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Localization in frequency for periodically kicked light
propagation in a dispersive single-mode fiber
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We show a special effect of localization in the temporal frequency domain of light pulses that propagate in a
dispersive single-mode fiber in the presence of a time-periodic phase modulation that is repeatedly applied at
equally spaced locations along the fiber. The effect is analogous to the dynamical localization that occurs for
the quantum kicked rotor, which is similar to Anderson localization in disordered solids. The wave behavior
eliminates the diffusive spread of sidebands (harmonics). The light propagation, which is described by a
Schrödinger-like propagation equation, can provide a new testing ground for the investigation of localization
besides shedding light on technologically important pulse propagation in fibers and mode-locked lasers.
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In this Letter we consider propagation in a dispersive
optical fiber of broad light pulses that are repeatedly
kicked by a sinusoidal rf phase modulation at equally
spaced locations along the fiber. The naı̈ve expecta-
tion concerning the evolution of the spectrum and the
buildup of sidebands (harmonics) is that their number
diffusively increases with the number of kicks, so that
the spectrum continuously broadens with propagation.
It is shown here that this expectation is not fulfilled;
instead a special mechanism of localization causes the
spectrum to be confined. This mechanism is similar
to localization in the phase space of a quantum kicked
rotor,1 which is related to Anderson localization for
electrons in one-dimensional disordered solids.2,3 The
localization commonly occurs after a few kicks and has
an exponential signature, as can be seen from Fig. 1.

The kicked rotor is an important prototype in the
field of quantum chaos4,5 for the study of the role of
quantum mechanics in systems that are chaotic in the
classical limit. The classical dynamics of chaotic sys-
tems resembles random motion, although it is gener-
ated by deterministic equations, and if the phase space
is unbounded, its randomlike motion leads to diffu-
sion in this space. In the quantum mechanics case,
however, the diffusion can be suppressed by quantum
interference, leading to dynamical localization.1 This
localization is actually a wave phenomenon, and it is
expected to take place also for classical waves, such as
light waves.6,7 However, there was, so far, only one
type of experimental verification for localization in the
quantum kicked rotor, with laser-cooled Na and Cs
atoms in a magneto-optic trap.8,9 Recently, we added
a first realization of such a system in optics with free-
space-propagating light that passes a series of phase
gratings.10

Our optical system can provide a new testing ground
for the investigation of localization. In addition, it il-
luminates important new aspects of the technologically
important modulated pulse behavior in fibers, lasers,
and other dispersive media.
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The equation for the electric-field amplitude, c,
of a pulse that is propagating in dispersive single-
mode fibers, in the slowly varying amplitude ap-
proximation, satisfies the following Schrödinger-like
equation,11 with a potential that results from the pe-
riodic modulation (kicks):
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The propagation is along z, T � t 2 z�vg � t 2 b1z is
the internal pulse-time variable (relative to the center
of the pulse), where vg � 1�b1 is the group velocity,
and b2 is the group-velocity dispersion (responsible for
pulse broadening), which serves here as the Planck
constant in the quantum case. The potential results
from perturbation by the time-dependent refractive-
index change dn, or the phase modulation, which
appears in the wave equation with an amplitude k �
vDnlm�c, where lm is the modulator length, v is
the light frequency, and c is the speed of light. The
distance between successive kicks is z0, and k and V
are the strength and the frequency of the modulation,
respectively. The phases of the modulators (kicks)
have to be synchronized. We do not include absorption
in Eq. (1), as it can be compensated for, if needed, by
amplif iers, as described below. We also ignore in the
present analysis nonlinearities, such as the Kerr effect.
This is a reasonable assumption for experiments in
single-mode fibers with low light intensities.

As discussed above, the properties of the kicked fiber
system are similar to those of the quantum rotor.1 The
Hamiltonian-like operator is H � 2�1�2�gn̂2 1 V �T �,
where V �T � � k cos�VT �

P
m d�z 2 Nz0�, g � b2z0V2,

and n̂ � 2i≠�≠�VT �. The direction of propagation z
corresponds to the time of the kicked rotor, time VT
corresponds to the angle, and the sideband n corre-
sponds to angular momentum. Note that the time
variable VT is unbounded, whereas the angle variable
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Fig. 1. Evolution of the frequency spectrum according to Eq. (1) (the sideband intensity I is on a 10-based logarithmic
scale versus the number of sidebands, n), showing the convergence to the exponential profile as localization occurs.
b2 � 20 ps2�km, k � 5, z0 � 40 km, and V�2p � 8 GHz.
of the rotor is confined to the interval �0, 2p�. There-
fore the frequency, unlike the angular momentum, is
not quantized, but the transitions that are due to V �T �
are only between frequencies that differ by integer
multiples of V. The properties of the system are
governed by the properties of the one-period evolution
operator, Û � exp�ign̂2�2� exp�2ik cos�VT ��, that
transforms c after the Nth kick at z � Nz0 to c

after z � �N 1 1�z0. Û is the transfer operator along
the propagation direction. The solutions for c can
be expanded in the quasi-energy states that are the
eigenstates of the evolution operator. Here these
are the Bloch–Floquet states in the z direction. The
nature of these states determines the dynamics. For
rational g�p the states are extended, whereas if g�p is
irrational the states are exponentially localized.1 In
the localized case the envelope of the wave functions
behaves as exp�2jnj�j�, where j is the localization
length. The analysis shows that in the diffusive
regime the spectrum width follows a sN � k�N�2�1/2
dependence. The transition from diffusion to local-
ization occurs after �k2�8 kicks, and the localization
width is j � k2�4 harmonics orders, in specific parame-
ter regimes.1 Other features of the system, such as
resonances and antiresonances,10 will be discussed in
the future.

In Fig. 1 the typical evolution behavior of the fre-
quency spectrum (sideband intensity versus the num-
ber of sidebands or harmonics, n) is presented. We
start from a narrow (single) frequency that represents
a very broad pulse and show the evolution that is due to
the propagation and the effect of the kicks, as described
in Eq. (1). We can see the convergence to an exponen-
tial profile as localization occurs. Figure 2 gives the
frequency width (standard deviation of n) as a func-
tion of the number of kicks, N , for ordered phase modu-
lation, showing confinement behavior. Also shown is
the classical case, with diffusive behavior, in which we
eliminate phases and propagate intensities rather than
amplitudes.

In the propagation along the fiber of a broad input
pulse with a relatively narrow spectral width, the pulse
undergoes successive sinusoidal phase modulations.
In this process the repeated kicks tend to broaden the
number of sidebands (harmonics). Each kick can be
analytically described by a Bessel function distribu-
tion, Jn2m�k�, for the coupling of the amplitudes of the
diffraction orders n and m. Nevertheless, the propa-
gation between kicks adds extra phases, exp�ign2�2�,
depending quadratically on the sideband order n, and
for large n this factor behaves as a random num-
ber.1 Therefore, a specific nth-order spectral com-
ponent after the Nth kick is composed of many
successive former modulations (kicks) plus propagation
in the fiber between them. Each path accumulates a
series of random phases. It turns out that the overall
contribution is weakened, resulting in exponential
localization.1–4 Consequently, low-n sidebands are
mostly composed of former low-order harmonics that
add constructively. It is crucial that the propagator Û
is identical for all kicks. Although exp�ign2�2� behave
as random numbers, they are identical for all intervals
of free motion. If for some reason Û depends on the
position z along the fiber (for example, if the kicks are
not exactly spaced), this imperfection is equivalent
to noise in the original Anderson model. This noise
leads to destruction of localization on a length scale
corresponding to a similar time scale for the kicked
rotor, which is usually inversely proportional to the
variance of the noise. For longer lengths diffusion
takes place. If this noise is sufficiently strong that

Fig. 2. Route to localization, showing the frequency width
according to Eq. (1) (standard deviation of n) as a func-
tion of the number of kicks, N , for (a), ordered system
modulation and (b), diffusive behavior of the classical
case, where we treat intensities rather than amplitudes
or where the modulation phase of the kicks is random.
b2 � 20 ps2�km, k � 5, z0 � 40 km, and V�2p � 8 GHz.
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Fig. 3. Schematic of an experimental realization of the
fiber kicked system in a loop configuration as repeated
modulations and kicks are applied as a pulse circulates in
the loop.

this length scale is equal to the length for the onset
of localization, classical diffusion is recovered,9 as
demonstrated in Fig. 2.

The outcome of this work from the point of view
of fiber optics is interesting. For a signal with
a frequency near v0 with a bandwidth of Dv, a
modulation of the phase with an amplitude k at a
frequency V forms sidebands at distances of nV, for
the nth sideband. If such a modulation is repeatedly
applied, one could naı̈vely expect a steady broadening,
namely, an increase of the number of sidebands, and
thus an increased overall frequency bandwidth, in a
diffusive manner similar to the classical kicked rotor.
The present study teaches us that because of the wave
behavior and the dispersive propagation between the
successive kicks the unbounded bandwidth broadening
of the pulse is eliminated.

We now discuss the requirements for an experimen-
tal demonstration of localization in a fiber system. It
seems that the simplest way to form a periodic propa-
gation with the same kick would be to use a ring
structure, as shown in Fig. 3. This structure can be a
passive recirculating loop, into which a pulse of light is
coupled from outside by a laser source, such as a diode
laser with a wavelength of �1550 nm.

The group-velocity dispersion for a standard single-
mode fiber in this regime is b2 � �20 ps2�km. For
the quadratic phase factor that results from free propa-
gation between the kicks, gn2, to generate pseudo-
random numbers for the various orders, we take g of
order unity and have a spacing of �40 km between
kicks, for a modulation frequency of 8 GHz. We em-
phasize the need for synchronization of the modulation
of the phases of the kicks. This synchronization can be
achieved with continuous modulation when the modu-
lation frequency is adjusted to the loop length such
that V�2p � mvg�l, where l is the cavity length and
m is an integer. This modulation fits the mth-order
cavity-resonance frequency. To follow the evolution of
the pulse we can tap a single pulse that circulates in
the fiber loop with a fiber coupler. Because of the long
propagation length in the fiber, it might also be neces-
sary to add an amplif ier in the loop. This can easily be
done with erbium-doped fibers. Nevertheless, losses
or amplifications do not alter any of the localization
features if they do not have a significant effect on the
spectrum.

An alternative experimental realization can be
achieved with an active cavity, in which we have a
ring or a linear fiber laser with intracavity phase
modulation. With the above phase-synchronization
requirement, this is effectively a FM mode-locked laser.
Thus this study predicts localization in the long-term
spectral structure of the laser and a new constraint
on the lower pulse width of such lasers. This special
behavior should also occur for AM mode-locked lasers.

In conclusion, we have shown that localization occurs
in the temporal frequency domain of light that is peri-
odically kicked as it propagates in a dispersive fiber.
We have discussed experiments to verify the effect and
stressed the attractiveness of this approach, as it pro-
vides a new testing ground for the investigation of lo-
calization as well as new insight into light propagation
in fibers, pulsed lasers, and other dispersive media.
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