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a b s t r a c t

This paper addresses the following problem in networked control: ‘‘If a control law is implemented over
a channel that supports a certain fixed bit rate what is the best choice for the control update rate and,
consequently, the number of bits carried in each sample?’’ A restricted architecture in which linear filters
are used for the encoder/decoder is considered and a quantizer with linear feedback is deployed. Subject
to these restrictions, a procedure for designing the controller and associated filters is presented. These
filters are then deployed to choose the best number of bits per control update. It is shown, subject to the
above restrictions, that it is generally best to use one bit per sample, in which case, the control update rate
is equal to the bit rate. Our analysis has two points of departure from contemporary literature in this area.
Firstly, we focus on bits per unit time, as opposed to bits per sample. Secondly we use a fixed number of
bits in every time period as opposed to an average bit rate.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Control theory has traditionally ignored communication con-
straints, but the recent developments in networked control
systems, and the problems arising there from, have inspired con-
siderable interest in the interplay between communication and
control (Antsaklis & Baillieul, 2004;Wong & Brockett, 1997). Ama-
jor focus in this literature has been on the effect of network con-
straints on performance and stability; typical constraints are limits
on (average) data rate, random delays and lost packets. There has
been important progress in several areas, (see Braslavsky, Middle-
ton, and Freudenberg (2007), Goodwin, Silva, and Quevedo (2010),
Lian, Moyne, and Tilbury (2003), Ling and Lemmon (2004), Nair
and Evans (2004), Nair, Fagnani, Zampieri, and Evans (2007), Nils-
son (1998), Savkin (2006), Schenato, Sinopoli, Franceschetti, Poolla,
and Sastry (2007), Seiler and Sengupta (2005) and Tatikonda and

✩ The material in this paper was not presented at any conference. This paper
was recommended for publication in revised form by Associate Editor Hideaki Ishii
under the direction of Editor Ian R. Petersen.

E-mail addresses: Graham.Goodwin@newcastle.edu.au (G.C. Goodwin),
Mauricio.Cea@uon.edu.au (M.E. Cea Garrido), feuer@ee.technion.ac.il (A. Feuer),
d.mayne@imperial.ac.uk (D.Q. Mayne).
1 Tel.: +61 2 4921 7378; fax: +61 2 4960 1712.

http://dx.doi.org/10.1016/j.automatica.2014.02.006
0005-1098/© 2014 Elsevier Ltd. All rights reserved.
Mitter (2004)). The current paper adopts an alternative point of
view and assumes that the constraint is on the bit rate in the com-
munication channel between control law and plant rather than the
sampling rate. There are several ways that the question consid-
ered here could be formulated, for example where the constraint
on bit rate lies between controller and plant, between plant and
controller or both. Here, we explore the first of these options. This
choice was motivated, in part, by the practical problem of inner
loop power control in WCDMA mobile communications (Cea &
Goodwin, 2011; Dahlman, Parkvall, Skold, & Beming, 2007). In this
problem, the input update period is set to ∆ = 0.667 ms and, in
traditional implementations, 1 bit per sample is used. However, it
would be possible tomaintain the same input bit ratewhilst chang-
ing the input update period to p∆ and to use p bits/sample. This
change of paradigm raises the question as to whether, or not, the
choice p = 1, used in practice, is the best choice. Preliminary sim-
ulation studies conducted by the present authors suggest that 1
bit/update is actually the best choice. The bit rate is the product of
the number of bits per sample and the control update frequency.
Since p bits per sample permits 2p quantization levels, a higher
value for p reduces the quantization error but also increases the
period over which the input must be held, therefore, the ability of
the controller to reduce the effect of disturbances. This decompo-
sition of the bit rate into the product of bits per sample and input
update frequency results in an obvious trade-off and leads to the
question: ‘‘What is the best allocation of a given bit rate into the
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Fig. 1. Proposed four degree of freedom architecture (Cp1 , Lp, Hp and Q p).
number of bits per sample and the number of control updates per
second?’’ This paper addresses this question.

A restrictive (pragmatic) view of network control in which
linear filters are utilized for the encoder/decoder pair is adopted.
The single input single output case is considered, and a quantizer
with linear feedback is deployed to assign the signal of interest
to the available bits. The analysis is restricted to open loop
stable systems. It would be interesting to relax these restrictions.
However, these restrictions are used here to simplify the analysis.
We leave it for future research to consider other scenarios.
Subject to the above restrictions, a design procedure in which, for
each choice of the number of bits in the quantizer, the optimal
controller, encoder/decoder and quantizer feedback are chosen.
These designs are then used to choose the optimal number of
bits/control update. It is shown, surprisingly in our view, that one
bit per control update is typically the best choice. Consequently a
control update rate equal to the available bit rate is best. This choice
corresponds to implementing the control law using a scaled sign
function.

2. A class of models

Consider a single input single output linear continuous time
system and assume the following:

A.1 The bit rate of the input channel (between controller and
plant) is restricted to Br bits/s so that ∆1 = 1/Br s is the
smallest possible control update period.

The output is always sampled at period∆1 and an appropriate anti-
aliasing filter is deployed at this sample period. Filtering at the
lower sample period is implicit in the form of the controller. The
input is held constant for p samples to allow a p bit quantizer to be
used i.e. p bits are used to code the input signal. When the input
is up-sampled to period ∆1, then the resulting system can be de-
scribed, without loss of generality, in innovations form (Anderson
& Moore, 1979; Goodwin & Sin, 1984) as follows:

xk+1 = Axk + Būk + Kεk (1)
yk = Cxk + εk (2)

where xk ∈ Rn, ūk ∈ R1, yk ∈ R1, εk ∈ R1 are the state, plant input,
plant output and innovations sequence having variance σε respec-
tively. Furthermore, assume the transfer function C(zI − A)−1B to
have relative degree d + 1 < n. Hence, for d = 0, CB ≠ 0 and for
d ≥ 1,

CAiB = 0 ∀ i = 0, 1, . . . , d − 1; CAdB ≠ 0. (3)

Additional assumptions are introduced as follows:

A.2 The discrete time transfer function from ū to y is stable and
minimum phase.
A.3 A uniform-interval-nearest-neighbour quantizer with 2p lev-
els is deployed.

A.4 All bits used in the quantizer are communicated between
controller and plant over a serial link supporting br bits/s.

A.5 The communication channel is error free.

Note that, a quantizer which allocates p bits/sample introduces
a transmission delay of period ∆p = p∆1.

3. Feedback architecture and quantizer

The proposed architecture for the feedback system is shown in
Fig. 1. In this figure, a superscript p denotes either a downsampled
signalwith period p∆1 or a system that operates at period p∆1. The
architecture shown in Fig. 1 has the following degrees of freedom:
Cp1 (a controller which is driven by a signal with sample period∆1,
which outputs a control every pth sample), (1+ Lp) and (1+ Lp)−1

(the channel coder and decoder), Q p(·) a 2p level quantizer having
step size λp and Hp (providing feedback around the quantizer).
For realizability Lp and Hp are constrained to be strictly proper.
We define sp = v̄p

+ qp where qp denotes the quantization
error sequence. At sample time k = ℓp, ℓ ∈ Z+, the controller
has knowledge of all past outputs (sampled at period ∆1), that is
yℓp, yℓp−1, yℓp−2 . . . . The controller then generates an input signal
up

ℓ . This input signal is held for p samples. The up-sampled input
signal is denoted as uk. Note that uℓp+i = up

ℓ, i = 0, 1, . . . , p − 1.
After filtering by (1 + Lp) the input signal is quantized to 2p levels
which leads to a p bit representation. It takes p∆1 s to transmit
these p bits over the communication channel to the plant input
thus satisfying the bit rate constraint. The signal is passed through
(1 + Lp)−1, then a series to parallel conversion is applied followed
by D/A conversion. This process produces a piecewise constant
control signal constrained to the same 2p levels. This signal is then
passed through a p sample hold so that the plant input, ūk, is
constant for p successive samples. During this period, the next p
bits are received, allowing the next plant input to be reconstructed,
and so on. The total delay between sample time, k = ℓp, (the time
that a sample of the output is taken) and the first time that the
resultant control, up

ℓp, effects the output of the plant is (d + p + 1)
samples. Note that, due to the p sample hold nature of the input, the
output at sample period ∆1 will be cyclostationary with period p.

We assume a uniform quantizer, which is characterized by the
step size between quantization levels. Q p

[·] denotes the quantiza-
tion operation. The quantization error is defined as

qp = v̄p
− Q [v̄p

] (4)

= F p
λ [v̄p

] (5)
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where

F p
λ [x] =



x + (2p + 1)λ ∀x ∈ (−∞, −2(2p−1
− 1)]

x + (2i − 1)λ ∀x ∈ (−2i, −2(i − 1)]

i = 1, 2, . . . , 2p−1
− 1

x − (2i − 1)λ ∀x ∈ (2(i − 1), 2i]

i = 1, 2, . . . , 2p−1
− 1

x − (2p + 1)λ ∀x ∈ [2(2p−1
− 1), ∞).

(6)

4. Performance criteria and design guidelines

It is important that the performance for different values of p be
compared on a fair basis. Since the output is cyclo-stationary with
period p, the average performance over the cyclo-stationary period
used to compare designs via the cost function:

JA(p) =
1
p

p
i=1

E

y(ℓp + p + d + i)2


. (7)

As remarked earlier, for each p, there are four degrees of
freedom in the architecture of Fig. 1, namely Cp1, Lp, Hp and the
choice of quantization levels in Q p. The design of each of these
elements is discussed below.

• Cp1: This controller is designed to minimize JA(p) considering
qp = 0.

• Lp: This filter is designed to minimize the variance of v̄p (the
input to the quantizer) considering qp = 0.

• Hp: This filter is designed tominimize JA(p)when qp ismodelled
as a white sequence2 and ε is considered to be zero.

• Q p: The levels in the quantizer are chosen to minimize JA(p)
when both ε and qp are present.

Although restrictive, the above framework underlies contem-
porary work on the signal to noise ratio approach to network con-
trol (Braslavsky et al., 2007; Goodwin et al., 2010). Moreover, it is
known that this strategy leads to similar insights to those obtained
by more general formulations (Goodwin et al., 2010).

Recall that, the control signal is subject to the constraint

ūk = ūpℓ for pℓ ≤ k < p (ℓ + 1) , ℓ ∈ Z. (8)

This constraint leads to the result that the system, when viewed at
period ∆1, is p-periodic and that the output is cyclo-stationary. A
lifted form of themodel is used to derive the key results. Hence, for
k = pℓ and subject to the control constraint (8):

xp(ℓ+1) = xpp(ℓ+1) = APx
p
pℓ + BP ūp(ℓ−1) + KPε

p
pℓ (9)

yppℓ = CPx
p
pℓ + DP,uūp(ℓ−1) + DP,εε

p
pℓ (10)

where ε
p
pℓ = [εpℓ εpℓ+1 · · · εp(ℓ+1)−1]

T , yppℓ = [ypℓ ypℓ+1 · · ·

yp(ℓ+1)−1]
T and

AP = Ap
; BP =

p
i=1

Ap−iB (11)

CP =

(C)T (CA)T . . . (CAp−1)T

T
;

KP =

Ap−1K Ap−2K · · · K

 (12)

2 Note that this assumption is a working hypothesis and it is not used when
evaluating the final performance.
DP,u =


0 0 · · · 0
CB 0 · · · 0
...

...
. . .

...

CAp−2B CAp−3B · · · 0

 1;

DP,ε =


1 0 · · · 0
CK 1 · · · 0
...

...
. . .

...

CAp−2K CAp−3K · · · 1


(13)

where 1 ∈ Rp×1 is a column vector of ones.

Lemma 1 (Design of Cp1 ). The following controller minimizes (7):

xCp(ℓ+1) = ACxCpℓ + BCu
p
p(ℓ−1) + KCy

p
pℓ (14)

up
pℓ = CCxCpℓ + DCypℓ + aup

p(ℓ−1) (15)

where

AC = (A − KC)p ; BC =

p
i=1

(A − KC)i−1 B (16)

KC =

(A − KC)p−1 K (A − KC)p−2 K · · · K


(17)

CC = −
GT
2

GT
2G2


CAp+d

CAp+d+1

...

CA2p+d−1

 (A − KC) ;

DC = −
GT
2

GT
2G2


CAp+d

CAp+d+1

...

CA2p+d−1

 K

(18)

a = −
GT
2G1

GT
2G2

(19)

G1 =


CAp+dB · · · CAd+2B CAd+1B

CAp+d+1B · · · CAd+3B CAd+2B
...

. . .
...

...

CA2p+d−1B · · · CAd+p+1B CAd+pB

 1;

G2 =


CAdB 0 · · · 0

CAd+1B CAdB · · · 0
...

...
. . .

...

CAd+p−1B CAd+p−2B · · · CAdB

 1.

(20)

Proof. From (1), (2) and (3) it is seen that the predicted output
given data up to time k = pℓ satisfies

yp(ℓ+1)+d+1yp(ℓ+1)+d+2

...yp(ℓ+2)+d

 =


CAp+d

CAp+d+1

...

CA2p+d−1

 (A − KC) xpℓ +


CAp+d

CAp+d+1

...

CA2p+d−1

 Kypℓ
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+


CAp+dB · · · CAd+2B CAd+1B

CAp+d+1B · · · CAd+3B CAd+2B
...

. . .
...

...

CA2p+d−1B · · · CAd+p+1B CAd+pB



up
p(ℓ−1)

...

up
pℓ−2

up
pℓ−1



+


CAdB 0 · · · 0

CAd+1B CAdB · · · 0
...

...
. . .

...

CAd+p−1B CAd+p−2B · · · CAdB




up
pℓ

up
pℓ+1
...

up
p(ℓ+1)−1

 (21)

where (3) has been used. Then, applying (8)
yp(ℓ+1)+d+1yp(ℓ+1)+d+2

...yp(ℓ+2)+d

 =


CAp+d

CAp+d+1

...

CA2p+d−1

 (A − KC) xpℓ +


CAp+d

CAp+d+1

...

CA2p+d−1

 Kypℓ

+


CAp+dB · · · CAd+2B CAd+1B

CAp+d+1B · · · CAd+3B CAd+2B
...

. . .
...

...

CA2p+d−1B · · · CAd+p+1B CAd+pB

 1up
p(ℓ−1)

+


CAdB 0 · · · 0

CAd+1B CAdB · · · 0
...

...
. . .

...

CAd+p−1B CAd+p−2B · · · CAdB

 1up
pℓ. (22)

Since the norm of the vector on the RHS is a simple square function
of upℓ, the optimal control can be derived as

up
pℓ = CCx

p
pℓ + DCypℓ + aup

p(ℓ−1) (23)

where CC ,DC and a are as given in (18)–(19).Wenote however, that
the plant state xppℓ used in the above derivation is not available, so
an observer is needed.

xCpℓ+1 = AxCpℓ + Bup
p(ℓ−1)−d + K


ypℓ − CxCpℓ


. (24)

Replacing xppℓ by xCpℓ, (15) is obtained. �

Lemma 2 (Design of Lp). (i) The optimal filter 1+Lp is defined by the
following equations:

xLp(ℓ+1) = ALxLpℓ + BPu
p
p(ℓ−1) + KL


up
pℓ − aup

p(ℓ−1)


(25)

v
p
pℓ = CLxLpℓ + up

pℓ − aup
p(ℓ−1) (26)

AL = AP + KLCL (27)
CL = − (CC + DCC) (28)

where KL is the Kalman filter gain designed for the plant:

x̃k+1 = Ãx̃k + ω̃k (29)

ỹk = C̃ x̃k + ν̃k (30)

where Ã = AP , C̃ = CL and

E


ω̃k
ν̃k

 
ω̃T

k ν̃T
k


=


KPK T

P Ap−1KDT
C

(Ap−1KDT
C )

T (DC )
2


σ 2

ε . (31)

(ii) The inverse filter, (1 + Lp)−1, is given by

xILp(ℓ+1) = APxILpℓ + BP ū
p
p(ℓ−1) + KLv

p
pℓ (32)

ūp
ℓp = −CLxILℓp + aūp

p(ℓ−1) + v
p
pℓ. (33)
Proof. Recall the controller given in (15). For the purpose of the
current derivation, note that the controller state is (asymptotically)
equal to the plant state. Hence one can equivalently write (15) as:

up
ℓp = CCx

p
ℓp + DCyℓp + aup

(ℓ−1)p. (34)

Using the plant model (1) and recalling the plant equation in its
equivalent lifted form (9)

up
ℓp = CCx

p
ℓp + DC


Cxpℓp + εℓp


+ aup

(ℓ−1)p (35)

where AP , BP and KP are given in (11) and (12). Eqs. (9) and (35) can
be seen as a system having process noise KPε

p
pℓ ∼ N


0, σ 2

ε KPK T
P


and measurement noise DCεℓp ∼ N


0, σ 2

ε (DC )
2. The process

noise and measurement noise have cross-covariance given by
σ 2

ε A
p−1KDT

C . This system can be rewritten in innovations form:

x
′P
p(ℓ+1) = APx

′P
pℓ + BP ū

p
p(ℓ−1) + KLv

p
pℓ (36)

ūp
ℓp = (CC + DCC) x

′P
ℓp + aūp

(ℓ−1)p + v
p
pℓ (37)

where KL is the corresponding Kalman gain and v
p
pℓ is the new

innovation sequence. Eqs. (36), (37) are the inverse filter 1
1+Lp with

input v
p
pℓ and output ūp

ℓp. The corresponding inverse, that is the
filter 1 + Lp, is

xLp(ℓ+1) = APxLpℓ + BPu
p
p(ℓ−1)

+ KL


up

ℓp − (CC + DCC) xLℓp − aup
(ℓ−1)p


(38)

v
p
pℓ = up

ℓp − (CC + DCC) xLℓp − aup
(ℓ−1)p. (39)

This result establishes (25) and (26). Also, since v
p
pℓ is an inno-

vations sequence, it is i.i.d with minimal variance. This concludes
the proof of (i). The inverse filter, as stated in (36), (37) is given by
(32), (33). �

To design Hp, εk is temporarily set to zero and qp is modelled
as a white noise sequence. Recall that the goal of Hp is to minimize
the impact of qp on the output. From Fig. 1, the input spℓ to the filter

1
1+Lp is

spℓ = v̄
p
pℓ + qpℓ − mpℓ (40)

where mpℓ is the output of Hp. Also, qpℓ is assumed to be an i.i.d
process. The resulting system can be viewed as an LTI system at
rate pℓ with input


qpℓ − mpℓ


and output

yppℓ =

(ypℓ)T (ypℓ+1)

T . . . (yp(ℓ+1)−1)
T T . (41)

We then have:

Lemma 3. The model linking inputs qpℓ − mpℓ to output yppℓ can be
written as:

xSp(ℓ+1) = ASxSpℓ + BS

qpℓ − mpℓ


(42)

yppℓ = CSxSpℓ (43)

where

AS =


a + DCeT1DP DCeT1CP 0 CC CL −CL

BP AP 0 0 0 0
DCeT1DP DCeT1CP a CC 0 0

0 0 BC AC 0 0
KLDCeT1DP KLDCeT1CP BP KLCC AL 0

BP + KLDCeT1DP KLDCeT1CP 0 KLCC KLCL AP

 (44)

BS =

1 0 0 0 0 K T

L

T (45)

CS = [DP CP 0 0 0 0] (46)

where 0 are zero matrices of appropriate dimensions.
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Proof. The closed loop system is composed of several subsystems
as outlined below. In the following equations the various matrices
are computed using the equations numbers in brackets AC (16),
BC (16), KC (17), CC (18), DC (18), a (19), AL (27), CL (28), AP (11),
BP (11), CP (12), DP,u (13), DP,ε (13) and KP (12).
(i) Delay system 1 (input uℓ and output x0ℓ):

x0ℓ+1 = uℓ. (47)

(ii) The plant in lifted form (input x0ℓ and output yℓ):

xpℓ+1 = APx
p
ℓ + BPx0ℓ (48)

ypℓ = CPx
p
ℓ + DPx0ℓ. (49)

(iii) The controller (with delay system 2p), (input yℓ and outputuℓ):x0ℓ+1 =uℓ (50)

xCℓ+1 = ACxCℓ + BCx0ℓ (51)uℓ = CCxCℓ + ax0ℓ + DceT1yℓ. (52)

(iv) The 1 + Lp filter (inputsuℓ,x0ℓ and output v
p
ℓ ):

xLℓ+1 = ALxLℓ + BPx0ℓ + KL
uℓ − ax0ℓ (53)

v
p
ℓ = CLxLℓ +uℓ − ax0ℓ. (54)

(v) The filter 1
1+Lp (inputs v

p
ℓ + qℓ, x0ℓ and output uℓ):

xILℓ+1 = APxILℓ + BPx0ℓ + KL

v
p
ℓ + qℓ


(55)

uℓ = −CLxILℓ + ax0ℓ + v
p
ℓ + qℓ. (56)

Combining the equations in (i) to (v) into a system (xSℓ, AS, BS,
CS) with input qℓ and output yℓ one obtains (42) to (46) where

xSℓ =

(x0ℓ)

T (xpℓ)
T (x0ℓ)T (xCℓ )

T (xLℓ)
T (xILℓ )T

T
∈ R2(2n+1). � (57)

Lemma 4 (Design of Hp). Under theworking hypothesis that qpℓ is an
i.i.d. sequence, then the variance of yp(ℓ+1+n̄) isminimized by choosing
mpℓ via the following equations:

x̄Sp(ℓ+1) = AS x̄Spℓ + BS(qpℓ − mpℓ) (58)

mpℓ =
1
t0
epCSAn̄+1x̄Spℓ (59)

where

ep =

0 . . . 0 1


ep ∈ R1×p

; t0 = epCSAn̄
SBS (60)

and where n̄ is the first integer such that epCSAn̄
SBS ≠ 0.

Proof. Comparing (58) and (42), it is seen that x̄Spℓ converges
asymptotically to xSpℓ. Hence the second equation in (15) can
(asymptotically) be expressed as

yp(ℓ+1)−1 = epCS x̄Spℓ. (61)

Iterating this equation using (58) one obtains

yp(ℓ+1)+n̄ = eppCSAn̄+1x̄Spℓ + epCSAn̄
SBS[qpℓ − mpℓ] (62)

= epCSAn̄+1x̄Spℓ + t0[qpℓ − mpℓ]. (63)

Hence, using (59),

yp(ℓ+1)+n̄ = t0qpℓ (64)

which is an i.i.d. sequence having minimal variance. �
Table 1
Simulation results.

p 1 2 3 4

Best choice for λp 0.95 0.25 0.14 0.09
Average output variance
achieved with λp

2.3268 2.9363 3.1056 3.1346

Having designed Cp1 , Hp and Lp, we now fix these quantities
and proceed to the design ofλp (the quantizer step size). The design
of λp is carried out using a full Monte Carlo simulation, and by then
conducting a line search on λp, for each p, to choose the best value
of λp thatminimizes (7). The resulting (best) performance, for each
value of p, are compared. Note that the earlier working hypothesis
that qp was a white sequence is no longer used in this phase.
Indeed, this is why a Monte Carlo approach has been used since
an analytic solution is intractable due to the nonlinear behaviour
of the quantizer.

5. Example

Many cases have been simulated and, in all cases, p = 1 turned
out to be the best choice. An illustrative case is given below.

The plant (at sample period ∆1) including anti-aliasing filter is
modelled3 by (1).

A =


0.9 −0.1
0.7 0.8


; B =


0.8
1


;

K =


1
1


; C =


1 0


.

(65)

Note that this state space system is a stable, minimum phase, LTI
system of relative degree 1.

Cp1 , Lp, Hp are designed as in Section 4. Then, a fullMonte Carlo
simulation based on the circuit shown in Fig. 1 is used. (Note that
qp is not modelled as an i.i.d. sequence in the simulations.) λp is
chosen by a line search to minimize (7) for each p. The results are
shown in Table 1. From Table 1 it is clear that p = 1 is best. In the
tested example it gives, approximately, 25% improvement on the
output variance over any other p.

6. Conclusions

This paper has studied the control problem that arises when
the control signal is implemented over a bit rate constrained
communication channel and when the control update rate is,
otherwise, unconstrained. Several simplifying assumptions have
beenmade, so as to simplify the analysis tractable. The conclusion,
based on the restrictive assumptions made, is that it is best to use
1 bit per sample and hence to choose the control update rate equal
to the inverse of the bit rate. More complex scenarios, for example
nonminimum phase and or unstable plants are the subject of on-
going research. Note that, in the latter case, one can only expect
local stability since the range of a fixed bit quantizer is necessarily
finite. Also, more sophisticated designs for the coder/decoder and
quantization could be considered. We (boldly) conjecture that p =

1 is the best choice under very general conditions. In this context,
we hope that this paper may inspire other researchers to examine
more general scenarios.
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