W (M), and thus stationary as well. In this section, we for-
mulate a set of linear requirements (equalities and inequalities)
on the probability distribution of X(M). For the rest of this
section, let M be fixed and let X be shorthand for X(M).

A. Linear requirements from stationarity

In this subsection, we formulate a set of linear requirements
that follow from the stationarity of X(M). Let x ∈ S[Λ] be a
realization of X . Denote

px = Prob(X = x) .

We start with the trivial requirements. Obviously, we must
have for all x ∈ S[Λ] that

px ≥ 0 .

Also, ∑
x∈S[Λ]

px = 1 .

Next, we show how we can use stationarity to get more
linear equations on (px)x∈S[Λ]. Let

Λ′ = {(i, j) : 0 ≤ i < r − 1 , 0 ≤ j < s} .

For x′ ∈ S[Λ′] we must have by stationarity that

Prob(X[Λ′] = x′) = Prob(X[σ1,0(Λ′)] = σ1,0(x′)) . (8)

As a concrete example, suppose that r = s = 3. We claim
that

Prob
(
X =

1 0 0
0 0 1
∗ ∗ ∗

)
= Prob

(
X =

∗ ∗ ∗
1 0 0
0 0 1

)
,

where ∗ denotes “don’t care”.
Both the left-hand and right-hand sides of (8) are marginal-

izations of (px)x. Thus, we get a set of linear equations on
(px)x, namely, for all x′ ∈ S[Λ′],∑

x : x[Λ′]=x′

px =
∑

x : x[σ1,0(Λ′)]=σ1,0(x′)

px .

To get more equations, we now apply the same rational
horizontally, instead of vertically. Let

Λ′′ = {(i, j) : 0 ≤ i < r , 0 ≤ j < s− 1} .

for all x′′ ∈ S[Λ′′],∑
x : x[Λ′′]=x′′

px =
∑

x : x[σ0,1(Λ′′)]=σ0,1(x′′)

px .

B. Linear equations from reflection, transposition, and com-
plementation

We now show that if S is reflection, transposition, or
complementation invariant (defined below), then we can derive
yet more linear equations.

Define vM (·) (hM (·)) as the vertical (horizontal) reflec-
tion of a rectangular configuration with M rows (columns).
Namely,

(vM (w))i,j = wM−1−i,j , and (hM (w))i,j = wi,M−1−j .

Define τ as the transposition of a configuration. Namely,

τ(w)i,j = wj,i .

For Σ = {0, 1}, denote by comp(w) the bitwise comple-
ment of a configuration w. Namely,

comp(w)i,j =

{
1 if wi,j = 0
0 otherwise .

We say that S is reflection invariant if for all M > 0 and
w ∈ ΣM×M ,

w ∈ S ⇐⇒ hM (w) ∈ S ⇐⇒ vM (w) ∈ S .

Transposition and complementation invariance is defined sim-
ilarly.

The following three claims are easily proved. (a) Suppose
that S is reflection invariant. Then w.l.o.g., for all x ∈ S[Λ],

px = pvr(x) = phs(x) .

(b) Suppose that S is transposition invariant. Also, assume
w.l.o.g., that r ≤ s, and let

Λ̃ = {(i, j) : 0 ≤ i, j < r} .

Then, w.l.o.g., for all χ ∈ S[Λ̃],∑
x : x[Λ̃]=χ

px =
∑

x : x[Λ̃]=τ(χ)

px .

(c) Suppose that S is reflection invariant. Then w.l.o.g., for all
x ∈ S[Λ],

px = pcomp(x) .

V. AN UPPER BOUND ON cap(S)
For the rest of this section, let r, s, `, ρ〈k〉, ≺〈k〉, c〈k〉, f 〈k〉,

Ψ〈k〉γ , and (a〈k〉γ , b
〈k〉
γ) be given as in Corollary 3. Recall from

Corollary 3 that we are interested in H(Y 〈k〉γ |Z〈k〉γ), in order
to bound cap(S) from above.

As a first step, we fix M and express H(Y 〈k〉γ |Z〈k〉γ) in terms
of the probabilities (px)x of the random variable X(M). For
given 1 ≤ k ≤ ` and 1 ≤ γ ≤ c〈k〉, let

y ∈ S[Υ〈k〉γ] and z ∈ S[Ψ〈k〉γ]

be realizations of Y 〈k〉γ and Z〈k〉γ , respectively. Let

p〈k〉γ,y = Prob(Y 〈k〉γ = y) and p〈k〉γ,z = Prob(Z〈k〉γ = z)

(p〈k〉γ,y and p〈k〉γ,z are functions of M). From here onward, let py
and pz be shorthand for p〈k〉γ,y and p

〈k〉
γ,z , respectively. Both py

and pz are marginalizations of (px)x, namely,

py =
∑

x∈S[Λ] : x[Υ
〈k〉
γ]=y

px , pz =
∑

x∈S[Λ] : x[Ψ
〈k〉
γ]=z

px .

Thus, for given γ and k,

H(Y 〈k〉γ |Z〈k〉γ) =
∑

y∈S[Υ
〈k〉
γ]

−py log2 py +
∑

z∈S[Ψ
〈k〉
γ]

pz log2 pz

is a function of the probabilities (px)x of X(M).
Our next step will be to reason as follows: We have

found linear requirements that the px’s satisfy and expressed
H(Y 〈k〉γ |Z〈k〉γ) as a function of (px)x. However, we do not

TABLE I
UPPER-BOUNDS ON THE CAPACITY OF SOME 2-D CONSTRAINTS.

Constraint r s k Upper bound Comparison
(2,∞)-RLL 3 8 7 0.4457 0.4459 [11]
(3,∞)-RLL 4 8 5 0.36821 0.3686 [11]
(0, 2)-RLL 3 5 2 0.816731 0.817053

n.i.b. 3 4 1 0.92472 0.927855

know of a way to actually calculate (px)x. So, instead of the
probabilities (px)x, consider the variables (p̄x)x. From this
line of thought we get our main theorem.

Theorem 4: The value of the optimization program given
in Figure 3 is an upper bound on cap(S).

Proof: First, notice that if we take p̄x = px, then (by
Section IV) all the requirements which the p̄x’s are subject to
indeed hold, and the objective function is equal to

∑̀
k=1

ρ〈k〉

c〈k〉

c〈k〉∑
γ=1

H(Y 〈k〉γ |Z〈k〉γ) .

So, the maximum is an upper bound on the above equation.
Next, by compactness, a maximum indeed exists. Since the
maximum is not a function of M , the claim now follows from
Corollary 3.

We must now show that the optimization problem in Fig-
ure 3 is an instance of concave programming [10, p. 137], and
thus easily calculated. Since the requirements that the variables
(p̄x)x are subject to are linear, this reduces to showing that
the objective function is concave in (p̄x)x. This is indeed the
case; the proof essentially follows from the log sum inequality
[9, p. 29] and is omitted due to space limitations.

Our computational results appear in Table I. To the best of
our knowledge, they are presently the tightest. We compare our
results to those obtained by the method described in [6]. When
available, these compared-to bounds are taken from previously
published work (specifically, ref. [11].) The rest are the result
of our implementation of [6]. We note that the lexicographic
orders used to obtain our results were ≺lex, and a strict total
order which we denote by ≺skip, and is defined as follows:
(i1, j1) ≺skip (i2, j2) iff
• i1 < i2, or
• (i1 = i2 and j1 ≡ 0 (mod 2) and j2 ≡ 1 (mod 2)), or
• (i1 = i2 and j1 ≡ j2 (mod 2) and j1 < j2).

REFERENCES

[1] S. Halevy and R. M. Roth, “Parallel constrained coding with application
to two-dimensional constraints,” IEEE Trans. Inform. Theory, vol. 48,
pp. 1009–1020, 2002.

[2] W. Weeks and R. E. Blahut, “The capacity and coding gain of certain
checkerboard codes,” IEEE Trans. Inform. Theory, vol. 44, pp. 1193–
1203, 1998.

[3] A. Kato and K. Zeger, “On the capacity of two-dimensional run-length
constrained code,” IEEE Trans. Inform. Theory, vol. 45, pp. 1527–1540,
1999.

[4] T. Etzion, “Cascading methods for runlength-limited arrays,” IEEE
Trans. Inform. Theory, vol. 43, pp. 319–324, 1997.

[5] S. Halevy, J. Chen, R. M. Roth, P. H. Siegel, and J. K. Wolf, “Improved
bit-stuffing bounds on two-dimensional constraints,” IEEE Trans. In-
form. Theory, vol. 50, pp. 824–838, 2004.

maximize ∑̀
k=1

ρ〈k〉

c〈k〉

c〈k〉∑
γ=1

Ξ(k, γ)

over the variables (p̄x)x∈S[Λ], where for

1 ≤ k ≤ ` , 1 ≤ γ ≤ c〈k〉 , y ∈ S[Υ〈k〉γ] , z ∈ S[Ψ〈k〉γ] ,

we define

p̄〈k〉γ,y ,
∑

x∈S[Λ] : x[Υ
〈k〉
γ]=y

p̄x , p̄〈k〉γ,z ,
∑

x∈S[Λ] : x[Ψ
〈k〉
γ]=z

p̄x ,

Ξ(k, γ) , −
∑

y∈S[Υ
〈k〉
γ]

p̄〈k〉γ,y log2 p̄
〈k〉
γ,y +

∑
z∈S[Ψ

〈k〉
γ]

p̄〈k〉γ,z log2 p̄
〈k〉
γ,z ,

and the variables p̄x are subject to the following requirements:

(i)
∑
x∈S[Λ]

p̄x = 1 .

(ii) For all x ∈ S[Λ],
p̄x ≥ 0 .

(iii) For all x′ ∈ S[Λ′],∑
x : x[Λ′]=x′

p̄x =
∑

x : x[σ1,0(Λ′)]=σ1,0(x′)

p̄x .

(iv) For all x′′ ∈ S[Λ′′],∑
x : x[Λ′′]=x′′

p̄x =
∑

x : x[σ0,1(Λ′′)]=σ0,1(x′′)

p̄x .

(v) (If S is reflection (resp. complementation) invariant) For
all x ∈ S[Λ],

p̄x = p̄vr(x) = p̄hs(x) (resp. p̄x = p̄comp(x)) .

(vi) (If S is transposition invariant) For all χ ∈ S[Λ̃],∑
x : x[Λ̃]=χ

p̄x =
∑

x : x[Λ̃]=τ(χ)

p̄x .

Fig. 3. Optimization program over the variables p̄x (assuming w.l.o.g. that
r ≤ s). The optimum is an upper bound on cap(S).

[6] S. Forchhammer and J. Justesen, “Bounds on the capacity of constrained
two-dimensional codes,” IEEE Trans. Inform. Theory, vol. 46, pp. 2659–
2666, 2000.

[7] B. H. Marcus, R. M. Roth, and P. H. Siegel, “Constrained systems and
coding for recording channels,” in Handbook of Coding Theory, V. Pless
and W. Huffman, Eds. Amsterdam: Elsevier, 1998, pp. 1635–1764.

[8] R. Burton and J. E. Steif, “Non-uniqueness of measures of maximal
entropy for subshifts of finite type,” Ergod. Th. Dynam. Sys., vol. 14,
pp. 213–235, 1994.

[9] T. M. Cover and J. A. Thomas, Elements of Information Theory. Wiley,
1991.

[10] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, UK:
Cambridge University Press, 2004.

[11] S. Forchhammer and T. V. Laursen, “Entropy of bit-stuffing-induced
measures for two-dimensional checkerboard constraints,” IEEE Trans.
Inform. Theory, vol. 53, pp. 1537–1546, 2007.

