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Synchronization between two weakly coupled delay-line oscillators
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We study theoretically the generation of a continuous-wave signal by two weakly coupled delay-line oscillators.
In such oscillators, the cavity length is longer than the wavelength of the signal. We show by using an analytical
solution and comprehensive numerical simulations that in delay-line oscillators, the dynamics of the amplitude
response cannot be neglected even when the coupling between the oscillators is weak. Therefore, weakly coupled
delay-line oscillators cannot be accurately modeled by using coupled phase-oscillator models. In particular,
we show that synchronization between the oscillators can be obtained in cases that are not allowed by coupled
phase-oscillator models. We study the stability of the continuous-wave solutions. In delay-line oscillators, several
cavity modes can potentially oscillate. To ensure stability, the bandwidth of the delay-line oscillator should be
limited. We show that the weakly coupled delay-line oscillator model that is described in this paper can be used
to accurately model the synchronization between two weakly coupled optoelectronic oscillators. A very good
quantitative agreement is obtained between a comprehensive numerical model to study optoelectronic oscillators
and the model results given in this paper.
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I. INTRODUCTION

Synchronization between two coupled oscillators has been
studied extensively in many fields [1–21]. Two self-sustained
oscillators which oscillate autonomously with different natural
frequencies can start oscillating with a common frequency
even if they interact weakly with each other [1–5]. Many
studies on synchronization were performed by using coupled
phase-oscillator models that consider only the dynamics of the
oscillator phases, and ignore the amplitude dynamics. Such
models were justified when the coupling is weak and hence
the amplitude change is small and can therefore be neglected
[6]. One of the most well-known models for coupled phase
oscillators is the Kuramoto model [7]. Collective behavior
of coupled phase-oscillator systems was studied extensively
[7,8]. The original Kuramoto model is based on the assumption
that the coupling between the oscillators is instantaneous. The
effect of a finite time delay on the coupling between phase
oscillators has been widely studied by extending the Kuramoto
model [8–13]. When the coupling is strong, the amplitude
response of the oscillators must be retained to describe new
phenomena such as amplitude death [6,14,15].

In this paper, we analyze the synchronization between two
weakly coupled delay-line oscillators. Delay-line oscillators
are embedded with a feedback path that has a loop delay τ .
We show that the amplitude response is required to model
such weakly coupled delay-line oscillators. Thus, weakly
coupled delay-line oscillators cannot be accurately modeled
by coupled-phase-oscillator models. Our study shows that
when the coupling adds a π/2 phase, there are two terms that
contribute to the synchronization region, a term that is linearly
dependent on the coupling parameter, and another term that
is quadratically dependent on the coupling parameter. While
the linear term contribution to the synchronization region
is well known from phase-oscillators models, the quadratic
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term contribution was not analyzed. The physical effect of
the quadratic term enables two delay-line oscillators to get
synchronized under conditions that only the linear term would
not allow. We show the conditions under which the quadratic
term dominates the synchronization region for two similar
delay-line oscillators. We study the small-signal stability of
the solutions. The presence of low-intensity cavity modes
should be taken into account in the stability analysis of the
solution.

The effect of synchronization between oscillators has an
important consequences for practical implementations, such as
coupled electrical oscillators [1–5] and coupled lasers [16–21].
In this paper, we apply the theory to another important
application—two weakly coupled optoelectronic oscillators
(OEOs). OEOs are hybrid devices that contain both electrical
and optical components [22]. The amplification is obtained
by using an rf amplifier and a long optical fiber is used as a
high-Q cavity. An electro-optic modulator is used to convert
the rf signal into light modulation. The nonlinear transfer curve
of the modulator often determines the gain saturation. OEOs
can oscillate in several cavity modes. Locking of two OEOs
is used to prevent mode-hopping and to improve the OEO
performance [23,24]. In a previous work, we have developed
a comprehensive numerical simulation to study the coupling
between two OEOs [25]. A very good quantitative agreement
was obtained between the comprehensive numerical simu-
lation and the experimental results [25]. We show that the
results of the comprehensive numerical simulation for two
weakly coupled OEOs are in good quantitative agreement
with the results of the weakly coupled delay-line oscillator
model that is presented in this paper. We used the delay-
line oscillator model to study the conditions under which a
synchronized continuous-wave signal can be obtained by two
weakly coupled OEOs. We analyze the effect of the coupling
phase on the synchronization properties of OEOs. In particular,
we explain why two identical OEOs that are weakly coupled
to each other can be synchronized. This result is not obtained
by using phase-oscillator models.
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Chaos synchronization in coupled OEOs has been studied
in previous works, such as [26–28]. The coupled OEOs were
used to study potential applications such as chaos-based
communications and secure communications with chaos.
However, these works do not refer to the continuous-wave
solution and do not study the conditions under which such a
solution can be obtained by weakly coupled OEOs. Chaotic
behavior of a single-loop OEO can be obtained by increasing
its small-signal open-loop gain [29,30], and can be avoided by
limiting the intracavity filter bandwidth [30]. In this paper, the
small-signal open-loop gain of each of the OEOs is assumed to
be small enough such that a continuous-wave signal is obtained
when the OEOs are not coupled.

The rest of this paper is organized as follows: In Sec. II, we
describe the model of weakly coupled delay-line oscillators
and show the derivation of the weakly coupled differential
equations. In Sec. III, we derive an analytical solution for the
cases of the zero- and the π/2-coupling phase. In Sec. IV, we
demonstrate the results in two similar delay-line oscillators that
are coupled to each other in the case of the zero- and the π/2-
coupling phase. In Sec. V, we describe a comparison of the
analytical results to the comprehensive numerical simulation
results that was developed to study coupled OEOs, and in
Sec. VI we describe the small-signal stability analysis of the
obtained solutions. We finally conclude in Sec. VII.

II. THEORETICAL FRAMEWORK

A schematic description of the system that we model
is shown in Fig. 1. The system consists of two coupled
delay-line oscillators. Each of the two oscillators (j = 1,2)
contains a saturable amplifier, a loop delay τj , and a filter
with a frequency response, Fj (ω)= |F (ω)| exp[iϕF

j (ω)]. In the
absence of coupling, each of the oscillators is a self-sustained
oscillator that generates a continuous-wave signal with a
frequency ωj , which is referred to as the natural frequency
of the j th oscillator. In general, the Barkhausen condition for
the natural frequencies implies that ωjτj − ϕF

j (ωj ) = 2πNj ,
where Nj is an integer and τj are the loop delay in the
oscillators. For the sake of simplicity, the loop delay of the
oscillators τj is defined without the loss of generality, such
that ϕF

j (ωj ) = 0. Therefore, the Barkhausen condition for
the natural frequencies is ωjτj = 2πNj [31]. The oscillating
signal in each of the two uncoupled oscillators can be described
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FIG. 1. Schematic description of the weakly coupled delay-line
oscillators model. Each of the delay-line oscillators contains a
saturable amplifier with a saturable gain xG

j (T ) = Gj [|xc
j (T )|]xc

j (T ),
a delay line τj , and a filter with a frequency response, Fj (ω). xj (T ),
xc

j (T ), and xG
j (T ) are the signals before the coupler, after the coupler,

and after the saturable amplifier, respectively. The dynamic equations
for the oscillating signal are given by Eqs. (5).

by

sj (t,T ) = |xj (T )| cos[ωj t + φj (T )]

= xj (T ) exp(iωj t)/2 + c.c., (1)

where t is a fast time scale on the order of t ∼ ω−1
j , T is

a slow time scale on the order of the loop delay T ∼ τj ,
φj (T ) is the phase of the oscillating signal, and xj (T ) =
|xj (T )| exp[iφj (T )] is the phasor of the oscillating signal
sj (t,T ). We assume that the complex signal envelope, xj (T ),
is slowly varying in compare with the natural frequency:
dφj/dT � ωj and d|xj |/dT � |xj |ωj .

The coupling between the two delay-line oscillators is
described by(

xc
1(T )

xc
2(T )

)
=

(
s11 s12

s21 s22

) (
x1(T )

x2(T )

)
, (2)

where xj (T ) and xc
j (T ) are defined as the complex envelopes

of the oscillating signals before and after the coupling,
respectively, and sj,j = ρj exp(iθj ), sj,3−j = κj exp(iψj ), are
the complex coupling coefficients. The coupling between the
two oscillators is linear and is frequency-independent.

We are interested in the conditions under which frequency
entrainment is obtained, such that the two oscillators oscillate
with a common frequency, ω0. Our theoretical framework is
based on the following assumptions: (a) The saturable ampli-
fier has an instantaneous response and the nonlinear transfer
function of the amplifier can be described by Gj [|xc

j (T )|],
where xc

j (T ) is the complex envelope of the signal at the input
port of the amplifier. (b) The bandwidth of each of the filters
is much narrower than the corresponding natural frequencies.
As a result, the complex signal envelope, xj (T ), is slowly
varying in comparison with the carrier period: dφj/dT � ωj

and d|xj |/dT � |xj |ωj . (c) The relative change in the phasor
of the oscillating signal from one round trip to the following is
small in each of the two oscillators. This assumption implies
a weak coupling, such that κj |xj |/(ρn|xn|) � 1, n = 1,2
j = 3 − n. (d) The model neglects processes that convert
phase modulation to amplitude modulation and vice versa.

According to assumption (c), the oscillating signal can be
regarded as a quasiperiodic signal [32], and as a result can be
expanded as

xc
j (T ) =

∞∑
m=−∞

am,j (T ) exp{i[�m,jT + φm,j (T )]}, (3)

where am,j exp(iφm,j ) denote the Fourier coefficients, m is an
integer number, and �m,j = 2πm/τj .

In this paper, we are interested in a continuous-wave (CW)
solution for the oscillating signals, sj , in which most of the
signal energy is contained in a single oscillating mode, and
hence a2

0,j (T ) � ∑
m�=0 a2

m,j (T ). We denote m = 0 as the
index of the oscillating mode, and m �= 0 as the indices of
the low-intensity modes. Therefore, the amplitudes and the
phases of the oscillating signals can be approximated by

uj (T ) ≡ |xc
j (T )| ≈ a0,j (T ),

(4)
φj (T ) ≈ φ0,j (T ),
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respectively. According to Appendix A, the dynamic equations
for the oscillating mode are

u̇n = un[ρnVn(un)/un − 1]/τn + [κjVj (uj )/τn] cos(γjn),
(5)

φ̇n = ωn − ω0 − (kjn/τn) sin(γjn) + θn/τn,

where n = 1,2 is the oscillator index, j = 3 − n, u̇n is the time
derivative of un with respect to the long time scale, T , τj are
the loop delays, Vj (uj ) = Gj (uj )uj are the amplitudes at the
amplifiers output, Gj (uj ) are the nonlinear amplifier response,
kjn(T ) = κjVj [uj (T )]/[ρnVn[un(T )]],

γjn = ω0(τj − τn) − ψj + θn + (−1)nφ, (6)

φ = φ2 − φ1, and the weak-coupling approximation re-
quires kjn � 1. In deriving Eqs. (5), it is assumed that
F (ω) ≈ 1 for the oscillating mode ω ≈ ω0.

A. Analogy to the coupled phase-oscillator model

In previous works, it was assumed that when the coupling
between two oscillators is weak, the coupled oscillators can
be modeled as phase oscillators, in which only the oscillator
phase is used to describe the dynamics of the oscillators
[6]. In this case, the amplitudes of two weakly coupled
self-sustained oscillators are assumed to be equal to the
free-running amplitudes, such that uj = u0

j , when u0
j are the

free-running amplitudes, j = 1,2.
The two coupled equations for the phase dynamic in the

delay-line oscillators that were given in Eqs. (5) look similar
to the well-known coupled phase-oscillator equations [7–13]
if we set θj = 0, uj = u0

j and use

ϕj = ω0t + φj , (7)

such that

ϕ̇1 = ω1 − k0
21/τ1 sin[ϕ1(t1) − ϕ2(t2) − ψ2],

(8)
ϕ̇2 = ω2 − k0

12/τ2 sin[ϕ2(t2) − ϕ1(t1) − ψ1],

where k0
jn = κju

0
j /u

0
n, tj = t − τj . A major difference be-

tween Eqs. (5) and (8) is that the coupling parameters in
Eqs. (5), kjn, are in general a function of the oscillating
amplitudes, uj . This is in contrast to the Kuramoto model and
other phase-oscillator models [4], in which it is assumed that
the oscillating amplitudes in the synchronized state are equal
to the free-running amplitudes, uj = u0

j , and the coupling
parameters are therefore constants. We shall show that the
amplitude dynamics, which is present in Eqs. (5) and is
missing from the coupled phase-oscillator model, is required to
accurately describe the synchronization region of two similar
weakly coupled delay-line oscillators that are coupled with a
coupling phase of ψj = π/2, j = 1,2.

B. Phasor dynamic equations with long time-scale parameters

The synchronous CW solutions of the weakly coupled
delay-line oscillators can be found by setting u̇j = φ̇j = 0
in Eqs. (5). In this case, Eqs. (5) have four unknowns: uj , the
amplitudes of the oscillating signals; φ, the relative phase
between the signals; and ω0, the common angular frequency
when the two oscillators are synchronized to each other. The
parameters of Eqs. (5) are the loop delays, τj , the coupling

coefficients, snj , and the nonlinear response of the saturable
amplifier, Gj (uj ).

The loop delays, τj , and the common oscillation frequency,
ω0, can belong to different time scales in delay-line oscillators.
For example, for a typical OEO, the oscillation frequency is
about 10 GHz while the loop delays are of the order of 0.1–10
μs. The different time scales in Eqs. (5) make it inconvenient
to be solved. Thus, to calculate the parameter ω0τj in Eqs. (5)
with an accuracy of 1%, the loop delay should be specified with
an accuracy of 10−5–10−7. To overcome this inconvenience,
we shall transform Eqs. (5) into equations without the short
time scale of the common frequency. We define the frequency
shift of the common frequency in synchronization from the
mean of the natural frequencies, � = ω0 − (ω1 + ω2)/2. Since
according to the Barkhausen condition the natural frequencies
satisfy ωjτj = 2πNj such that Nj is an integer [31], we get
that

u̇1 = u1[ρ1V1(u1)/u1 − 1]/τ1 + [κ2V2(u2)/τ1] cos(γ̃21),

u̇2 = u2[ρ2V2(u2)/u2 − 1]/τ2 + [κ1V1(u1)/τ2] cos(γ̃12),
(9)

φ̇1 = −(� + ω) − (k21/τ1) sin(γ̃21) + θ1/τ1,

φ̇2 = −(� − ω) − (k12/τ2) sin(γ̃12) + θ2/τ2,

where

γ̃12 = (� + ω)τ1 − (� − ω)τ2 − ψ1 + θ2 + φ,
(10)

γ̃21 = (� − ω)τ2 − (� + ω)τ1 − ψ2 + θ1 − φ,

and the detuning frequency is defined as the frequency differ-
ence between the two natural frequencies, 2ω = ω2 − ω1.

III. ANALYTIC SOLUTION FOR A SINGLE-MODE
OSCILLATION

In this section, we derive analytic solutions for two similar
weakly coupled delay-line oscillators. We consider the case in
which the two delay-line oscillators have the same saturation
curve, Gj (uj ) = G(uj ), j = 1,2, and the coupling parameters
satisfy κj = κ � 1, ρj

∼= 1, θj = 0, and ψj = ψ for j = 1,2.
The analytic solutions are derived for the zero-coupling phase,
ψ = 0, and for the π/2-coupling phase, ψ = π/2. The filter
bandwidth is assumed to be narrow enough such that the
solution is stable, as discussed in Sec. VI B.

In deriving the solutions we do not omit the amplitude
dynamics, as is done in phase-oscillator models. We denote the
free-running amplitude of the two uncoupled oscillators by u0

j .
Since we consider the case of two similar delay-line oscillators
with the same nonlinear response of the saturable amplifier
Vj (u) = V (u), the free-running amplitudes are equal to each
other, u0

j = u0. We assume that due to the weak coupling the
deviation of the oscillating amplitude is small such that the
amplitudes of the coupled oscillators equal

uj = u0 + uj , (11)

and uj/u
0 � 1. This assumption is verified in Sec. IV by

solving numerically Eqs. (9). The amplitudes at the output of
the amplifiers are given by

V (uj ) = u0 + V ′(u0)uj , (12)
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where V ′(u) = dV (u)/du. We note that V ′(u0) < 1 since u0 is
an amplitude of the free-running oscillators that are assumed to
be stable to amplitude noise [31]. We denote the ratio between
the amplified amplitudes by

V (u1)/V (u2) = 1 + δu. (13)

We calculate δu in the following subsections. We show that for
the zero-coupling phase, δu = 0, and the amplitude dynamics
has no effect on the synchronization region, and therefore it
can be omitted. The synchronization region in this case has
a linear dependence on the coupling parameter. However, for
the π/2-coupling phase, δu �= 0 and the amplitude dynamics
contributes to the synchronization region a term that depends
on the square of the coupling parameter.

A. Zero-coupling phase

We substitute Eq. (12) in the two first equations of Eqs. (9),
and we set u̇j = 0 and ψ = 0 and obtain

(V ′ − 1)u1 + κV ′ cos(ζ )u2 = −κu0 cos(ζ ),
(14)

κV ′ cos(ζ )u1 + (V ′ − 1)u2 = −κu0 cos(ζ ),

where V ′ = V ′(u0) and

ζ = φ − �(τ1 − τ2) + ω(τ1 + τ2) (15)

is the generalized phase difference. Solving Eqs. (14) for the
amplitude deviations, we get that u1 = u2. As a result,
V (u1)/V (u2) = 1, and therefore δu = 0.

We continue by calculating the common frequency, �,
the generalized phase, ζ , and the synchronization region,
2ωmax. We set φ̇j = 0, ψ = 0 and obtain

2ωτ = 2κ sin(ζ ) (16)

and

�τ = −κδτ sin(ζ ), (17)

where τ is the harmonic average of the loop delays,

τ−1 = (
τ−1

1 + τ−1
2

)
/2, (18)

and 2δτ is the normalized loop-delay difference,

δτ = (τ1 − τ2)/(τ1 + τ2). (19)

The synchronization region is derived from Eq. (16) by
requiring that | sin(ζ )| � 1:

2ωmaxτ = 2κ. (20)

In this case, the synchronization region has a linear dependence
on the coupling parameter. The analytic solution for the
common frequency, �, and the phase difference, φ, is given
by

� = −δτω (21)

and

φ = arcsin (ωτ/κ) + �(τ1 − τ2) − ω(τ1 + τ2). (22)

B. π/2-coupling phase

We now consider the case in which the coupling phase
equals ψ = π/2. This case is important to describe a cou-
pling that is energy-preserving. The sufficient and necessary
conditions that the coupling parameters should satisfy for
an energy-preserving coupler are as follows [33,34]: |s11| =
|s22|, |s21| = |s12|, |s11|2 + |s21|2 = 1, and s11s

∗
21 + s∗

22s12 = 0.
Thus, we set s21 = s12 = iκ and s11 = s22 = √

1 − κ2, and
therefore θj = 0 and ψj = ψ = π/2.

By using a similar derivation as used for the zero-coupling
phase, we obtain that for ψ = π/2,

un = (−1)n−1κu0 sin(ζ )/(V ′ − 1) (23)

and

δu = −δGκ sin(ζ )

1 + δGκ sin(ζ )/2
, (24)

where δG = (2V ′)/(1 − V ′) = 2(1 + G′u0)/(−G′u0).
We set φ̇j = 0 and ψ = π/2 in Eqs. (9) and obtain

2ωτ = −2κ cos(ζ )

[
δτ − δGκ sin(ζ )

1 + δGκ sin(ζ )/2

]
(25)

and

�τ = κ cos(ζ )

[
1 − δτ δG sin(ζ )

1 + δGκ sin(ζ )/2

]
, (26)

where τ and δτ are given by Eqs. (18) and (19), respectively.
We see that in this case there are two terms that contribute to
the synchronization region. The first term in Eq. (25) has a
linear dependence on the coupling parameter, and the second
term has a quadratic dependence on the coupling parameter.
The contribution of the quadratic term does not exist in phase-
oscillator models that omit the amplitude dynamics and assume
uj = u0

j .
When the normalized difference in the loop delays is

sufficiently greater than zero, such that |δτ |/(δGκ) � 1, the
quadratic term in Eq. (25) can be neglected and

2ωτ ≈ −2δτ κ cos(ζ ). (27)

The synchronization region in this case is given by

2ωmaxτ = 2δτ κ. (28)

Thus, the synchronization region has a linear dependence on
the coupling term when the two loop delays, τ1 and τ2, are
sufficiently different from each other, such that |δτ |/(δGκ) �
1.

However, when the two loop delays are sufficiently similar
to each other, such that |δτ |/(δGκ) � 1, the linear term in
Eq. (25) can be neglected and

2ωτ ≈ δGκ2 sin(2ζ ). (29)

The synchronization region in this case is given by

2ωmaxτ = δGκ2. (30)

An analytic solution for the common frequency, �, and
the phase difference, φ, can be derived in cases in which
|δτ |/(δGκ) � 1 and δτ δG � 1, by using Eqs. (25) and (26):

� ≈ ±κ

τ

√
1 ±

√
1 − [(2ωτ )/(δGκ2)]2

2
(31)
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FIG. 2. (Color online) (a) Normalized common frequency �τ/κ (black-dashed line) and the phase difference between the oscillators φ

(red-dashed line) and (b) normalized amplitudes, u1/u
0
1 (black dashed-dotted line), u2/u

0
2 (black-dashed line), and the parameter δu (red solid

line), as a function of the normalized frequency detuning, 2ωτ/(2κ), for the case of the zero-coupling phase, ψj = 0, calculated by solving
the differential equations, Eqs. (9). The analytical solutions for the normalized common frequency (gray-solid line) and the phase difference
(green-solid line) are calculated by using Eqs. (21) and (22), respectively, and are shown in Fig. 2(a). The parameters that are used in this
example are u0

j � 0.866, τj = 0.25 μs, GS,j = 1.1, θj = 0, κj = κ = 0.01, and ρj = 1 − κ for j = 1,2.

and

φ ≈ arcsin [(2ωτ )/(δGκ2)]/2 + �(τ1 − τ2)

−ω(τ1 + τ2). (32)

We shall see in Sec. VI that the solution branch in Eq. (31)
which satisfies � = 0 when ω = 0 is not stable.

IV. EXAMPLES FOR WEAK COUPLING BETWEEN TWO
SIMILAR DELAY-LINE OSCILLATORS

In this section, we solve two examples that demonstrate the
model results that were described in Sec. III. We numerically
solve Eqs. (9) and compare the solution to the analytic
solutions that are described in Sec. III. We perform this
comparison for both the zero- and the π/2-coupling phase.

To solve Eqs. (9), it is required to define the gain saturation
function. The examples given in this section are calculated for
a nonlinear response function of the saturable amplifier that is
given by

Gj (uj ) = 2GS,jJ1(uj )/uj , (33)

where GS,j is a parameter that represents the small-signal
open-loop gain, and J1 is the first-order Bessel function. As is
described in Sec. V, such a nonlinear response corresponds to
the response of a Mach-Zehnder modulator that can be used
to model coupled OEOs.

We studied the case of the zero- and the π/2-coupling phase,
ψ = 0 and ψ = π/2, respectively. As ψ was increased from
0 to π/2, the synchronization region decreased monotonically
and the effect of the amplitude dynamic on the synchronization
region was increased.

A. Zero-coupling phase

Figure 2 shows the synchronous CW solution, calculated
by solving numerically Eqs. (9) for the zero-coupling phase,
ψj = ψ = 0. The analytic solutions calculated by using
Eqs. (21) and (22) are also given for comparison. The
parameters of the delay-line oscillators and the coupling

coefficients are τj = 0.25 μs, GS,j = 1.1, θj = 0, κ = 0.01,

and ρj = 1 − κ for j = 1,2. A good quantitative agreement
is achieved between the analytic and the numerical solutions
of Eqs. (9). The analytic results indicate that the synchroniza-
tion region equals |2ωmax| = 2κ/τ , and that the common
frequency is equal to the mean of the natural frequencies,
� = 0, in accordance with Eqs. (20) and (17), respectively.
The oscillation amplitudes in the analytic solutions are equal
to each other, u1 = u2, all over the synchronization region. The
numerical solution of Eqs. (9) shows that for zero detuning,
2ω = 0, the oscillation amplitudes are equal to the natural
amplitudes of the oscillators in the absence of the coupling,
uj = u0

j , where u0
j � 0.866. The amplitudes decrease as the

absolute frequency detuning increases. The decrease in the
amplitudes suggests that the total energy in the coupled system,
which is proportional to E = |u2

1| + |u2
2|, decreases as the

absolute frequency detuning increases.

B. π/2-coupling phase

Figure 3 shows the synchronous CW solution to Eqs. (9)
when the coupling phase equals π/2, ψj = ψ = π/2. The
analytic solutions calculated by using Eqs. (31) and (32) are
also given for comparison. The rest of the parameters, unless
otherwise specified, are identical to that used in the case of the
zero-coupling phase that is shown in Fig. 2 and hence δτ = 0
and δG ≈ 8. Figure 3 indicates that the synchronization region
that is obtained is in accordance with the analytic solution
given in Eq. (30). Unlike in the zero-coupling-phase case, the
common frequency varies within the synchronization region.
For a zero detuning, ω1 = ω2, the common frequency is given
by � = ±κ/τ—thus, it is located outside the frequency region
[ω1,ω2]. This result is also in accordance with the analytic
result that is given in Eq. (31), as δτ = 0. In Sec. IV, we
shall show that this solution is stable. There exists another
solution of Eq. (9) with a common frequency that is given by
� = 0. In Sec. IV, we shall show that this solution is unstable
to phase perturbations when τ1 = τ2, ψ = π/2, and ω = 0.
A stable solution for synchronization between two identical
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FIG. 3. (Color online) (a) Normalized common frequency �τ/κ (black-dashed line) and the phase difference between the oscillators φ

(red-dashed line) and (b) normalized amplitudes, u1/u
0
1 (black dashed-dotted line), u2/u

0
2 (black-dashed line), and the parameter δu (red solid

line), as a function of the normalized frequency detuning, 2ωτ/(δGκ2), for the case of the π/2-coupling phase, ψj = π/2, calculated by
solving the differential equations, Eqs. (9). The analytical solutions of the normalized common frequency (gray-solid line) and the phase
difference (green-solid line) are calculated by using Eqs. (31) and (32), respectively, and are shown in Fig. 3(a). The parameters that are used
in this example are u0

j � 0.866, τj = 0.25 μs, GS,j = 1.1, θj = 0, κj = κ = 0.01, and ρj = (1 − κ2)1/2 for j = 1,2.

oscillators, ω1 = ω2, that are coupled with a π/2-coupling
phase to each other is not possible according to the phase-
oscillator models, which assume symmetrical instantaneous
coupling [4]. However, the example given in this paper shows
that such oscillators can be locked with a common frequency
located outside the frequency region [ω1,ω2].

Figure 3(b) shows that the oscillation amplitudes, uj , vary
monotonically with the frequency detuning. As a result, δu �= 0
when ω �= 0. The amplitudes vary such that the total energy
that is stored in the oscillators, E, remains constant due to the
π/2-coupling phase.

V. COMPARISON TO A COMPREHENSIVE NUMERICAL
SIMULATION OF COUPLED OPTOELECTRONIC

OSCILLATORS

In this section, we show that the model for weakly
coupled delay-line oscillators that is described in this paper
accurately describes the synchronization between two weakly
coupled OEOs. We compare the analytic solutions for the
synchronization region, which are given in Eq. (20) and
Eq. (25), to the results of a comprehensive numerical sim-
ulation for coupled OEOs. The comprehensive numerical
simulation and a schematic description of the coupled OEOs
are described in detail in [25] (Fig. 3): each OEO contains an
optical fiber, an rf filter, a laser, an electro-optic modulator, a
photodetector, and an rf amplifier. Light from a laser is fed
into an electro-optic modulator, which converts microwave
signals into a modulation of the light intensity. The modulated
light is sent through a long optical fiber and is then detected
by using a photodetector, which converts the modulated light
signal into an electrical signal. The electrical signal is then
amplified, filtered, and is fed back into the electrical port of
the modulator. In OEOs, the nonlinearity of the modulator and
the nonlinearity of the amplifier are both instantaneous, and
therefore it can be combined into a single nonlinear element. A
long fiber is used as a delay line, which serves as the resonator,
and determines the possible cavity modes. The rf filter is used

to determine which modes can oscillate. The angular carrier
frequencies, ωj , are usually of the order of 2π × 10 GHz and
the loop delay is usually of the order of 0.1–10 μs.

The OEO can be modeled according to the schematic
description in Fig. 1 by presenting the electro-optic modulator,
the photodetector, and the rf amplifier as a single saturable
amplifier with a nonlinear response G(u). We consider the
case in which the electro-optic modulator is a Mach-Zehnder
modulator (MZM) and the rf amplifier has a constant gain such
that the nonlinear response of the amplifier and the MZM,
G(u), can be described by G(u) = 2GSJ1(πu/vπ )/(πu/vπ )
[22], where GS is the small-signal open-loop gain and vπ is
the half-wave voltage of the MZM. The small-signal open-loop
gain is determined by the parameters of the laser, the MZM,
the photodetector, and the rf amplifier, as given in Appendix B.
The length of the optical fiber determines the loop delay, τj ,
and the transmission spectrum of the rf filter determines Fj (ω).
The coupling between the two OEOs is implemented by rf
couplers, and it can therefore be modeled by Eq. (2).

The comprehensive numerical simulation of OEOs takes
into account the location and the response of each of the
lumped elements in each loop, and in particular the filter
response and the nonlinear gain [25]. Noise is added to
the oscillating signal in each round trip. The comprehensive
numerical simulation does not require using assumptions such
that the change in the signal in each round trip at any point
in the loop is small or that the signal is narrowbanded relative
to the filter bandwidth or that the coupling is weak. The
comprehensive numerical simulation has been experimentally
verified [25]. In this section, we shall show that a good
agreement is achieved between the results of the comprehen-
sive numerical simulation and the analytic solution for the
synchronization region. The parameters of the comprehensive
numerical simulation are given in Appendix B. The parameters
were set such that vπ = π and GS = 1.1.

Figure 4(a) shows the synchronization region as a function
of the squared coupling parameter, κ2, according to the analytic
solution in Eq. (30) when the normalized loop-delay difference
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FIG. 4. (Color online) Synchronization region, 2ωmaxτ , for a π/2-coupling phase, ψ = π/2, as a function of the squared coupling
parameter, κ2, for (a) 2δτ = 0 and (b) 2δτ = 0.1. The rest of the parameters are the same as in Fig. 3. The analytic results calculated by using
Eq. (30) in (a) (green dashed-dotted line) and Eq. (25) in (b) (green solid line) are compared with the result of a comprehensive numerical
simulation (cyan circles). The synchronization region in the phase-oscillator approximation equals zero in (a) and is shown in (b) by using
Eq. (28) for 2δτ = 0.1 (red dashed line).

equals zero, 2δτ = 0. The results of the comprehensive
numerical simulation are also presented for comparison. A
good agreement is achieved between the analytical and the
comprehensive numerical simulation results. It is shown that
for two identical oscillators, the synchronization region is
determined by the square of the coupling coefficient as
obtained in Eq. (30).

Figure 4(b) shows the synchronization region as a function
of the squared coupling parameter, κ2, according to the
solution of Eq. (25) when the normalized loop-delay difference
equals 2δτ = 0.1. A good agreement is achieved between the
analytical and the comprehensive numerical simulation results.
Figure 4(b) shows that for two similar oscillators, in which
0 < δτ � 1, the synchronization region is approximately
proportional to the coupling parameter when δGκ/|δτ | � 1,
and it is approximately proportional to the square of the
coupling parameter when δGκ/|δτ | � 1.

Figure 5 shows the synchronization region as a function
of the normalized loop-delay difference, 2δτ , according to
Eqs. (25). The maximum discrepancy between the results
of the comprehensive numerical simulation and the analytic
solution is only about 5% for κ = 0.01 and δτ = 0. The
figure shows that the synchronization region increases as the
normalized loop-delay difference increases.

VI. SMALL-SIGNAL STABILITY ANALYSIS

In this section, we perform a small-signal stability analysis
to the oscillating signal [35]. The small-signal stability of the
solutions to the nonlinear equations can be determined by
linearizing the equations around its solution. The presence of
a loop delay in the oscillator plays a major role in determine
whether the solution is stable or not. We divide the stability
analysis in weakly coupled delay-line oscillators into two
types: (a) instability due to amplitude and phase perturbations
in the the oscillating mode; (b) instability due to excess gain
in low-intensity cavity modes. By using the stability analysis,

we have verified that all the examples that are given in Sec. IV
are stable.

A. Small-signal stability analysis of the oscillating mode

Consider an oscillating signal in an uncoupled self-
sustained oscillator, the amplitude and phase of which are
subjected to perturbations due to the presence of noise. While
perturbations in the amplitude will be suppressed due to gain
saturation, phase perturbations will not be suppressed and
therefore will not decay on time. As a result, the oscillator
frequency will drift on time. Therefore, in coming to analyze
the stability of a given solution to phase perturbations, one
should keep in mind that the phase should be marginally stable.
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FIG. 5. (Color online) Synchronization region, 2ωmaxτ , as a
function of the normalized loop-delay difference, δτ , for a π/2-
coupling phase, ψ = π/2. The analytical results calculated by using
Eq. (25) (green-dashed line) are compared with the results of a
comprehensive numerical simulation (cyan circles). The rest of the
parameters are the same as in Fig. 3.
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In this case, phase perturbations do not grow exponentially
rather than necessarily decay. The frequency drift of the
oscillator may be prevented by locking the oscillator to a
reference source.

Let δuj � uj and δφj � 1 be small amplitude and phase
perturbations, respectively, to the oscillating phasors that solve
for Eqs. (9). The small-signal stability analysis is performed by
substituting the perturbed phasors in Eqs. (9) and linearizing
the system response to the small perturbations, thus keeping
only terms that are linear with δuj/uj and δφj , and neglecting
higher-order terms. The dynamic equations for the amplitudes
and phase perturbations are

δu̇n = [ρnV
′
n(un) − 1]δun/τn + [ρnVn(un)kjn/τn]

× [L′
j (uj ) cos(γ̃jn)δuj − sin(γ̃jn)(δφn − δφj )],

δφ̇n = (kjn)/τn){sin(γ̃jn)[L′
n(un)δun − L′

j (uj )δuj ]

− cos(γ̃jn)(δφn − δφj )}, (34)

where n = 1,2 is the oscillator number, j = 3 − n, Ln(un) =
ln[Vn(un)], and L′

n(un) = V ′
n(un)/Vn(un). We define the pha-

sor perturbation vector by

(δq1,δq2,δq3,δq4) = (δu1,δu2,δφ1,δφ2). (35)

The dynamics of the phasor perturbation is described by

˙δqi =
j=4∑
j=1

dij δqj , (36)

where dij are the elements of matrix D that are defined by
Eqs. (34)–(36).

According to Eq. (36), the solution is stable or marginally
stable to amplitude and phase perturbations if λj � 0, j =
1, . . . ,4, where λj are the eigenvalues of the matrix D. We note
that for the case of two uncoupled oscillators, s12 = s21 = 0,
two of the eigenvalues of D are both equal to zero, λ3 = λ4 =
0. This indicates that the phase noise is accumulated on time
without growing or decaying exponentially.

In the case of two identical delay-line oscillators, δτ = 0
and ω = 0, that are coupled with the π/2-coupling phase to
each other, ψ = π/2, the solution for the common frequency,
�, is described by Eq. (31). In the case in which ω = 0,
one solution of the equation which gives � = 0 is unstable. In
this case, φ = ±π/2, two eigenvalues of the matrix D are
negative, λ1,2 < 0, one eigenvalue is zero, λ3 = 0, and the last
eigenvalue equals

λ4 = −[k21 cos(γ̃21)/τ1 + k12 cos(γ̃12)/τ2]. (37)

If φ = π/2, then γ̃21 = −π and γ̃12 = 0. As a result, δu < 0,
k12 < k21, and therefore λ4 = (k21 − k12)/τ > 0. If φ =
−π/2, then γ̃21 = 0, γ̃12 = π , k12 > k21, and therefore λ4 =
(k12 − k21)/τ > 0. Hence, in the case in which ω = 0, the so-
lution of Eq. (31) which gives � = 0 is unstable. Following the
same calculations, the solution branches of Eq. (31) in which
� = ±κ/τ are stable when ω = 0. For these solutions,
φ = 0, λ1,2 < 0, λ3 = 0, and λ4 = −(k21 + k12)/τ < 0. The
common frequencies for these solution branches are located
outside the region between the natural frequencies [ω1,ω2].

B. Instability due to excess gain in low-intensity cavity modes

The presence of a loop delay within an oscillator cavity
may enable oscillation in several cavity modes. Limiting the
number of cavity modes that can oscillate is usually done by
adding an intracavity filter. The central frequency of the filter
along with the ratio between its bandwidth and the cavity
mode spacing determine which cavity modes can potentially
oscillate. In order that a solution will be stable in delay-line
oscillators, small perturbations to the amplitudes of low-
intensity cavity modes should be suppressed. The frequencies
of the low-intensity cavity modes are ωm,j = ω0 + 2πm/τj

(m �= 0). The close-loop gain G(uj ) of each oscillator is
determined by the amplitude of the oscillating mode, uj . The
close-loop gains of the low-intensity cavity modes depend
linearly on the close-loop gain of the oscillating mode. Hence,
the oscillating mode affects the stability of the low-intensity
modes. In this paper, we analyze this effect. We do not perform
here a complete stability analysis of the low-intensity modes,
and in particular we do not take into account the coupling
between those modes. Such a neglect can be justified based
on physical considerations since in most practical cases the
loop delays of the two oscillators are different. Therefore, the
frequencies of the coupled low-intensity cavity modes will not
be the same in the two oscillators. Hence, in almost all the
practical cases, a low-intensity mode that is injected from one
oscillator to another will not fulfill the oscillation condition
of the second oscillator. The general stability analysis of the
low-intensity modes in cases in which their frequencies overlap
is beyond the scope of this paper.

We show that amplitude instability of low-intensity modes
can be suppressed by narrowing the filter bandwidth, and we
calculate the minimum filter bandwidth that is required. The
dynamic equations for the low-intensity modes in an oscillator
with a loop delay τ are given by (see Appendix C)

ȧm = am(|F (ωm)|+ − 1)/τ

+ a−m|F (ωm)|− cos(φm + φ−m)/τ,

φ̇m = −a−m

am

δR

τ
sin(φm + φ−m) + ϕF (ωm)

τ
, (38)

where m �= 0 is the mode number, δR = −/+, and

± = [V ′(a0) ± V (a0)/a0]/2. (39)

To derive an analytic solution to Eqs. (38) and their
analytic conditions for stability, we assume that the filter
frequency response satisfies F (ωm) ≈ F ∗(ω−m), such that
|F (ωm)| ≈ |F (ω−m)| and ϕF (ωm) = −ϕF (ω−m). Using this
assumption and the transformation φm → φm + ϕF (ωm)T/τ ,
we find that in the transformed variables the solutions satisfy
φm + φ−m = πN (m �= 0). Let δam � am and δφm � 1 be
small amplitude and phase perturbations, respectively, to the
phasor of the mth cavity mode that solves Eqs. (9). The
dynamic equations to the amplitude and phase perturbations
of the mth mode, derived in the same manner as was used to
obtain Eq. (34), are

δȧm = [(+
m − 1)δam ± −

mδa−m]/τ, (40)
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δφ̇m = ∓ 1

τ

−

+
a−m

am

(δφm + δφ−m), (41)

such that(
δȧm

δȧ−m

)
= 1

τ

(
+

m − 1 ±−
m

±−
m +

m − 1

) (
δam

δa−m

)
(42)

and (
δφ̇m

δφ̇−m

)
= ∓ 1

τ

−

+

(
χ−m χ−m

χm χm

) (
δφm

δφ−m

)
, (43)

where the upper and lower signs corresponds to the solutions
φm + φ−m = 2πN and φm + φ−m = π + 2πN , respectively,
χm = am/a−m, ±

m = |F (ωm)|±, and ± are given in
Eqs. (39). The eigenvalues of the matrices in Eqs. (42) and
(43) are

λam,1 = +
m + −

m − 1,
(44)

λam,2 = +
m − −

m − 1

and

λφm,1 = 0,
(45)

λφm,2 = ∓−

+

(
am

a−m

+ a−m

am

)
,

respectively. The solution is locally or marginally stable to
amplitude and phase perturbations if λam,j � 0 and λφm,j � 0.
We note that λφm,2 � 0 if V ′ � V (a0)/a0 and φm + φ−m =
2πN or if V (a0)/a0 � V ′ and φm + φ−m = π + 2πN . The
stability is therefore determined by λam,j , such that the solution
is stable to perturbations in low-intensity cavity modes if

|F (ωm)|V ′(a0) = |F (ωm)|[G′(a0)a0 + G(a0)] � 1 (46)

and

|F (ωm)|V (a0)/a0 = |F (ωm)|G(a0) � 1. (47)

Thus, instability can be suppressed by narrowing the band-
width of the filter.

We consider the case of two similar delay-line oscillators
that are coupled with the π/2-coupling phase to each other,
as described in Sec. III B. We would like to show that if the
filter is wide enough, such that |F (ωm,j )| ≈ 1, where ωm,j

is the frequency of a low-intensity cavity mode, m �= 0, then
the synchronized solution becomes unstable even if ω1 = ω2.
In this case, ω = 0, and according to Eq. (23), if τ1 �= τ2,
then u1u2 < 0, and we can assume without the loss of
generality that

u1 < u0 < u2. (48)

The free-running oscillating amplitude is stable, and therefore
G(u0) = 1, G′(u0) < 0, and

G(u2) < 1 < G(u1). (49)

Therefore, since |F (ωm,j )| ≈ 1, we get that
[G(u1)]|F (ωm,1)| > 1. As a result, the amplitude of this
cavity mode in loop 1 will increase in each round trip and the
solution will become unstable in accordance with Eq. (47). It
can be concluded that it is possible to obtain synchronization
between two OEOs that are coupled with the π/2-coupling

phase, provided that the filter is sufficiently narrow and the
detuning between the natural frequencies of the delay-line
oscillators is sufficiently small.

VII. CONCLUSION

We have derived a model for studying two weakly cou-
pled delay-line oscillators. By assuming a weak coupling
and performing a linear approximation to the interaction
between the two oscillators, we derived coupled equations
that accurately describe the two weakly coupled delay-line
oscillators. We derived analytical solutions for the equations
in the case of two similar delay-line oscillators with the zero-
and the π/2-coupling phase. We show that in the case of the
π/2-coupling phase, there are two terms that contribute to the
synchronization region, a term that is linearly dependent on
the coupling parameter, and another term that is quadratically
dependent on the coupling parameter. The physical effect of
the quadratic term enables the synchronization of the two
delay-line oscillators in cases in which only the linear term
would not allow. The quadratic term cannot be derived by
phase-oscillator models that omit the amplitude dynamics.
Therefore, the amplitude response should be retained even
if the two delay-line oscillators are weakly coupled to each
other. We show that the presence of low-intensity cavity modes
should be taken into account in the stability analysis of two
weakly coupled delay-line oscillators.

We used the delay-line oscillator model to study the condi-
tions under which a synchronized continuous-wave signal can
be obtained by two weakly coupled OEOs. We analyze the
effect of the coupling phase on the synchronization properties
of OEOs. In particular, we explain why two identical OEOs
that are weakly coupled to each other with a π/2-coupling
phase can be synchronized, even though this result is in
contrast to that of phase-oscillator models. The results of
the model are compared with the results of a comprehensive
numerical simulation for two coupled OEOs. A very good
quantitative agreement is achieved between the results for
two weakly coupled delay-line oscillators. We intend to verify
experimentally the results that are presented in this paper in
two coupled OEOs.
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APPENDIX A: DYNAMIC EQUATIONS FOR THE
OSCILLATING SIGNAL (M = 0) IN A SINGLE-MODE

APPROXIMATION

We start with the expansion of xc
j (T ) into a series of

modes with amplitudes am as described in Eq. (3). We
assume that most of the signal energy is contained in a single
oscillating mode, a0, such that a2

0,j � ∑
m�=0 a2

m,j , and we can
treat the low-intensity modes, m �= 0, as small perturbations
to the amplitude and phase of the oscillating phasor. By using
the approximation

A exp(iα) + B exp(iβ) ≈ A[1 + (B/A) cos(β − α)] exp{i[α
+ (B/A) sin(β − α)]}, (A1)
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where A,B,α,β are real numbers and B � A, we obtain from
Eq. (3)

|xc
j (T )| ≈ a0,j +

∑
m�=0

am,j cos[ζm,j (T )],

(A2)
φj (T ) ≈ φ0,j +

∑
m�=0

(am,j /a0,j ) sin[ζm,j (T )],

where ζm,j (T ) = �m,j t + φm,j . The phasor at the output of
the saturable amplifier is given by

xG
j (T ) = G

[∣∣xc
j (T )

∣∣]xc
j (T ). (A3)

The single-mode approximation that is used in Eqs. (A2)
is relevant for many practical applications of delay-line
oscillators, and it is important even in cases in which there
is cavity-mode competition at start-up [30]. In this case, one
of the cavity modes starts oscillating and the small signal gain
of the other cavity modes decreases due to gain saturation.
The noise that is present when the oscillator is turned on
determines the specific mode that will oscillate at steady
state, and the mode with the highest gain has the highest
probability to be selected [30]. For most practical cases, it
is usually justified to assume that the oscillation frequency ω0

is located near the peak of Fj (ω), such that Fj (ω0) ≈ 1 for both
j = 1,2. Therefore, we assume that [ϕF

j (ωj ) − ϕF
j (ω0)]/τj �

ωj − ω0. The phase response of the filter can be kept in the
dynamic equations by replacing θj by θj + ϕF

j (ω0).
We derive the equations for the oscillating mode by keeping

only the oscillating mode term in Eq. (A2), for m = 0, and
omitting the presence of the other cavity modes. The amplitude
and phase of the oscillating phasors are given by uj and φj ,
respectively, such that

xc
j (T ) = uj (T ) exp[iφj (T )], (A4)

and uj
∼= a0,j , φj

∼= φ0,j , and j is the oscillator number. The
oscillating signals are given by

sc
j (t,T ) = uj (T ) exp[iϕj (t,T )]/2 + c.c., (A5)

where ϕj (t,T ) = ω0t + φj (T ).
The change in the oscillating phasor from one round trip

to the following are calculated by using Eqs. (2), (A3), (A4),
and by assuming Fj (ω0) = 1. Thus, we get the two complex
equations:

un(T ) exp[iϕn(t)] = ρnVn[un(Tn)] exp[iϕn(tn) + θn]

+ κjVj [uj (Tj )] exp[iϕj (tj ) + ψj ],

(A6)

where n = 1,2, is the oscillator number, j = 3 − n, and
Tn = T − τn, tn = t − τn are the retarded long time scale, T ,
and short time scale, t . We define the coupling coefficients
by kjn(T ) = κjVj [uj (T )]/{ρnVn[un(T )]}. Using the weak-
coupling approximation, kjn � 1, and the approximation in
Eq. (A1), we obtain

un(T ) exp[iϕn(t)] ≈ ρnVn[un(Tn)]{1 + kjn cos[γjn(t)]}
× exp (i{ϕn(tn) + θn − kjn sin[γjn(t)]}),

(A7)

where

γjn(t) = ϕn(t − τn) − ϕj (t − τj ) + θn − ψj . (A8)

The changes per round trip are approximated by the time
derivatives, such that u̇j ≈ [uj (T ) − uj (Tj )]/τj and φ̇j ≈
[φj (T ) − φj (Tj )]/τj . Thus, we obtain

u̇n = un[ρnVn(un)/un − 1]/τn + [κjVj (uj )/τn] cos[γjn(T )],
(A9)

φ̇n = 2πNn/τn − ω0 − (kjn/τn) sin[γjn(T )] + θn/τn,

when Nn are integers, and

γjn(T ) = ω0(τj − τn) + θn − ψj + φn(T ) − φj (T ). (A10)

Using the requirement that ωj are the natural frequencies of the
two oscillators, we obtain that 2πNn/τn = ωn and the dynamic
equations become

u̇n = un[ρnVn(un)/un − 1]/τn + [κjVj (uj )/τn] cos[γjn(T )],

φ̇n = ωn − ω0 − (kjn/τn) sin[γjn(T )] + θn/τn, (A11)

APPENDIX B: COMPREHENSIVE NUMERICAL
SIMULATION PARAMETERS FOR SIMULATING

COUPLED OEOS

The small-signal open-loop gain of an OEO, GS , is given
by [22,30]

GS = −ηπvph

vπ

cos(πvB/vπ ), (B1)

where the photodetector voltage is calculated as

vph = αP0ρRGA

2
, (B2)

and P0 is the input optical power, α is the insertion loss of
the MZM, vπ is the modulator half-wave voltage, vB is the
dc bias voltage, η is a parameter determined by the extinction
ratio of the modulator, (1 + η)/(1 − η), ρ is the responsivity
of the photodetector, R is the impedance at the output of the
detector, and GA is the amplifier voltage gain. We note that the
voltage vph is the voltage at the output of the amplifier when
the modulator is biased with vB = vπ and its rf port is not
connected [30].

Each OEO was modeled as described in detail in [30]. The
rf filter has a Lorentzian line shape with a full width at half-
maximum bandwidth of �. The simulation parameters, unless
otherwise specified, were chosen as follows: P0 = 10 mW,
α = 1, vπ = π , vB = vπ , η = 1, ρ = 0.8 A/W, R = 50�,
GA = 5.5, τ = 1 μs, and � = 2/τ . The rf filter bandwidth,
�, was chosen to be narrow enough to avoid the presence of
instabilities due to excess gain in other cavity modes, as is
discussed in Sec. VI B. A white noise with a spectral density
of −160 dB m/Hz was added to the signal at the input of
the amplifier in each round trip. The small-signal open-loop
gain was GS = 1.1 and the average oscillation power at the
output of the amplifier was Posc = 7.5 mW in the free-running
case. The coupling coefficients were κj = 0.01, θj = 0, and
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ψj = 0 or ψj = π/2, and ρj = 1 − κj or ρj = (1 − κ2
j )1/2,

respectively.

APPENDIX C: DYNAMIC EQUATIONS FOR THE
LOW-INTENSITY CAVITY MODES (m �= 0)

In this Appendix, we derive the dynamic equations for
the low-intensity cavity modes, m �= 0, in the presence of the
oscillating mode, m = 0. The dynamic equations are derived
for each loop separately, neglecting the coupling effect. We
write the oscillating signal according to Eqs. (A2) in the
presence of a small perturbation due to the mth cavity mode:

|xc
j (T )| ≈ a0,j + am,j cos[ζm,j (T )],

(C1)
φj (T ) ≈ φ0,j + (am,j /a0,j ) sin[ζm,j (T )].

The complex envelop, or the phasor, of the oscillating
signal with the angular frequency ω0 is given by xc

j (T ) =
|xc

j (T )| exp[iφj (T )].
The phasor at the amplifier output, xG(T ), can be calculated

by linearizing the amplifier response around the amplitude of
the oscillating mode, a0, and treating the other low-intensity
modes, m �= 0, as small perturbations to the oscillation. Thus,
using Eqs. (A3) and (C1),

xG(T ) = {V (a0) + amV ′ cos[ζm(T )]}
× exp{iam/a0 sin[ζm(T )]}, (C2)

where we omitted the subscript j for the sake of brevity. Using
the Jacobi-Anger expansion [36], and keeping terms on the
order of am/a0, we obtain

xG(T ) = {V (a0) + amV ′ cos[ζm(T )]}
×{J0(am/a0) + 2iJ1(am/a0) sin[ζm(T )]}, (C3)

where J0(x) and J1(x) are the zero- and first-order Bessel
functions, respectively. Approximating J0(x) ≈ 1 and J1(x) ≈
x/2 when x � 1, we get that

xG(T ) = V (a0) + am+ exp[iζm(T )]

+ am− exp[−iζm(T )], (C4)

where

± = [V ′(a0) ± V (a0)/a0]/2. (C5)

Thus, the change in the phasor of the mth cavity mode in a
round trip equals

vm(T + τ ) = F (ωm)[+vm(T ) + −v∗
−m(T )], (C6)

where vm(T ) = am(T ) exp[iζm(T )]. Assuming that δR ≡
−/+ � 1 such that the change of the phasor per round
trip is small, then

vm(T + τ ) = am|F (ωm)|+
[

1 + a−m

am

δR cos(φm + φ−m)

]

× exp

{
i

[
�mT + φm − a−m

am

δR sin(φm + φ−m)

+ϕF (ωm)

]}
, (C7)

where F (ωm) = |F (ωm)| exp[iϕF (ωm)]. As a result, the dy-
namic equations of the mth cavity mode are

ȧm = am[|F (ωm)|+ − 1]/τ

+ a−m|F (ωm)|− cos(φm + φ−m)/τ, (C8)

φ̇m = −a−m

am

δR

τ
sin(φm + φ−m) + ϕF (ωm)

τ
. (C9)
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[18] T. Heil, I. Fischer, W. Elsässer, J. Mulet, and C. R. Mirasso,

Phys. Rev. Lett. 86, 795 (2001).
[19] J. Javaloyes, P. Mandel, and D. Pieroux, Phys. Rev. E 67, 036201

(2003).
[20] H. J. Wünsche, S. Bauer, J. Kreissl, O. Ushakov, N. Korneyev,

F. Henneberger, E. Wille, H. Erzgräber, M. Peil, W. Elsäßer, and
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