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Consider a channel with a given input distribution. Our aim
is to degrade it to a channel with at most L output letters.
One such degradation method is the so called “greedy-merge”
algorithm. We derive an upper bound on the reduction in mutual
information between input and output. For fixed input alphabet
size and variable L, the upper bound is within a constant factor
of an algorithm-independent lower bound. Thus, we establish
that greedy-merge is optimal in the power-law sense.

I. INTRODUCTION

In myriad digital processing contexts, quantization is used to
map a large alphabet to a smaller one. For example, quantizers
are an essential building block in receiver design, used to keep
the complexity and resource consumption manageable. The
quantizer used has a direct influence on the attainable code
rate.

Another recent application is related to polar codes [1]. Polar
code construction is equivalent to evaluating the misdecoding
probability of each channel in a set of synthetic channels.
This evaluation cannot be carried out naively, since the output
alphabet size of a synthetic channel is intractably large.
One approach to circumvent this difficulty is to degrade the
evaluated synthetic channel to a channel with manageable
output alphabet size [2][3][4][5][6].

Given a design parameter L, we degrade an initial channel to
a new one with output alphabet size at most L. We assume that
the input distribution is specified, and note that this degradation
reduces the mutual information between the channel input and
output, respectively. In both examples above, this reduction is
roughly the loss in code rate due to quantization. We denote
the smallest reduction possible by ∆I∗.

Let |X | denote the channel input alphabet size, and treat it as
a fixed quantity. We show that for any input distribution and any
initial channel, ∆I∗ = O(L−2/(|X |−1)). Moreover, this bound
is attained efficiently, by the greedy-merge algorithm [2][5].
This bound is tighter than the bounds derived in [3], [4], [5] and
[6]. In fact, up to constant multipliers (dependent on |X |), this
bound is the tightest possible. Namely, [7] proves the existence
of an input distribution and a sequence of channels for which
∆I∗ = Ω(L−2/(|X |−1)). Both bounds have −2/(|X | − 1) as
the power of L, the same power-law.

II. PRELIMINARIES

We are given an input distribution and a discrete memoryless
channel (DMC) W : X → Y . Both |X | and |Y| are assumed
finite. Let X and Y denote the random variables that correspond

to the channel input and output. Denote the corresponding
distributions PX and PY . Let W (y|x) , P {Y = y|X = x}.
For brevity, let π(x) , P {X = x} = PX(x). Assuming
further that X and Y are disjoint, we abuse notation and
denote P {X = x|Y = y} and P {Y = y} as W (x|y) and π(y),
respectively. Without loss of generality, π(x) > 0 and π(y) > 0.
We do not assume that W is symmetric.

The mutual information between channel input and output
is

I(W ) , I(X;Y ) =
∑
x∈X

η(π(x))−
∑
x∈X ,
y∈Y

π(y)η(W (x|y)) ,

where η(p) , −p log p for p > 0, zero for p = 0, and the
logarithm is taken in the natural basis. We note that the input
distribution does not necessarily have to be the one that achieves
the channel capacity.

We now define the relation of degradedness between chan-
nels. A channel Q : X → Z is said to be (stochastically)
degraded with respect to a channel W : X → Y , and we write
Q 4W , if there exists a channel Φ : Y → Z such that

Q(z|x) =
∑
y∈Y

W (y|x)Φ(z|y) , (1)

for all x ∈ X and z ∈ Z . Note that as a result of the data
processing theorem, Q 4W implies ∆I , I(W )− I(Q) ≥ 0.

Although mentioned before, let us properly define the optimal
degrading loss for a given pair (W,PX) as

∆I∗ , min
Q,Φ:Q4W,
|Q|≤L

I(W )− I(Q) , (2)

where |Q| denotes the output alphabet size of the channel Q.
The optimizer Q is the degraded channel that is “closest” to W
in the sense of mutual information, yet has at most L output
letters.

III. UPPER BOUND ON OPTIMAL DEGRADING LOSS

A. Main result

Our main result is an upper bound on ∆I∗, in terms of |X |
and L. This upper bound will follow from analyzing a sub-
optimal1 degrading algorithm, called “greedy-merge”. In each
iteration of greedy-merge, we merge the two output letters
ya, yb ∈ Y that results in the smallest decrease of mutual

1For the binary-input case, optimal degrading can be realized through
dynamic programming [8]. For the non-binary case, we do not know of an
efficient realization of optimal degrading.



information between input and output, denoted ∆I . Namely,
the intermediate channel Φ maps ya and yb to a new symbol,
while all other symbols are unchanged by Φ. This is repeated
|Y| −L times, to yield an output alphabet size of L. By upper
bounding the ∆I of each iteration we obtain an upper bound
on ∆I∗. A key result is the following theorem, stating that
there exists a pair of output letters whose merger yields a
“small” ∆I .

Theorem 1. Let a DMC W : X → Y satisfy |Y| > 2|X |.
There exists a pair ya, yb ∈ Y whose merger results in a
channel Q satisfying ∆I = O

(
|Y|−

|X|+1
|X|−1

)
. In particular,

∆I ≤ µ(|X |) · |Y|−
|X|+1
|X|−1 , (3)

where,

µ(|X |) , π|X |(√
1 + 1

2(|X |−1) − 1
)2

 2|X |

Γ
(

1 + |X |−1
2

)
 2
|X|−1

,

and Γ(·) is the Gamma function.

Recall that Theorem 1 is referring to the merger of a single
pair of output letters. The following corollary is our main result,
and is basically an iterative utilization of Theorem 1.

Corollary 2. Let a DMC W : X → Y satisfy |Y| > 2|X | and
let L ≥ 2|X |. Then,

∆I∗ = min
Q,Φ:Q4W,
|Q|≤L

I(W )− I(Q) = O
(
L−

2
|X|−1

)
.

In particular, ∆I∗ ≤ ν(|X |) · L−
2

|X|−1 , where ν(|X |) ,
|X |−1

2 µ(|X |), and µ(·) was defined in Theorem 1. This bound
is attained by greedy-merge, and is tight in the power-law
sense.

Proof. If L ≥ |Y|, then obviously ∆I∗ = 0 which is not the
interesting case. If 2|X | ≤ L < |Y|, then applying Theorem 1
repeatedly |Y| − L times yields

∆I∗ ≤
|Y|∑

`=L+1

µ(|X |) · `−
|X|+1
|X|−1

≤ µ(|X |)
∫ |Y|
L

`−
|X|+1
|X|−1 d`

≤ ν(|X |) · L−
2

|X|−1 ,

by the monotonicity of `−(|X |+1)/(|X |−1). The bound is tight
in the power-law sense, by [7, Theorem 2]. �

Note that for large values of |X |, the Stirling approximation
along with some other first order approximations can be applied
to simplify ν(|X |) to ν(|X |) ≈ 16πe|X |3.

B. An alternative “distance” function

We return now to the proof of Theorem 1, and begin by
addressing the merger of a pair of output letters ya, yb ∈ Y .
Since this pair of letters is merged into a new letter yab (we
assume yab /∈ X ∪ Y), the new output alphabet of Q is Z =
Y \ {ya, yb} ∪ {yab}. The channel Q : X → Z then satisfies
Q(yab|x) = W (ya|x) +W (yb|x), whereas for all y ∈ Z ∩ Y
we have Q(y|x) = W (y|x). Using the shorthand

πab = π(yab) , πa = π(ya) , πb = π(yb) ,

one gets that πab = πa + πb. Let us denote by α = (αx)x∈X ,
β = (βx)x∈X and γ = (γx)x∈X the vectors corresponding to
posterior probabilities associated with ya, yb and yab respec-
tively. Namely, αx = W (x|ya), βx = W (x|yb), and a short
calculation shows that

γx = Q(x|yab) =
πaαx + πbβx

πab
=
πaαx + πbβx
πa + πb

. (4)

Thus, after canceling terms, one gets that

∆I = I(W )− I(Q) =
∑
x∈X

∆Ix , (5)

where ∆Ix , πabη(γx)− πaη(αx)− πbη(βx).
In order to bound ∆I , we give two bounds on ∆Ix. The

first bound was derived in [5],

∆Ix ≤ (πa + πb) · d1(αx, βx) , (6)

where for α ≥ 0 and ζ ∈ R, we define d1(α, ζ) , |ζ − α| .
The subscript “1” in d1 is suggestive of the L1 distance.

Note that we will generally use α to denote a probability
associated with an input letter, while ζ will denote a “free”
real variable, possibly negative. We will keep to this convention
for the vector case as well. In addition, let us point out that the
bound in (6) was derived assuming a uniform input distribution,
however remains valid for the general case.

We now derive the second bound on ∆Ix. For the case
where αx, βx > 0,

∆Ix = πa(η(γx)− η(αx)) + πb(η(γx)− η(βx))

(a)

≤ πaη
′(αx)(γx − αx) + πbη

′(βx)(γx − βx)

(b)
=

πaπb
πa + πb

(αx − βx)(η′(βx)− η′(αx))

(c)

≤ 1

4
(πa + πb)(αx − βx)2(−η′′(λ)) ,

where in (a) we used the concavity of η(·), in (b) the definition
of γx (see (4)), and in (c) the AM-GM inequality and the
mean value theorem where λ = θαx + (1 − θ)βx for some
θ ∈ [0, 1]. Using the monotonicity of −η′′(p) = 1/p we get
−η′′(λ) ≤ 1/min(αx, βx). Thus,

∆Ix ≤ (πa + πb) · d2(αx, βx) , (7)

where

d2(α, ζ) ,

{
(ζ−α)2

min(α,ζ) α, ζ > 0 ,

∞ otherwise .



The subscript “2” in d2 is suggestive of the squaring in the
numerator. Combining (6) and (7) yields

∆Ix ≤ (πa + πb) · d(αx, βx) , (8)

where
d(α, ζ) , min(d1(α, ζ), d2(α, ζ)) . (9)

Returning to (5) using (8) we get

∆I ≤ (πa + πb)|X | · d(α,β) , (10)

where
d(α, ζ) , max

x∈X
d(αx, ζx) . (11)

We note that we use max in (11) instead of a summation to
simplify the upcoming derivations. Moreover, according to
(10), it suffices to show the existence of a pair that is “close”
in the sense of d, assuming that πa, πb are also small enough.

Since we are interested in lowering the right hand side of
(10), we limit our search to a subset of Y , as was done in [5].
Namely, Ysmall , {y ∈ Y : π(y) ≤ 2/|Y|}, which implies

|Ysmall| ≥
|Y|
2
. (12)

Hence, πa + πb ≤ 4/|Y| and

∆I ≤ 4|X |
|Y|
· d(α,β) . (13)

We still need to prove the existence of a pair ya, yb ∈ Ysmall

that is “close” in the sense of d. To that end, as in [5], we
would like to use a sphere-packing approach. A typical use
of such an argument assumes a proper metric, yet d is not
a metric. Specifically, the triangle-inequality does not hold.
The absence of a triangle-inequality is a complication that
we will overcome, but some care and effort are called for.
Broadly speaking, as usually done in sphere-packing, we aim
to show the existence of a critical “sphere” radius, rcritical =
rcritical(|X |, |Y|) > 0. Such a critical radius will ensure the
existence of ya, yb ∈ Ysmall with corresponding α and β for
which d(α,β) ≤ rcritical.

C. Non-intersecting “spheres”

We start by giving explicit equations for the “spheres”
corresponding to d1 and d2.

Lemma 3. For α ≥ 0 and r > 0, define the sets B1,B2 as

Bi(α, r) , {ζ ∈ R : di(α, ζ) ≤ r} , i ∈ {1, 2} .

Then,
B1(α, r) = {ζ ∈ R : −r ≤ ζ − α ≤ r}

and

B2(α, r)

= {ζ ∈ R : −
√
r2/4 + α · r + r/2 ≤ ζ − α ≤

√
α · r} .

Proof. Assume ζ ∈ B1(α, r). Then ζ satisfies |ζ − α| ≤ r,
which is equivalent to −r ≤ ζ−α ≤ r, and we get the desired
result for B1(α, r). Assume now ζ ∈ B2(α, r). If ζ ≥ α, then

min(α, ζ) = α, and thus (ζ − α)2/α ≤ r, which implies
0 ≤ ζ − α ≤

√
α · r. If ζ ≤ α, then min(α, ζ) = ζ, and thus,

(ζ−α)2

ζ ≤ r, which implies −
√

r2

4 + α · r + r
2 ≤ ζ − α ≤ 0.

The union of the two yields the desired result for B2(α, r). �

Thus, we define B(α, r) , {ζ ∈ R : d(α, ζ) ≤ r}, and note
that B(α, r) = B1(α, r) ∪ B2(α, r), since d takes the min of
the two distances. Namely,

B(α, r) = {ζ ∈ R : −ω(α, r) ≤ ζ − α ≤ ω(α, r)} , (14)

where ω(α, r) , max
(√

r2/4 + α · r − r/2, r
)

and

ω(α, r) , max
(√
α · r, r

)
. To extend B to vectors, we define

R|X | as the set of vectors with real entries that are indexed by
X ,

R|X | , {ζ = (ζx)x∈X : ζx ∈ R} .

The set K|X | is defined as the set of vectors from R|X | with
entries summing to 1,

K|X | ,

{
ζ ∈ R|X | :

∑
x∈X

ζx = 1

}
.

The set K|X |+ is the set of probability vectors. Namely, the set
of vectors from K|X | with non-negative entries,

K|X |+ ,
{
ζ ∈ K|X | : ζx ≥ 0

}
.

We can now define B(α, r). For α ∈ K|X |+ let

B(α, r) ,
{
ζ ∈ R|X | : d(α, ζ) ≤ r

}
. (15)

Using (11) and (14) we have a simple characterization of
B(α, r) as a box: a Cartesian product of segments. That is,

B(α, r) =
{
ζ ∈ R|X | :

− ω(αx, r) ≤ ζx − αx ≤ ω(αx, r)
}
.

(16)

We stress that the box B(α, r) contains α, but is not necessarily
centered at it.

Recall our aim is finding an rcritical. Using our current
notation, rcritical must imply the existence of distinct ya, yb ∈
Ysmall such that β ∈ B(α, rcritical). Note that the set B(α, r)
is contained in R|X |. However, since the boxes are induced
by points α in the subspace K|X |+ of R|X |, the sphere-packing
would yield a tighter result if performed in K|X | rather than
in R|X |. Then, for α ∈ K|X |+ and r > 0, let us define

BK(α, r) = B(α, r) ∩K|X | . (17)

When considering BK(α, r) in place of B(α, r), we have
gained in that the affine dimension (see [9, Section 2.1.3])
of BK(α, r) is |X | − 1 while that of B(α, r) is |X |. However,
we have lost in simplicity: the set BK(α, r) is not a box. Indeed,
a moment’s thought reveals that any subset of K|X | with more
than one element cannot be a box.

We now show how to overcome the above loss. That is, we
show a subset of BK(α, r) which is — up to a simple transform



— a box. Denote the index of the largest entry of a vector
α ∈ K|X | as xmax(α), namely, xmax(α) , arg maxx∈X αx.

In case of ties, define xmax(α) in an arbitrary yet consistent
manner. For xmax = xmax(α) given, or clear from the context,
define ζ′ as ζ, with index xmax deleted. That is, for a given
ζ ∈ K|X |, ζ′ = (ζx)x∈X ′ ∈ R|X |−1, where X ′ , X \ {xmax}.
Note that for ζ ∈ K|X |, all the entries sum to one. Thus, given
ζ′ and xmax, we know ζ. Next, for α ∈ K|X |+ and r > 0,
define the set

C(α, r) = {ζ ∈ K|X | :

∀x ∈ X ′ , −ω′(αx, r) ≤ ζx − αx ≤ ω′(αx, r)} , (18)

where xmax = xmax(α) and

ω′(α, r) ,
ω(α, r)

|X | − 1
. (19)

Lemma 4. Let α ∈ K|X |+ and r > 0 be given. Let xmax =
xmax(α). Then, C(α, r) ⊂ BK(α, r) .

Proof. It can be easily shown that 0 ≤ ω(α, r) ≤ ω(α, r).
Thus, since (18) holds, it suffices to show that

− ω(αxmax
, r) ≤ ζxmax

− αxmax
≤ ω(αxmax

, r) . (20)

Indeed, summing the condition in (18) over all x ∈ X ′ gives∑
x∈X ′

−ω′(αx, r) ≤
∑
x∈X ′

ζx −
∑
x∈X ′

αx ≤
∑
x∈X ′

ω′(αx, r) .

Since ω(α, r) is a monotonically non-decreasing function of
α, we can simplify the above to

−ω(αxmax
, r) ≤

∑
x∈X ′

ζx −
∑
x∈X ′

αx ≤ ω(αxmax
, r) .

Since both ζ and α are in K|X |, the middle term in the above
is αxmax

− ζxmax
. Thus, (20) follows. �

Recall that our plan is to ensure the existence of a “close”
pair by using a sphere-packing approach. However, since
the triangle inequality does not hold for d, we must use a
somewhat different approach. Towards that end, define the
positive quadrant associated with α and r as

Q′(α, r) = {ζ′ ∈ R|X |−1 :

∀x ∈ X ′, 0 ≤ ζx − αx ≤ ω′(αx, r)} ,

where xmax = xmax(α) and ω′(α, r) is as defined in (19).

Lemma 5. Let ya, yb ∈ Y be such that xmax(α) = xmax(β).
If Q′(α, r) and Q′(β, r) have a non-empty intersection, then
d(α,β) ≤ r.

Proof. By (15), (17), and Lemma 4, it suffices to prove that
β ∈ C(α, r). Define C′(α, r) as the result of applying a prime
operation on each member of C(α, r), where xmax = xmax(α).
Hence, we must equivalently prove that β′ ∈ C′(α, r). By (18),
we must show that for all x ∈ X ′,

− ω′(αx, r) ≤ βx − αx ≤ ω′(αx, r) . (21)

Since we know that the intersection of Q′(α, r) and Q′(β, r)
is non-empty, let ζ′ be a member of both sets. Thus, we
know that for x ∈ X ′, 0 ≤ ζx − αx ≤ ω′(αx, r), and 0 ≤
ζx − βx ≤ ω′(βx, r). For each x ∈ X ′ we must consider two
cases: αx ≤ βx and αx > βx.

Consider first the case αx ≤ βx. Since ζx − αx ≤ ω′(αx, r)
and βx − ζx ≤ 0, we conclude that βx − αx ≤ ω′(αx, r).
Conversely, since βx − αx ≥ 0 and, by (19), ω′(αx, r) ≥ 0,
we have that βx−αx ≥ −ω′(αx, r). Thus we have shown that
both inequalities in (21) hold.

To finish the proof, consider the case αx > βx. We
have already established that ω′(αx, r) ≥ 0. Thus, since by
assumption βx − αx ≤ 0, we have that βx − αx ≤ ω′(αx, r).
Conversely, since ζx − βx ≤ ω′(βx, r) and αx − ζx ≤ 0, we
have that αx−βx ≤ ω′(βx, r). We now recall that by (19), the
fact that αx ≥ βx implies that ω′(βx, r) ≤ ω′(αx, r). Thus,
αx − βx ≤ ω′(αx, r). Negating gives βx − αx ≥ −ω′(αx, r),
and we have once again proved the two inequalities in (21). �

D. Weighted “sphere”-packing

The volume of our “sphere” Q′(α, r) unfortunately depends
on α. We would like then to alleviate this dependency by
defining a density over R|X |−1 and derive a lower bound
on the weight of Q′(α, r). Let ϕ : R → R be defined as
ϕ(ζ) , 1/

√
4ζ. Next, for ζ′ ∈ R|X |−1, abuse notation and

define ϕ : R|X |−1 → R as ϕ(ζ′) ,
∏
x∈X ′ ϕ(ζx). The weight

of Q′(α, r) is then defined as M [Q′(α, r)] ,
∫
Q′(α,r) dϕ.

The following lemma proposes a lower bound on M [Q′(α, r)]
that does not depend on α.

Lemma 6. The weight M [Q′(α, r)] satisfies

M [Q′(α, r)] ≥ r
|X|−1

2

(√
2 +

1

|X | − 1
−
√

2

)|X |−1

. (22)

Proof. Since ϕ(ζ′) is a product,

M [Q′(α, r)] =
∏
x∈X ′

∫ αx+ω′(αx,r)

αx

dζx

2
√
ζx

=
∏
x∈X ′

ψr(αx) ,

where ψr(α) ,
√
α+ ω′(α, r) −

√
α. It can be shown that

ψr(α) is decreasing when α < 2r simply by using the first
derivative. As for α ≥ 2r, it can be shown that ψ′r(α) is non-
zero. Since ψ′r(2r) > 0 we conclude that ψr(α) is increasing.
By continuity we conclude that ψr(α) is minimal for α = 2r
and thus we get (22). �

We divide the letters in Ysmall to |X | subsets, according to
their xmax value. The largest subset is denoted by Y ′, and we
henceforth fix xmax accordingly. We limit our search to Y ′.

Let V ′ be the union of all the quadrants corresponding to
possible choices of α. Namely,

V ′ ,
⋃

α∈K|X|+ ,

xmax(α)=xmax

Q′(α, r) .



In order to bound the weight of V ′, we introduce the simpler
set U ′.

U ′ ,

{
ζ′ ∈ R|X |−1 :

∑
x∈X ′

ζx ≤ 2, ζx ≥ 0 ∀x ∈ X ′
}
.

The constraint r ≤ 1 in the following lemma will be motivated
shortly.

Lemma 7. Let r ≤ 1. Then, V ′ ⊆ U ′.

Proof. Assume ζ′ ∈ V ′. Then, there exists α ∈ K|X |+ such that
0 ≤ ζx − αx ≤ ω′(αx, r) for all x ∈ X ′. Hence, ζx ≥ 0 for
all x ∈ X ′. Moreover,∑

x∈X ′
ζx ≤

∑
x∈X ′

αx +
∑
x∈X ′

ω′(αx, r)

≤ 1− αxmax + ω(αxmax , r) . (23)

There are two case to consider. In the case where αxmax
≥ 2r

we have∑
x∈X ′

ζx ≤ 1− αxmax
+

√
r2

4
+ αxmax

r − r

2

≤ 1− αxmax
+

√
α2
xmax

16
+
α2
xmax

2
− r

2
≤ 2 ,

where the second inequality is due to the assumption αxmax ≥
2r. In the case where αxmax ≤ 2r, (23) becomes∑

x∈X ′
ζx ≤ 1− αxmax + r ≤ 2− αxmax ≤ 2 ,

where we assumed r ≤ 1. Therefore, ζ′ ∈ U ′. �

The lemma above and the non-negativity of ϕ, enable us
to upper bound the weight of V ′, denoted by M [V ′], using
M [V ′] ,

∫
V′ dϕ ≤

∫
U ′ dϕ. We define the mapping ρx =

√
ζx

for all x ∈ X ′ and perform a change of variables. As a result,
U ′ is mapped to

S ′ ,

{
ρ′ ∈ R|X |−1 :

∑
x∈X ′

ρ2
x ≤ 2, ρx ≥ 0

}
,

which is a quadrant of a |X | − 1 dimensional ball of a
√

2
radius. The density function ϕ transforms into the unit uniform
density function since dζx/

√
4ζx = dρx. Hence, for r ≤ 1,

M [V ′] ≤
∫
S′

dV =
(π

2

) |X|−1
2 1

Γ
(

1 + |X |−1
2

) , (24)

where we have used the well known expression for the volume
of a multidimensional ball. Finally, we prove Theorem 1.

Proof of Theorem 1. Recall that we are assuming |Y| > 2|X |.
According to the definition of Y ′, we get by (12) that

|Y ′| ≥ |Ysmall|
|X |

≥ |Y|
2|X |

> 1 . (25)

As a result, we have at least two points in Y ′, and are therefore
in a position to apply a sphere-packing argument. Towards this

end, let r be such that the starred equality in the following
derivation holds:∑

α∈Y′
M [Q′(α, r)]

≥ |Y|
2|X |

· r
|X|−1

2

(√
2 +

1

|X | − 1
−
√

2

)|X |−1

(∗)
=
(π

2

) |X|−1
2 1

Γ
(

1 + |X |−1
2

)
≥M [V ′] .

(26)

Namely,

r ,
π

4

(√
1 +

1

2(|X | − 1)
− 1

)−2

·

 2|X |

Γ
(

1 + |X |−1
2

)
 2
|X|−1

· |Y|−
2

|X|−1 . (27)

There are two cases to consider. If r ≤ 1, then all of (26) holds,
by (22), (24) and (25). We take rcritical = r, and deduce the
existence of a pair ya, yb ∈ Y ′ for which d(α,β) ≤ r. Indeed,
assuming otherwise would contradict (26), since each Q′ in the
sum is contained in V ′, and, by Lemma 5 and our assumption,
all summed Q′ are disjoint.

We next consider the case r > 1. Now, any pair of letters
ya, yb ∈ Y ′ satisfies d(α,β) ≤ r. Indeed, by (9) and (11),

d(α,β) ≤ ‖α− β‖∞ ≤ 1 < r ,

where ‖ · ‖∞ is the maximum norm.
We have proved the existence of ya, yb ∈ Y ′ ⊂ Ysmall for

which d(α,β) ≤ r. By (13) and (27), the proof is finished.
�
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