
November 1, 1989 / Vol. 14, No. 21 / OPTICS LETTERS

Instabilities and self-pulsation in a ring cavity with a
photorefractive wave mixer
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We find instabilities and self-pulsation in an optical ring cavity with a photorefractive two-wave mixer. The mean-
field limit is used to obtain a single criterion for instabilities that originate from a Hopf bifurcation.

Optical bistability and instabilities1 in photorefractive
wave mixing have been reported recently.2-4 Some of
these studies were based on competition between sev-
eral coupled oscillators (or sets of gratings).3 Bistabil-
ity and self-pulsation in a photorefractive ring cavity
(with two crystals in the cavity) were also demonstrat-
ed. 4

We have shown5 that photorefractive two-beam
coupling in a ring cavity exhibits absorptivelike and
dispersivelike bistabilities. With the application of a
dc electric field and nondegenerate mixing, the behav-
ior of the system resembles the Stark effect with gain
splitting and broadening.6'7 In this Letter we show
that this configuration also displays optical instabil-
ities and self-pulsation in the single-mode, mean-field
limit.7'8 We also obtain a single criterion for such
instabilities.

The dynamics of two-beam coupling in a photore-
fractive material is described by the time-dependent
Maxwell equations for the propagating waves and a
material equation that governs the coupling process
through the dynamical formation of the space-charge
field and the gratings. This process is described by
the band-transport model of Kukhtarev et al.9 In the
quasi-cw (steady) approximation'0 it is assumed that
the density of the mean carrier number is independent
of time. In this case the grating buildup (or erasure) is
governed by a single (complex) time constant.

Figure 1 shows the two-beam-coupling configura-
tion considered here. Our treatment allows for a mov-
ing grating and the application of an external dc elec-
tric field upon the crystal." With the standard slowly
varying amplitude and plane-wave approximations,
and for negligible absorption, the equations for the
time-dependent beam-coupling process are
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where Aj(z, t) are the beams' complex amplitudes, Ij =
IAjI2, Io = I, + I4, G(z, t) is the grating's complex

amplitude, c' = (c cos 0)/no, 0 is the angle of the beams
with respect to the normal to the crystal face (see Fig.
1), ai gives the direction of the energy transfer accord-
ing to its sign (a = ±1) and is dependent on the orien-
tations of the crystal and the two beams, Eo is the
externally applied field, ro = to/Io is the time constant
for Eo = 0, and to vo-' is the time constant for the
grating formation, normalized to intensity units, and
is a constant of the material for a given geometry. The
reciprocal dependence of the time constant on the
total light intensity is valid only for intensities well
below saturation. A more exact relation is given by ro
= to X I-X, where12 0.6 < x < 0.7. A = (W1 - W4) To is the
dynamical detuning of the grating. The static detun-
ing is defined by Ao -- (W1 - cv4)to (=const.). We note
that c, - W4 << W1, (04, and therefore the phase mis-
match is negligible. f(Eo) is a complex function that
describes the changes in the grating's complex ampli-
tude due to E0 and is given by5 f(Eo) = [(Ed + Ep)/
Ed]J(Eo + iEd)/[Eo + i(Ed + Ep)I - F + iF'. n1 is the
maximum change of the index of refraction with Eo =
A = 0 and is given by n1 = -reffno3 l(EdEp)/[2(Ed +
Ep)]} such that its multiplication by iAlA4*/Io gives
the complex grating's amplitude, G(x, t). reff is the
effective electro-optic coefficient, and no is the back-
ground index of refraction. Ed and Ep are material
parameters5 for a given geometry.

The boundary condition for the ring configuration
of Fig. 1 is
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Fig. 1. Photorefractive unidirectional ring cavity with an
injected signal. C, crystal; V, voltage source; BS's, beam
splitters; M's, mirrors.
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A4 *(0, t) = FTA 4in + R eLib0A4* (1, t - At),

A,(0, t) = const., (2)

where At (- - 1)/c', L is the total effective cavity
length, and I is the interaction length of the two beams
in the crystal. T and R are the transmissivity and the
reflectivity, respectively, of the input and output
beam splitters (T = 1 - R). The cavity detuning 30 is
defined by 3o _= (4 -cv)/(c/L), where xc = q(27rc/l-) is
the cavity mode nearest to the frequency of the inci-
dent field, (4 (q is an integer).

The configuration shown in Fig. 1, without the in-
jected signal and with ai = +1, has been previously
studied in detail and is known as the photorefractive
unidirectional ring oscillator.'3 With the inclusion of
the injected signal, the case of ai = +1 is similar to that
of a laser with an injected signal. The case of a = -1 is
similar to that of the optical bistability configuration.
The steady-state solution of Eqs. (1) with the bound-
ary conditions of Eq. (2) was given in Ref. 5. It was
shown that this system exhibits absorptivelike and
dispersivelike optical bistabilities. This solution,
however, did not include power-broadening effects
that originate from the photorefractive Stark effect.7

In the mean-field limit8 the electromagnetic fields
and the grating's amplitude inside the medium are
taken to be almost uniform in space. This approxima-
tion is valid when the nonlinear interaction of the
beams, the transmissivity of the beam splitters, and
the cavity detuning are small8:

'yol O0 , T 0, 0 -0, (3)

where yo is the steady-state resonant (Eo = A0 = 0)
coupling coefficient, yo (=vn,/2noc').

We follow the derivations of Ref. 8 using the mean-
field limit. The steady-state quantities and the dy-
namical perturbations are treated separately and then
recombined to give a new set of quantities: Al(z', t')
A, 6 +_a,(z', t'), A4*(z', t') A455* + a4*(z0, t'), and G(z',
t') G5. + 6G(z', t') with a new set of variables, z' = z
and t' = t + At(z/l). These changes convert the
boundary condition of Eq. (2) into a periodic one.
The new set of equations is then given by

(atl ' L aid)A

= 'r -1 [Al..(l) -Al.(0)] -a ic' IA4 I

( Ct' 1 -Ls ' A4}

(4a)

govern the dynamical behavior of the system. Since
the time response of the photorefractive effect is rela-
tively slow owing to carrier-transport mechanisms,
and since T -0, we have p << Tcav, to. Then Eq. (4a)'
can be adiabatically eliminated and A, can be regard-
ed as a constant in space and time. This result is not
surprising; photons that originate from beam 1 tra-
verse the crystal only once and leave the system. Pho-
tons of beam 4, however, have a long cavity lifetime
(rcav is reciprocally dependent on T). With the as-
sumption of relations (3) of weak interaction, only
these photons experience the nonlinear coupling ef-
fects. Thus we can assume that A(0, t) _ A(l, t)
constant. Because the photorefractive linewidth PO is
narrow with respect to the free spectral range of the
cavity, we consider the single-mode equations only
and therefore omit the spatial derivatives8 from Eqs.
(4). This means that the photorefractive gain mecha-
nism cannot supply enough gain to other cavity modes
besides the one with w,.

Then we obtain our basic equations of the single-
mode, mean-field-limit model for the photorefractive
ring cavity:

x = -k[(1 + i0)x - y + 2C9g],

g = vo[(F + iF')x - (1 + Ix12 + iAo)g],

(5a)

(5b)

where x A4 */Al = A4outJ[FTAl(0)] is the normalized
output amplitude, y A4in/[JTA(0)] is the normalized
input amplitude, C - yol/2T is the bistability parame-
ter, and g - 2iG/n, is the normalized grating's ampli-
tude. For normalization purposes we take A,(0) = 1
and then lo = 1 + 1x12. The normalized input and
output intensities are defined by Y y 2 and X -x12,
respectively, and g = JgJ2.

The steady-state solution of Eqs. (5) is given by
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with T ep = /c',av = th = d/CfT, 0 = 0 /T, and 10 = c t
+ 14. We note that three different time constants
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Fig. 2. Instabilities in photorefractive optical bistability.
(a) The steady-state-normalized output intensity X versus
the normalized input intensity Yfor C = 5, ai = -1, AO = 4, 0
= 0.5, k = vo = 1, and Eo = 2.5 kV/cm. (b) The Hopf
bifurcation condition f versus the normalized output inten-
sity X. (c) The phase plane portrait of the same system
when driven with normalized input intensity y = 5.5 (Y =
30.25); the variables are xl = Relxl and X2 = Imtxl. (d) xl and
X2 versus (t/rcav); one division is 1 (t/rcav).
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+ 2 VCA0F]2
(I + X)2 + AeI

+ 4cCF 2 [UCF'-AO-0(1 + X)].
(1 +X) 2 + A0

2 (6)

With a zero applied field (F = 1, F' = 0) this result is
identical to Eq. (21) of Ref. 5, when power-broadening
effects are added [the substitution of A = AO/(I + X)].

We next study the local stability of the system
through linear stability analysis. We assume small
perturbations of the forms ax = x - x8 and ag = g - go,
where x, and g, are the steady-state solutions of Eqs.
(5). Substituting these perturbations into Eqs. (5)
and taking only the linear terms, we have

[A'x iF -k(1 + i0) 0
Ax* 0 -k(1-i0)

I _~ vO[(F + iF') - x*g3] -vaxtsg
La* _IL -vox.s*gs* vO[(F - iF') - xg*]

where Xs = Ix312.

(7) is given by
The characteristic equation of Eq.

(8)

A transition of the system from a stable state to insta-
bility occurs14 when a negative real root passes the
origin (from left to right) or when two complex conju-
gate roots (with a negative real part) cross the imagi-
nary axis of the complex plane. The first case (saddle-
node bifurcation) occurs when a4 changes its sign and
becomes negative. This corresponds to the turning
points of the negative-slope branch of the input/out-
put curve of the photorefractive ring cavity. It can be
shown that dY/dX = [a4/(k2vo2)1{1/[(l + XJ)2 + A0

2]},
which shows that the negative branch, as is usual in
optical bistability, is always unstable. The second
case corresponds to Hopf bifurcation and is of more
interest to us because it can lead to positive-slope
instabilities and self-pulsation. A single critical crite-
rion for the Hopf bifurcation can be obtained as done
in Ref. 14. By substituting X = ip, A > 0 into Eq. (8),
the polynomial breaks into real and imaginary parts:
A4- a2Au2 + a4 = 0 and aly 2 - a3 = 0. The frequency of
oscillations on the instability boundaries is found to be
IL = V/a7sa, (with the requirement that a3/a, > 0).
Then the condition for Hopf bifurcation is derived:

(9)

In fact, this is the next to last principal subdetermin-
ant of the Routh-Hurwitz criterion,15 which is the first
to change its sign in the case of Hopf bifurcation.
This also means that f < 0 is a sufficient condition for
instability.

In Fig. 2 we give a numerical example that demon-
strates instabilities in photorefractive optical bistabil-
ity. In Fig. 2(a) the steady-state solution [Eq. (6)] is
drawn, where the Hopf bifurcation condition [Eq. (9)]
is applied to obtain the unstable regions. The param-
eters used are C = +5, o- = -1, A0 = 4, 0 = 0.5, k = Po =
1, and Eo = 2.5 kV/cm. The unstable regions are

labeled by dashed curves. In Fig. 2(b) we give f, the
instability criterion, as a function of X for this exam-
ple. As can be seen, instabilities appear in the lower
branch of the bistability curve, starting from the zero
input field. In Figs. 2(c) and 2(d) we drive the same
system in the unstable region, near its boundary, with
a normalized input amplitude y = 5.5 (Y = 30.25).
The driving intensity is marked by an arrow in Fig.
2(a). Figure 2(c) is a phase portrait of Eqs. (5) for the
two variables xl = Refx} and x2 = Imfx}. These two
variables are also drawn as a function of time in Fig.
2(d). All the numerical calculations were done with a
fourth-order Runge-Kutta algorithm, with a step size
of 0.05 (smaller step sizes gave the same attractor),
and all the transients were allowed to decay before any

2aCk 0 Ax 
0 2uCk Ax* 

-vO(1 + X, + iAo) 0 bg ' (7)
o -vo(1+ X8 -iAO)JLbg* J

data were taken. A more detailed explanation for
these instabilities, through the gain-feedback ap-
proach,' 6 is given in Ref. 7.
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Y=X {[1-( 2+X) + F)2] + [

X4 + aX3 + a2X
2 + a3X + a 4 = 0.

f = ala2a3 -a, 2a4 -a32 = 0.


