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Adaptive Identification and Recovery of
Jointly Sparse Vectors
Roy Amel and Arie Feuer, Life Fellow, IEEE

Abstract—In this paper we present a novel approach to the
solution of a sequence of SMV problems with a joint support.
This type of problem arises in a number of applications such
as multiband signal reconstruction and source localization. The
approach we present is adaptive in that it solves it as a sequence of
weighted SMV problems rather than collecting the measurement
vectors and solving an MMV problem. The weights are adaptively
updated from one instance to the next. This approach avoids
delays and large memory requirements (at the cost of increased
computational load) with the added capability of tracking changes
in joint signal supports.

Index Terms—Sparse, multiple measurement vectors (MMV),
adaptive, multiband, signal recovery.

I. INTRODUCTION

W E consider in this paper the following problem. A se-
quence of measurement vectors, is being

generated and is known to satisfy the model

(1)

where and . We wish to re-
cover the vector sequence from the available measure-
ments. Since this is obviously an under-determined problem,
it does not have a unique solution in general. However, it be-
comes feasible when we add the prior of sparsity to the vectors

—only a small number of their entries are different from
zero, the same entries at each time . This type of problem arises
in a number of applications, such as sub-Nyquist sampling of
multiband signals (see e.g., [2] and [3]) and source localization
(see e.g., [4]). To make this more formal, we introduce the no-
tion of support of the vector and assume
that there exists a set such that
where we refer to as the joint support. We refer the reader to
Table I where we summarize some of the notation we use in this
paper.
One possible approach would be to solve at each time in-

stance the following optimization problem:
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TABLE I
NOTATION

where

(2)

is just the count of the nonzero entries of . The problem for-
mulated in is commonly referred to in the literature as the
Sparse Representation (SR) problem for a Single Measurement
Vector (SMV) and has received much attention over the past
few years (see e.g., [6] or [7] and the many references there).
The two main issues are clearly (i) under what conditions does

have a unique solution, and (ii) how can it be found.
We quote one result for (i) and for that we need the following:
Definition 1 ([7]): The spark of a given matrix , denoted as

, is the smallest number of columns of which are
linearly dependent.
Then:
Claim 2 ([7] and [8]): If a linear system has a

solution satisfying , then this solution
is necessarily unique for , namely, the sparsest possible.
Regarding (ii), a direct solution of is known to be

NP-Hard [7]. However, this problem was well studied, see
e.g., [6], [9], [7]. Generally, there exist two main families of
algorithms which solve under additional assumptions.
The first family consists of greedy algorithms (GA), [6] and
[7], such as the Orthogonal Matching Pursuit (OMP). The main
idea behind the GA is reducing complexity by finding a series
of locally optimal single-term updates. The second family
comprises the convex relaxation techniques, for example:
FOcal Under-determined System Solver (FOCUSS) [10] and
Basis Pursuit (BP) [6], [9], [7], [11]–[13]. In BP the objective
function is relaxed to a convex form, the norm, which is
known to be tractable and with polynomial-time complexity
[14]. Stated formally:

Going back to our problem and the sequential SMV solution
we considered, we observe that we have not utilized the common
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joint sparsity prior. In an attempt to utilize this prior we consider
an alternative solution to our problem. Collect the data as long as
it is being generated, say measurement vectors and formulate
the following optimization problem:

where:
. This problem

has been addressed in the literature and is commonly referred to
as the Multiple Measurement Vector (MMV) problem (see e.g.,
[15] or [16]). We quote a uniqueness result for this problem:
Claim 3 ([16]): If the set of equations has a solu-

tion satisfying
is the unique solution to the problem.
Comparing the conditions in Claims 2 and 3 we readily ob-

serve the benefit of utilizing the joint sparsity prior in a consid-
erably less restrictive condition for solution uniqueness in the
MMV case. As is also an NP-hard problem there are a
number of alternative algorithms in the literature for solving
it. They too can be grouped into greedy algorithms, such as
OMP-MMV (see e.g., [16]) and relaxation algorithms such as
the M-FOCUSS (see e.g., [15]).
However, the MMV approach to our problem suffers from a

major drawback—it results in a (potentially large) time delay
of samples before the recovered signals are available. In ad-
dition, it would involve computations with large dimensional
matrices and require a significant memory size to store the data.
Using adaptive signal processing terminology, we refer to these
solutions as offline solutions. Motivated by a similar dilemma
in the adaptive signal processing literature (see e.g., [17]) we
present here, what we believe to be a novel adaptive approach
which is sequential in nature but utilizes the solutions up to time
when solving for time . As such, there is no time delay, the
data storage requirements are minimal and we have the added
capability, demonstrated in our simulation, of tracking changes
in signal support. We should also add that because of its sequen-
tial nature, could be infinitely large in which case it is some-
times referred to as IMV (see e.g., [2]).
Another interesting consideration for the MMV problem is

the question of how does one define the joint support. Typically,
once a non-zero value appears in any entry at any time, the index
of this entry enters the joint support. The question of frequency
of occurrence is never raised. Intuition tells us though that, when
this happens rarely, the right thing would be to ignore it. Our
adaptive algorithms basically do this—only if a particular entry
is consistently nonzero, it will affect the result.
The paper is structured as follows: Chapter 2 describes the

setup of the problem. Chapter 3 details an algorithm based on
BP and discusses some of its properties. Chapter 4 describes an
algorithm based on OMP. In Chapter 5 we present some simu-
lation results, where the presented algorithms are also applied
to the multiband signal reconstruction problem and Chapter 6
concludes the paper.

II. GENERAL SETUP DESCRIPTION

Let be a stochastic vector process with
the following properties:
1) There exists a set of indices such that

(possibly, ) and
for all and all .

2) The sequences are all stationary processes
with pdfs .

Note that we do not assume the to be continuous.
Namely, we allow for the possibility that
for at some (namely, ).
The measurement vector is generated via

(3)

We wish to recover the vectors given the matrix
(dictionary) and the measurements .

III. ADAPTIVE WEIGHTED BASIS PURSUIT
(AW-BP) ALGORITHM

As discussed earlier, our approach is to process the data
sequentially, to generate an estimate of at each time .
However, we wish to utilize the information acquired up to
time when we repeat the process at time . Motivated by
[18], where the concept of ‘re-weighting’ is introduced but in a
totally different way, we prove the following simple result:
Claim 4: Let be the unique solution to

(4)

with the support set , and let

(5)

(6)

where is a diagonal matrix such that

(7)

Then, assuming and we
have

(8)

(For the proof see Appendix)
So, our idea is to forward, from time to time , a weight

matrix which carries with it a “soft” form of the support infor-
mation. Specifically, we present the Adaptive Weighted Basis
Pursuit (AW-BP) algorithm.
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A. Algorithm Description and Performance

1) Initialize: Choose

(9)

2) At :
a) Find

(10)

b) Update by

(11)

c) Calculate by

(12)

d) Find

(13)

3) Use as the estimate of .

In hardware implementation, in Step 2c can be replaced
by so that Steps 2a and 2d, which are the time con-
suming steps, can be carried out in parallel at the cost of one time
interval delay in the adaptive learning curve. This is clearly ob-
served in our experiment results in Fig. 2.
We wish to point out that the matrices are the vehicles

through which we utilize the support information we gained at
time to time in a non-greedy way. This is clearly done by
the re-enforcement process described in (11). We have exper-
imented extensively in replacing the hard limiter in (12) with
other types of limiters, or even taking , but found
the above choice to work best.
Let us next present some performance results for the AW-BP

algorithm. Let , then we have from (11),
for all [see (14) at the bottom of the page].This
means that are stationary, finite state Markov chains with
the same states, , but different transition probabil-
ities, . We prove the following properties for these chains:
Claim 5: Consider the Markov chains as defined in (11) with

initial distribution vector (the th row of the
dimensional identity matrix). Then for each chain we have:

1) The transition matrix is given by

...
...

...
. . .

...
...

... (15)

with eigenvalues

(16)

2) The stationary distribution vector as defined by the equa-
tion, , is

(17)

where .
3) For , the state
probability distribution vector at time , there exist con-
stants so that

(18)

(For the proof see Appendix).
Claim 6: Let the process be generated as in (3) and

be defined by (10),

(19)

and

(20)

for the matrix sequence generated by the AW-BP. Then,
for all

(21)

and there exist constants such that

(22)

(14)
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where , and for all

(23)

and there exist constants such that

(24)

where, again, .

Proof: From the definition of and (12) we have

(25)

(26)

and by Claim 5(2)

(27)

(28)

Then, (22) follows directly from Claim 5(3) with
.

Similarly, for we have

and by Claim 5(2)

(29)

(30)

and (24) follows directly from Claim 5(3) with
which completes the proof.

Claim 7: Let us assume that

(31)

and

(32)

Then, for all as given in (21) is mono-
tonically increasing function of and , and

for all as given in (23) is monotonically
increasing function of and .

Proof: The proof follows directly from (31), (32), (21) and
(23) applied to the derivatives of and .
An immediate conclusion from Claim 7 and (12) is that after

some finite time, for sufficiently large , we get almost surely
that for all and for all
which then by (13) leads to almost surely.

B. Discussion

Wewish to brieflydiscuss here the assumptionsmade inClaim
7. First note that these assumptions do not imply that

. Next, in order to test these assumptions we have
conducted extensive simulations the results of which we present
here. Let and , then we generated a dictionary

with entries (i.e., Gaussianwith zero
mean and variance one) and normalized its columns (atoms) to
have norm 1. Keeping constant, for we chose
randomly the set so that and generated so
that for and for . Given
and we calculated according to

For each cardinality we repeated this 1000 times and counted
the occurrences , denoted . We used

as estimates of . Fig. 1 shows how

and changed with the cardinality. We clearly

observe that the assumptions we made in Claim 7 hold for all
cardinalities up to .
Remark 8: The introduction and choice of the integer repre-

sents the trade off between convergence and tracking properties
of our algorithms. The larger is the better the convergence but
the tracking is slower. This is clearly demonstrated in Fig. 4.
Our analysis indicates that the choice of does not affect the
algorithm performance as long as , at least theoretically.

IV. ADAPTIVE WEIGHTED-ORTHOGONAL MATCHING PURSUIT
(AW-OMP) ALGORITHM

Another implementation of the adaptive concept we intro-
duced is the Adaptive Weighted Orthogonal Matching Pursuit
(AW-OMP).

Algorithm Description
1) Initialize: Choose

(33)

2) At
a) Find, using OMP

s.t. (34)

b) Update by

(35)

if

if

c) Calculate by
0 if
1 if

(36)

d) Find, using OMP

s.t. (37)

3) Use as the estimate of
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Fig. 1. and as functions of the support
cardinality, .

As the reader can readily note, this is quite similar to the
AW-BP we introduced in the previous section. The difference
is in the Steps (2b) and (2d) where BP is replaced by OMP. The
OMP is described in many references, e.g., [6], [7]. In Step (2d)
a straightforward modification of the standard OMP is required.
Remark 9: Under assumptions similar to those made in

Claims 5, 6 and 7, similar properties can be proved for the
AW-OMP.
Remark 10: Another modification we have experimented

with is a compromise between the adaptive approach we have
described so far and the offline approach most solutions to the
MMV problem use. Instead of carrying out the iterations we
described at every time step as the data is measured, one can
accumulate a block of data vectors of small size and
solve MMV versions of the BP and OMP at each iteration and
carry the weights to the next block (so, one gets Block versions
of the AW-BP and AW-OMP). The results of our experiments
will be presented in the sequel.

V. SIMULATION RESULTS

To test the algorithms presented above we have conducted
extensive simulation of two types of experiments. In the first
we have used data generated according to the setup in Section 2
and tested our algorithms on this data. In the second, we applied
our algorithms to data generated by sampling a multiband signal
as described in [2].

A. Simulated Data

We start our experiments by generating data according to the
setup in Section II where we chose , pdfs

and dictionary with entries
and normalized columns. With each support we have

generated 100 measurement vectors on which we applied our
algorithm
1) AW-BP: We start by applying the AW-BP algorithm. To

execute the steps of (10) and (13) we used CVX (see [26]). In
Fig. 2 we show the convergence results for two support sizes,
60 and 80. Each experiment consisted of 100 runs and at each
time we counted the relative number of perfect support estima-
tions. We observe that for a support of cardinality 60, after 25

Fig. 2. Success probability for true recovery as a function of time (also shown
is the effect of using instead of ).

Fig. 3. Success probability for true recovery as a function of the support car-
dinality.

time steps we get perfect estimation with probability 1 which
we view as convergence. For support of cardinality 80 conver-
gence occurs after 96 steps.
In Fig. 3 we present a comparison between the M-FOCUSS

([15]), M-OMP ([16]) and the AW-BP algorithms. We per-
formed the simulation with 150 measurement vectors and the
performance is measured in terms of probability for true re-
covery of , as a function of the support cardinality. The
M-OMP and M-FOCUSS algorithms use all vectors at once
whereas the AW-BP processes one vector at a time. The M-FO-
CUSS was implemented using as in [15], while for its
termination we used as compared to used in
[15]. The parameters of the AW-BP are: . We
have also experimented with the choice of . Taking different
values had very little effect on algorithm performance (see
Remark 8). However, increasing it, at some point we started
to encounter numerical instability. The AW-BP, after conver-
gence, seems to outperform the other two algorithms (which
work off-line). This may seem inconceivable, but one should
keep in mind that these are three distinct algorithms neither of
which solves directly .
In Fig. 4 we present the support change tracking capability of

the AW-BP algorithm. For support cardinality , we have
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Fig. 4. Demonstration of tracking capability for different values of -success
probability for true recovery as function of time for .

Fig. 5. Performance comparison between the M-OMP and the AW-OMP algo-
rithms for sub-block sizes and 100.

changed the support at time and we show the algorithm
behavior for different values of . We clearly observe that for
larger the tracking is slower.
2) AW-OMP: Next we applied the AW-OMP on the same

data. Here we have experimented with the block version of the
AW-OMP (see Remark 10) and show the results in Fig. 5 where
we varied the block sizes as well. The M-OMP was applied on
each block independently using different number of measure-
ment vectors. It is noticeable that the AW-OMP achieves better
results than the M-OMP for the same block size. Interestingly
enough, the AW-OMP with block size 10, by , out-
performs the M-OMP which is applied to the whole data set

.
To get an idea of the computational aspects of the approach

we consider the set-up with and
and applied the AW-OMP up to . We counted the
number operations carried out in the process. Then we applied
the M-OMP on the collected data set. The comparison is pre-
sented in Table II. As anticipated, our approach is computation-
ally more demanding. We should point out however, that this
load is not uniform in time. As convergence occurs in our algo-
rithms, the computational load goes down significantly as Step
2d is reduced to a solution of a set of linear equations.

TABLE II
COMPUTATION COMPARISON

Fig. 6. The figures represent probability for true identification as function
of SNR and support cardinality, . In (a) and (b) we compare the results
for choosing in both M-OMP and AW-OMP . In (c) and (d) the
comparison the comparison is for . In (e) we present the results for
M-OMP for .

We have repeated the above experiments with noisy measure-
ments and show the results in Fig. 6. Each square in each figure
corresponds to a certain SNR (in dB) and support cardinality and
its grey level reflects the corresponding probability of success
(perfect recovery of support), with white being probability 1 and
black 0. Figs. 6(a) and (b) compare the performance of M-OMP
and AW-OMP (after convergence) using measurement vectors
sub-blocks of size . Figs. 6(c) and (d) compare the per-
formance of M-OMP and AW-OMP (after convergence) using

. In Fig. 6(e) we show the results of applying M-OMP
on the whole data (150 measurement vectors). In all the results
presented we observe the performance advantage of the adap-
tive algorithms even when the the whole data set is used (off line
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Fig. 7. Probability for true recovery of Sub-Nyquist system. (a) Using block
AW-OMP, and 100 measurement vectors total. The results are after
convergence. (b) Using the reconstruction as described in [2].

processing) and this goes beyond the obvious advantage of the
online processing (smaller or even no delays and less demand
on memory).

B. Reconstruction of a Multiband Signal

There are at least two examples in the literature of applica-
tions which are cast in the form of the model in (1). One is the
source localization problem in radars with sensor arrays (see
e.g., [4]) and the second is the reconstruction of under-sam-
pled multi-band signals (see e.g., [2]). We chose to apply our
adaptive approach to the latter and used the example presented
in the work of Mishali and Eldar [2]. They consider a signal
which consists of disjoint frequency bands at unknown loca-
tions, each of width bounded by . The measurement vectors
are generated by an ingenious sampling of that signal, consid-
erably below Nyquist rate, as described in detail in [2]. They
show that the measured data vectors satisfy the frequency do-
main equation where is the DFT of the
measurements vectors is a known matrix and the vector

is sparse for every . To reconstruct the multiband
signal, the support of is found first, which then leads to
calculating and the signal reconstruction. Both the sam-
pling and reconstruction described in [2] were thoroughly in-
vestigated by Mishali and Eldar who also proceeded to success-
fully implement it in hardware.
We propose here an alternative approach to the reconstruction

by looking at the time domain version of the above equation,
, where are the measurement vectors, as

above and is sparse (same support as ) for all .
With this equation we apply our AW-OMP to the same signal
as in [2] ((37) and Option A in their Table I).
In Fig. 7(a) we show the performance using AW-OMP (after

convergence) and, in Fig. 7(b) the results using the algorithm
described in [2]. The rsults seem quite comparable.

VI. CONCLUSION

The set up considered in this paper is of, possibly a large
number, of measurement vectors being generated sequentially
from a set of jointly sparse signals with a common dictionary.
One approach would be to collect all the measurement vectors
and solve an MMV problem with one of the available algo-
rithms. This approach has the advantage of low computational
requirements and takes advantage of all the joint sparsity
benefits (see Claim 3). However, it requires a large memory,
introduces a (possibly large) delay in the signal reconstruction
and it does not have the capability of tracking a changing
joint sparsity. The other possibility is solving independently an
SMV problem each time a new measurement vector becomes
available. This approach, while having minimal memory re-
quirements and no delay, does not make use of the joint sparsity
prior. In this paper we introduced a novel approach which
has the benefits of the two extremes above. It can be viewed
as an adaptive method of solution. It is based on a sequential
solution of (weighted) SMV (or weighted blocked MMV)
problems. The resulting signal supports are then carried over,
in a non-greedy way via a weighting matrix, from one instance
to the next.
Different applications of this concept can be realized by

using different methods of solving the sequence of SMV
problems. In our paper we have chosen two representative
examples to demonstrate our approach. One is using the
Basis Pursuit (BP), resulting in what we termed AW-BP and
the other, the Orthogonal Matching Pursuit (OMP) resulting
in AW-OMP. However the method can be applied through
many other existing algorithms such as: IRLS ([7]), LARS
([19]), FOCUSS ([7], [10]), M-FOCUSS ([15]) etc. Clearly,
the resulting properties will depend on the actual underlying
algorithm chosen.
All our experiments with the AW-BP and AW-OMP

demonstrated a clear advantage over their sequential
independent counterparts (both SMV and blocked MMV).
While this is not surprising, we also observed a performance
similar (or even better) to MMV when the whole data set is
considered. Comparing the performance of the AW-BP to the
AW-OMP we observed that the first has a significant advantage
in its recovery rate for growing support cardinality, while the
latter is a faster algorithm with significantly lower computa-
tional load.

APPENDIX
PROOF OF CLAIM 4

Proof: Let

(38)

Clearly and for any we have

(39)
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Then, by (7) and (39) we get

So .
Let be such that and
, then and . On the

other hand

which means that and we can conclude that .
This means that there are only three possibilities

and

and

and

We observe that and
and and and . By the

claim assumptions and since , we note that
so we readily conclude that

which completes the proof.

PROOF OF CLAIM 5

Proof:
1) We readily observe from (14) that the Markov chain has

states, , and the matrix in (15) is a
direct consequence of (14). To find the eigenvalues of
we are interested in the roots of

(40)

Let us denote

...
...

. . .
...

...

(41)

and

...
...

. . .
...

... (42)

Then, using determinant properties and expanding by
the last row and and by the first rows of
the respective matrices, we get the following relationships:

(43)

(44)

(45)

By straight forward substitutions we get from (43)–(45)

(46)

As is the characteristic polynomial of a tridiag-
onal Toeplitz matrix it is known (see e.g., [20]) to have the
roots:

(47)

and combined with (46), (16) follows.
2) It can be shown (see e.g., [21]) that the Markov chain with
the given results in a stable Markov chain and will con-
verge to a steady state distribution. The proof of (17) is by
straight forward substitution.

3) Let be the eigen-
values of and the corresponding left eigen-
vectors which are linearly independent (as the eigenvalues
are distinct). Note that , the stationary distribu-
tion vector. Then we can write

(48)

where

...

(49)
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where we note that (a vector of ones). Namely,
we can also rewrite

and

(50)

Then we get

or

(51)

where which completes
the proof of the claim.
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