Composing Ordered Sequential Consistency

Kfir Lev-Aria,*, Edward Bortnikovb, Idit Keidara,b, Alexander Shraer

aViterbi Department of Electrical Engineering, Technion, Haifa, Israel
bYahoo Research, Haifa, Israel

Abstract

We define ordered sequential consistency (OSC), a generic criterion for concurrent objects. We show that OSC encompasses a range of criteria, from sequential consistency to linearizability, and captures the typical behavior of real-world coordination services, such as ZooKeeper. A straightforward composition of OSC objects is not necessarily OSC, e.g., a composition of sequentially consistent objects is not sequentially consistent. We define a global property we call leading ordered operations, and prove that it enables correct OSC composition.

Keywords: Composability, Consistency, Distributed Systems

1. Introduction

In this work we define a generic correctness criterion named Ordered Sequential Consistency (OSC), which captures a range of criteria, from sequential consistency \cite{1} to linearizability \cite{2}.

We use OSC to capture the semantics of coordination services such as ZooKeeper \cite{3}. These coordination services provide so-called “strong consistency” for updates and some weaker semantics for reads. They are replicated for high-availability, and each client submits requests to one of the replicas. Reads are not atomic so that they can be served fast, i.e., locally by any of the replicas, whereas update requests are serialized via a quorum-based protocol...
based on Paxos [4]. Since reads are served locally, they can be somewhat stale but nevertheless represent a valid system state.

In the literature, these services’ guarantees are described as atomic writes and FIFO ordered operations for each client [3]. This definition is not tight in two ways: (1) linearizability of updates has no meaning when no operation reads the written values; and (2) this definition allows read operations to read from a future write, which obviously does not occur in any real-world service. A special case of OSC, which we call OSC(U), captures the actual guarantees of existing coordination services.

Although supporting OSC(U) semantics instead of atomicity of all operations enables fast local reads, this makes services non-composable: correct OSC(U) coordination services may fail to provide the same level of consistency when combined [5]. Intuitively, the problem arises because OSC(U), similarly to sequential consistency [1], allows sub-set of operations to occur “in the past”, which can introduce cyclic dependencies.

In a companion systems paper [5] we present ZooNet, a system for modular composition of coordination services, which addresses this challenge: Consistency is achieved on the client side by judiciously adding synchronization requests called leading ordered operations. The key idea is to place a “barrier” that limits how far in the past reads can be served from. ZooNet does so by adding a “leading” update request prior to a read request whenever the read is addressed to a different service than the previous one accessed by the same client. We provide here the theoretical underpinnings for the algorithm implemented in ZooNet.

Proving the correctness of ZooNet is made possible by the OSC definition that we present in this paper. Interestingly, Vitenberg and Friedman [6] showed that sequential consistency, when combined with any local (i.e., composable) property continues to be non-composable. Our approach circumvents this impossibility result since having leading ordered operations is not a local property.
2. Model and Notation

We use a standard shared memory execution model [2], where a set \(\phi \) of sequential processes access shared objects from some set \(X \). An object has a name label, a value, and a set of operations used for manipulating and reading its value. An operation’s execution is delimited by two events, invoke and response.

A history \(\sigma \) is a sequence of operation invoke and response events. An invoke event of operation \(op \) is denoted \(i_{op} \), and the matching response event is denoted \(r_{op} \). For two events \(e_1, e_2 \in \sigma \), we denote \(e_1 <_\sigma e_2 \) if \(e_1 \) precedes \(e_2 \) in \(\sigma \), and \(e_1 \leq_\sigma e_2 \) if \(e_1 = e_2 \) or \(e_1 <_\sigma e_2 \). For two operations \(op \) and \(op' \) in \(\sigma \), \(op \) precedes \(op' \), denoted \(op <_\sigma op' \), if \(r_{op} <_\sigma i_{op'} \), and \(op \leq_\sigma op' \) if \(op = op' \) or \(op <_\sigma op' \). Two operations are concurrent if neither precedes the other.

For a history \(\sigma \), complete(\(\sigma \)) is the sequence obtained by removing all operations with no response events from \(\sigma \). A history is sequential if it begins with an invoke event and consists of an alternating sequence of invoke and response events, s.t. each invoke is followed by the matching response.

For \(p \in \phi \), the process subhistory \(\sigma|p \) of a history \(\sigma \) is the subsequence of \(\sigma \) consisting of events of process \(p \). The object subhistory \(\sigma_x \) for an object \(x \in X \) is similarly defined. A history \(\sigma \) is well-formed if for each process \(p \in \phi \), \(\sigma|p \) is sequential. For the rest of our discussion, we assume that all histories are well-formed. The order of operations in \(\sigma|p \) is called the process order of \(p \).

For the sake of our analysis, we assume that each subhistory \(\sigma_x \) starts with a dummy initialization of \(x \) that updates it to a dedicated initial value \(v_0 \), denoted \(di_x(v_0) \), and that there are no concurrent operations with \(di_x(v_0) \) in \(\sigma_x \).

We refer to an operation that changes the object’s value as an update operation. The sequential specification of an object \(x \) is a set of allowed sequential histories in which all events are associated with \(x \). For example, the sequential specification of a read-write object is the set of sequential histories in which each read operation returns the value written by the last update operation that precedes it.
3. Ordered Sequential Consistency

Definition 1 (OSC(A)). A history σ is OSC w.r.t. a subset A of the objects’ operations if there exists a history σ' that can be created by adding zero or more response events to σ, and there is a sequential permutation π of complete(σ'), satisfying the following:

OSC_1 (sequential specification): $\forall x \in X, \pi_x$ belongs to the sequential specification of x.

OSC_2 (process order): For two operations o and o', if $\exists p \in \phi : o <_{\sigma|p} o'$ then $o <_\pi o'$.

OSC_3 (A-real-time order): $\forall x \in X, \text{for an operation } o \in A \text{ and an operation } o' \text{ (not necessarily in } A) \text{ s.t. } o, o' \in \sigma_x$, if $o' <_\sigma o$ then $o' <_\pi o$.

Such π is called a serialization of σ. An object is OSC(A) if all of its histories are OSC(A).

We assume that $\forall x \in X, di_x(v_0) \in A$. Linearizability and sequential consistency are both special cases of OSC(A): (1) we get linearizability using A that consist of all of the objects’ operations; and (2) we get sequential consistency with A that consists only of dummy initialization operations, which means that there is no operation that precedes an A-operation, i.e., OSC_3 is null, and we left with the sequential specification and process order of an object.

If A consists of the objects’ update operations, denoted U, then OSC(U) captures the semantics of coordination services: (1) updates are globally ordered (by OSC_3); and (2) all operations see some prefix of that order (by OSC_3), while respecting each client process order (by OSC_2).

4. OSC(A) Composability via Leading A-Operations

In this section we show that a history σ of OSC(A) objects satisfies OSC(A), if σ has leading ordered A-operations. Generally, we prove the composition by ordering every A-operation o_A on object x, according to the first event $e \in \sigma$.
s.t. $e \leq_{\sigma} r_{o_A}$ and $i_{o_A} <_{\pi_x} e$. Then, we extend that order to a total order on all operations, by placing every non-A-operation after the A-operation that precedes it in their object’s serialization. Finally, we show that if σ has leading ordered A-operations, then the total order satisfies $\text{OSC}(A)$. Intuitively, we can think of the leading A-operations as a barrier for the non-A-operations, that maintains the total order between objects.

Given a history σ of $\text{OSC}(A)$ objects, and a set of serializations $\Pi = \{\pi_x\}_{x \in \mathcal{X}}$ of $\{\sigma_x\}_{x \in \mathcal{X}}$, we define a strict total order on all operations in Π. We refer to an operation $o \in A$ as an A-operation, and define the future set of an A-operation

Definition 2 (A-operation future set). Given a history σ of $\text{OSC}(A)$ objects, an object $x \in \sigma$, a serialization π_x of σ_x, and an A-operation $o_A \in \sigma_x$, the future set of o_A in π_x is $F^\pi_{\sigma}(o_A) \triangleq \{o \in \pi_x | o_A \leq_{\pi_x} o\}$.

We now define an A-operation’s first response event to be the earliest response event of an operation in its future set.

Definition 3 (First response event). Given a history σ of $\text{OSC}(A)$ objects, an object $x \in \sigma$, a serialization π_x of σ_x, and an A-operation $o_A \in \pi_x$, the first response event of o_A in π_x, denoted $fr^\pi_{\sigma}(o_A)$, is the earliest response event in σ of an operation in $F^\pi_{\sigma}(o_A)$.

Note that it is possible that $fr^\pi_{\sigma}(o_A)$ is o_A’s response event. We make two observations regarding first responses:

Observation 1. Given $\text{OSC}(A)$ objects’ σ, an object $x \in \sigma$, a serialization π_x of σ_x, and an A-operation $o_A \in \pi_x$, then $i_{o_A} <_{\sigma} fr^\pi_{\sigma}(o_A)$.

Proof. By definition, $fr^\pi_{\sigma}(o_A)$ is a response event in σ of an operation o s.t. $o_A \leq_{\pi_x} o$. If $fr^\pi_{\sigma}(o_A) <_{\sigma} i_{o_A}$, i.e., $r_o <_{\sigma} i_{o_A}$, then $o <_{\sigma} o_A$, a contradiction to OSC_3. \qed

Observation 2. Let σ be $\text{OSC}(A)$ objects’ history, and let π_x be a serialization of σ_x for some x. For two A-operations $o, o' \in \pi_x$, if $o <_{\pi_x} o'$, then $fr^\pi_{\sigma}(o) \leq_{\sigma} fr^\pi_{\sigma}(o')$.

5
Proof. Since \(o <_{\pi_x} o' \), we get \(F^\pi_\sigma(o') \subseteq F^\pi_\sigma(o) \). By Definition 3, \(fr^\pi_\sigma(o') \) is a response event of an operation \(o_1 \in F^\pi_\sigma(o') \), and therefore \(o_1 \in F^\pi_\sigma(o) \). Thus, \(fr^\pi_\sigma(o) \) is either \(fr^\pi_\sigma(o') \) or an earlier response event in \(\sigma \).

To define our strict total order on operations we begin with \(A \)-operations:

Definition 4 (A-II-order). Let \(\sigma \) be a history of \(OSC(A) \) objects. Let \(\Pi = \{\pi_x\}_{x \in X} \) be a set of serializations of \(\{\sigma_x\}_{x \in X} \). Let \(x, y \in X \), then for two \(A \)-operations \(o_A \in \pi_x \) and \(o'_A \in \pi_y \), we define their A-II-order, denoted \(<_{\text{AII}} \), as follows: (\(<\) If \(x = y \), i.e., \(o_A, o'_A \in \pi_x \), then \(o_A <_{\text{AII}} o'_A \) iff \(o_A <_{\pi_x} o'_A \); otherwise, (\(fr\) \(x \neq y \), and \(o_A <_{\text{AII}} o'_A \) iff \(fr^\pi_\sigma(o_A) <_{\sigma} fr^\pi_\sigma(o'_A) \).)

Lemma 1. For a history \(\sigma \) of \(OSC \) objects and a set of serializations \(\Pi = \{\pi_x\}_{x \in X} \) of \(\{\sigma_x\}_{x \in X} \), A-II-order is a strict total order on \(A \)-operations in \(\Pi \).

Proof. Irreflexivity, antisymmetry, and comparability follow immediately from the definition of \(<_{\text{AII}} \). We show that \(<_{\text{AII}} \) satisfies transitivity.

Let \(o_A, o'_A \), and \(o''_A \) be three \(A \)-operations s.t. \(uo_1 <_{\text{AII}} uo_2 <_{\text{AII}} uo_3 \); we need to prove that \(uo_1 <_{\text{AII}} uo_3 \). We consider four cases according to the condition by which each of the pairs is ordered:

1. \((<, <) \) If \(\exists x \in X \) \(o_A, o'_A, o''_A \in \pi_x \), then \(o_A <_{\pi_x} o'_A <_{\pi_x} o''_A \) implies \(o_A <_{\pi_x} o'_A \), and thus \(o_A <_{\text{AII}} o'_A \).
2. \((<, fr) \) If \(\exists x, y \in X \) \(x \neq y \) \(o_A \in \pi_x, o'_A \in \pi_y \), and \(fr^\pi_\sigma(o_A) <_{\sigma} fr^\pi_\sigma(o'_A) \), by Observation 2, \(fr^\pi_\sigma(o_A) \leq_{\sigma} fr^\pi_\sigma(o'_A) \), therefore \(fr^\pi_\sigma(o_A) <_{\sigma} fr^\pi_\sigma(o''_A) \), and \(o_A <_{\text{AII}} o''_A \).
3. \((fr, <) \) If \(\exists x, y \in X \) \(x \neq y \) \(o_A \in \pi_x, o'_A \in \pi_y \), and \(fr^\pi_\sigma(o_A) <_{\sigma} fr^\pi_\sigma(o'_A) \), by Observation 2, \(fr^\pi_\sigma(o'_A) \leq_{\sigma} fr^\pi_\sigma(o''_A) \). We get \(fr^\pi_\sigma(o_A) <_{\sigma} fr^\pi_\sigma(o''_A) \), therefore \(o_A <_{\text{AII}} o''_A \).
4. \((fr, fr) \) If \(\exists x, y, z \in X \) \(x \neq y \) \(y \neq z \) \(o_A \in \pi_x, o'_A \in \pi_y \), and \(o''_A \in \pi_z \), this means that \(fr^\pi_\sigma(o_A) <_{\sigma} fr^\pi_\sigma(o'_A) \) and \(fr^\pi_\sigma(o'_A) <_{\sigma} fr^\pi_\sigma(o''_A) \). By transitivity of \(<_{\sigma}, fr^\pi_\sigma(o_A) <_{\sigma} fr^\pi_\sigma(o'_A) \). If \(z \neq x \), then \(o_A <_{\text{AII}} o'_A \). If \(z = x \), by the contrapositive of Observation 2, \(o_A <_{\pi_x} o'_A \), and \(o_A <_{\text{AII}} o'_A \).
We extend $<_{AH}$ to a weak total order in the usual way: $o_1 \leq_{AH} o_2$ if $o_1 <_{AH} o_2$ or $o_1 = o_2$. For a history σ, a serialization π_x of σ_x, and an operation o in π_x, the last A-operation before o in π_x, denoted $lA_{\pi_x}(o)$, is the latest A-operation in the prefix of π_x that ends with o. Note that if o is an A-operation then $lA_{\pi_x}(o) = o$; and that since every history starts with a dummy initialization, every operation that is not in A is preceded by at least one A-operation and so $lA_{\pi_x}(o)$ is well-defined. We use last A-operations to extend the A-Π-order to a strict total order on all operations in Π.

Definition 5 (\Pi-order). Let σ be a history of OSC(A) objects. Let $\Pi = \{\pi_x\}_{x \in X}$ be a set of serializations of $\{\sigma_x\}_{x \in X}$, and let x and y be objects in X. For two operations $o_1 \in \pi_x$ and $o_2 \in \pi_y$, we define Π-order, denoted $<_{\Pi}$, as follows:

\begin{itemize}
 \item If $lA_{\pi_x}(o_1) \neq lA_{\pi_y}(o_2)$, then $o_1 <_{\Pi} o_2$ iff $lA_{\pi_x}(o_1) <_{AH} lA_{\pi_y}(o_2)$;
 \item If $lA_{\pi_x}(o_1) = lA_{\pi_y}(o_2)$, then $x = y$, and $o_1 <_{\Pi} o_2$ iff $o_1 <_{\pi_x} o_2$.
\end{itemize}

We now observe that $<_{\Pi}$ generalizes all the serializations $\pi_x \in \Pi$:

Observation 3. Let σ be a history of OSC(A) objects, and $\pi_x \in \Pi$ a serialization of σ_x for some object $x \in X$. For two operations $o_1, o_2 \in \pi_x$, if $o_1 <_{\pi_x} o_2$ then $o_1 <_{\Pi} o_2$.

Proof. Since $o_1 <_{\pi_x} o_2$, then $lA_{\pi_x}(o_1) \leq_{\pi_x} lA_{\pi_x}(o_2)$. If $lA_{\pi_x}(o_1) = lA_{\pi_x}(o_2)$ then by Definition 5, $o_1 <_{\Pi} o_2$. Otherwise, by Definition 4, $lA_{\pi_x}(o_1) <_{AH} lA_{\pi_x}(o_2)$ and by Definition 5, $o_1 <_{\Pi} o_2$. \qed

Lemma 2. Let σ be a history of OSC(A) objects, and $\Pi = \{\pi_x\}_{x \in X}$ be a set of serializations of $\{\sigma_x\}_{x \in X}$, then Π-order is a strict total order on all operations in Π.

Proof. Irreflexivity, antisymmetry, and comparability follow immediately from the definition of $<_{\Pi}$. We show that $<_{\Pi}$ satisfies transitivity.
Let \(o_1, o_2, \) and \(o_3 \) be three operations on objects \(x, y, z \), resp., s.t. \(o_1 <_\Pi o_2 <_\Pi o_3 \); we need to prove that \(o_1 <_\Pi o_3 \).

For every \(o_i \) and \(o_j \), by Definition 5 \(o_i <_\Pi o_j \) implies \(\lambda A_\pi_x(o_i) \leq_A H \lambda A_\pi_y(o_j) \).

By transitivity of \(\leq_A H \) (Lemma 1), we get from \(\lambda A_\pi_x(o_1) \leq_A H \lambda A_\pi_y(o_2) \leq_A H \lambda A_\pi_z(o_3) \) that \(\lambda A_\pi_x(o_1) \leq_A H \lambda A_\pi_z(o_3) \).

If \(\lambda A_\pi_x(o_1) <_A H \lambda A_\pi_x(o_3) \) then by Definition 5 \(o_1 <_\Pi o_3 \). If \(\lambda A_\pi_x(o_1) = \lambda A_\pi_x(o_3) \), then by \(\lambda A_\pi_x(o_1) \leq_A H \lambda A_\pi_y(o_2) \leq_A H \lambda A_\pi_z(o_3) \) we get \(\lambda A_\pi_x(o_1) = \lambda A_\pi_y(o_2) = \lambda A_\pi_z(o_3) \), and \(x = y = z \). Therefore by \(o_1 <_\Pi o_2 <_\Pi o_3 \) and Definition 5 \(o_1 <_\pi x o_2 <_\pi x o_3 \), and thus by Definition 5 \(o_1 <_\Pi o_3 \). \(\Box \)

Note that \(\Pi \)-order is always defined for compositions of OSC objects. Since it generalizes all the serializations \(\pi_x \) (Observation 3), it preserves OSC\(_1\) and OSC\(_3\). Nevertheless, OSC\(_2\) is not guaranteed.

To support OSC\((A)\) composition we extend each object with a \emph{sync} operation, which does not change the object’s state and does not return any value, but belongs to \(A \). For example, to compose \(OSC(\{di_x(v_0)|\forall x \in X\}) \) objects, we extend each of them to be an \(OSC(\{sync\} \cup \{di_x(v_0)|\forall x \in X\}) \) object and then compose them via adding sync operations.

We say that in a history \(\sigma \) there are \emph{leading ordered operations} if for every operation \(o \not\in A \) by a process \(p \) in \(\sigma \), the last operation of \(p \) before \(o \) is on the same object. This also means that between every two operations \(o \not\in A \) and \(o' \not\in A \) of different objects by the same process in \(\sigma \), there is an operation \(o_A \in A \) to the second object. We next prove that adding leading ordered operations allows for correct OSC composition.

Theorem 1. If a history \(\sigma \) of OSC\((A)\) objects has leading ordered operations, then \(\sigma \) is OSC\((A)\).

\begin{proof}
Let \(\Pi = \{\pi_x\}_{x \in X} \) be a set of serializations of \(\{\sigma_x\}_{x \in X} \), and let \(\pi \) be the sequential permutation of \(\sigma \) defined by \(<_\Pi \). We now prove that \(\pi \) satisfies OSC\((A)\). OSC\(_1\) and OSC\(_3\) follow immediately from Observation 3.

We prove OSC\(_2\). Let \(o_1 \) and \(o_2 \) be two operations in \(\Pi \) for which \(\exists p \in \phi : \)
\[o_1 <_{\sigma[p]} o_2. \]
We now show that \(o_1 <_\Pi o_2 \).
\end{proof}
We start by proving the claim for two consecutive operations in \(\sigma|p \). If both operations are on the same object, then by Observation 3, \(o_1 <_\Pi o_2 \), as needed. Otherwise, \(\exists x, y \in X, x \neq y : o_1 \in \pi_x, o_2 \in \pi_y \), and \(o_1 \) immediately precedes \(o_2 \) in \(\sigma|p \). By leading ordered operations, since \(o_1 \) and \(o_2 \) are not on the same object, \(o_2 \) is a \(A \)-operation and hence \(lA_{\pi_y}(o_2) = o_2 \).

By definition, \(fr^\sigma_{\pi_x}(lA_{\pi_x}(o_1)) \leq_\sigma r_{o_1} \). Since \(r_{o_1} <_\sigma i_{o_2} \), and by Observation 1, \(i_{o_2} <_\sigma fr^\sigma_{\pi_x}(o_2) \), we get that \(fr^\sigma_{\pi_x}(lA_{\pi_x}(o_1)) <_\sigma fr^\sigma_{\pi_x}(o_2) \). By Definition 4, \(lA_{\pi_x}(o_1) <_{\Pi} o_2 \), and by Definition 5, \(o_1 <_{\Pi} o_2 \).

Thus, every two consecutive operations \(o^i, o^{i+1} \in \Pi \) that are in \(\sigma|p \) satisfy \(o^i <_{\Pi} o^{i+1} \). By Lemma 2, \(<_{\Pi} \) is a strict total order on all operations, and therefore by transitivity, we get \(o_1 <_{\Pi} o_2 \).

Acknowledgments. We thank Alexey Gotsman for helpful comments on an earlier draft. Kfir Lev-Ari is supported in part by the Hasso-Plattner Institute (HPI) Research School. This work was partially supported by the Israeli Ministry of Science.

