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a b s t r a c t

Many problems in optimization lead to a cost function in the form of an integral over a
polytope. To find the gradient or Hessian of such costs one needs to take the derivative of
an integral over a convex polytope with respect to the parameters defining the polytope.
The contribution of the current paper is to present a formula for such derivatives.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

A variety of optimization problems have a cost function in the form of an integral over a polytope in Rn. For example,
this problem arises in Universal Barrier Functions [1,2] and Optimal Vector Quantization [3,4]. Specifically, the problem of
finding an optimal vector quantizer is a central problem in source coding (see e.g. [4]). The cost function in these problems
consists of a sumof integrals over a set of polytopes. Optimization is performedwith respect to the parameters defining these
polytopes. The development of effective algorithms for this class of problems requires that one must be able to generate an
expression for the derivative of these integrals. The current contribution addresses this problem in a general setting. In
particular, our expression enables the calculation of first and second derivatives. These, in turn, enable the development of
Newton type algorithms.

In our formulation, the polytopes are described by a set of linear inequalities and we derive a formula for the derivative
of an integral cost function with respect to the coefficients describing the inequalities. Our result extends earlier results [5]
where derivatives were obtained with respect to parallel shifts in the polytope boundaries.

2. The results

Let A : R → Rm×n and b : R → Rm be functions with coefficients Ai,j : R → R, bi : R → R, respectively. Then for fixed
Θ , the set Ω(Θ) = {x ∈ Rn

| A(Θ)x ≤ b(Θ)} is a convex polytope in Rn. We are interested in developing formulae for the
derivatives of the function

g(Θ) =

∫
Ω(Θ)

f (x) dx,

where f : Rn
→ R. We also present conditions for the existence of these derivatives. We assume that J : R → Rm×n

× Rm

given by J(Θ) = (A(Θ), b(Θ)) is differentiable. Then the chain rule allows us to concentrate on the derivative of a cost
function

G : Rm×n
× Rm

= (Rm)n+1
→ R

G(A, b) =

∫
Ax≤b

f (x) dx.
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The formula for ∂G
∂bi

has been presented earlier [5] where f is assumed to be positively homogeneous. We will present the
formulae for both ∂G

∂bi
and ∂G

∂Ai,j
.

Let Ai be the ith row of A, and define the set H(Ai, bi) = {x ∈ Rn
| Aix ≤ bi}, which is a half space if Ai ≠ 0. We denote

the boundary of H(Ai, bi) by ∂H(Ai, bi) = {x ∈ Rn
| Aix = bi}.

Theorem 1. Let f : Rn
→ R be integrable, and assume that there are constants c, d > 0 and p ∈ (n, ∞) such that

|f (x)| ≤
c

‖x‖p + d
for all x ∈ Rn. (1)

Assume that for some 1 ≤ i ≤ m the following conditions are satisfied:

(a) Ai ≠ 0.
(b) f is almost surely continuous on ∂H(Ai, bi). That is, the set

z ∈ ∂H(Ai, bi) | lim
z∈Rn, z→x

f (z) ≠ f (x)


is a null set with respect to the n − 1-dimensional Lebesgue measure on ∂H(Ai, bi).
(c) If q ≠ i, then ∂H(Aq, bq) ≠ ∂H(Ai, bi).

Then

∂G
∂bi

(A, b) =
1

‖Ai‖

∫
Fi

f (x) dFi (2)

and

∂G
∂Ai,j

(A, b) = −
1

‖Ai‖

∫
Fi

xjf (x) dFi for all 1 ≤ j ≤ n, (3)

where

Fi = {x ∈ Rn
| Aix = bi, Aqx ≤ bq for all q ≠ i}.

Proof. We note that, if Ψ : M ⊂ Rn−1
→ Fi is some C1-parametrization of Fi, then∫

Fi

f (x) dFi =

∫
M
f (Ψ (z))

det 
∂Ψ

∂z1
(z), . . . ,

∂Ψ

∂zk−1
(z),

Ai

‖Ai‖

 dz.

If we defineMi =


q≠i H(Aq, bq) and fi(x) = f (x) · 1Mi(x) we obtain

G(A, b + hei) − G(A, b) =

∫
H(Ai,bi+h)

fi(x) dx −

∫
H(Ai,bi)

fi(x) dx,

where ei is the ith unit vector in Rm and 1Mi is the characteristic function ofMi. We next apply the coordinate transformation

x =

[
T

AT
i

‖Ai‖

] xxn


+ bi
AT
i

‖Ai‖
2

= ϕi(x,xn),
where the columns of [T ATi

‖Ai‖
] are any orthonormal basis of Rn. We then obtain

G(A, b + hei) − G(A, b) =

∫
Rn−1

∫ h/‖Ai‖

0
fi(ϕi(x,xn)) dxndx.

Using assumption (1) and the substitution u =xn + bi/‖Ai‖ we obtain1h
∫ h/‖Ai‖

0
fi(ϕi(x,xn)) dxn ≤

1
|h|

∫
|h|/‖Ai‖

−|h|/‖Ai‖

c
‖ϕi(x,xn)‖p + d

dxn
=

1
|h|

∫ (bi+|h|)/‖Ai‖

(bi−|h|)/‖Ai‖

cTx + u ATi
‖Ai‖

p
+ d

du

≤
2c

‖Ai‖(‖x‖p + d)
= K(x).
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Since p > n − 1 we see that K is integrable over Rn−1. We can thus apply the dominated convergence theorem to obtain

lim
h→0

G(A, b + hei) − G(A, b)

h
=

∫
Rn−1

lim
h→0

1
h

∫ h/‖Ai‖

0
fi(ϕi(x,xn)) dxn dx

=
1

‖Ai‖

∫
Rn−1

fi(ϕi(x, 0)) dx,
since, by assumptions (b) and (c), limh→0

1
h

 h/‖Ai‖
0 fi(ϕi(x,xn)) dxn =

1
‖Ai‖

fi(ϕi(x, 0)) for almost allx ∈ Rn−1. Thus

lim
h→0

G(A, b + hei) − G(A, bi)
h

=
1

‖Ai‖

∫
Fi

f (x) dFi.

Similarly, if |h| is sufficiently small,

G(A + heieTj , b) − G(A, b) =

∫
H(Ai+heTj ,bi)

fi(x) dx −

∫
H(Ai,bi)

fi(x) dx

=

∫
Rn−1

∫ η(x,h)
0

fi(ϕi(x,xn)) dxn dx,
where

η(x, h) = −h
eTj


Tx + bi

ATi
‖Ai‖2


‖Ai‖ + h

eTj A
T
i

‖Ai‖

.

Again using assumption (1) and the substitution u =xn + bi/‖Ai‖ we obtain1h
∫ η(x,h)
0

fi(ϕi(x,xn)) dxn
 ≤

1
|h|

2c|η(x, h)|
‖x‖p + d

which is integrable over Rn−1 since p > n. Arguing as above, we obtain

∂G
∂Ai,j

(A, b) =

∫
Rn−1

lim
h→0

1
h

∫ η(x,h)
0

fi(ϕi(x,xn)) dxn dx
=

∫
Rn−1

fi(ϕi(x, 0)) · lim
h→0

η(x, h)
h

dx
= −

1
‖Ai‖

∫
Rn−1

fi(ϕi(x, 0)) · eTj ϕi(x, 0) dx
= −

1
‖Ai‖

∫
Fi

xjf (x) dFi.

This completes the proof. �

Remark 2. (i) Condition (b) is satisfied if f is continuous, or if f is almost surely continuous on every hyperplane.
(ii) Condition (c) is equivalent to q ≠ i ⇒ (bqAi ≠ biAq or Ai, Aq are linear independent).

Remark 3. We note that (2) and (3) can be rewritten as

∂G
∂bi

(A, b) =
1

‖Ai‖

∫
Ax≤bfi(x) dx (4)

and

∂G
∂Ai,j

(A, b) = −
1

‖Ai‖

∫
Ax≤b(e

T
j ATx)fi(x) dx for all 1 ≤ j ≤ n, (5)

wherex ∈ Rn−1A = EiATb = Eibfi(x) = f (ϕi(x, 0)).
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T and ϕi(x, 0) are as in the proof of Theorem 1. The significance of this observation is that the derivative turns out to be
an integral over a polytope in Rn−1. There are a number of packages available for calculating such integrals (see e.g. the
website [6]). �

We next give the conditions under which G is continuously differentiable on some open subset of Rm×n
× Rm. To this

end, we first note that the set

Z = {(A, b) ∈ Rm×n
× Rm

| Ai ≠ 0 for all i, and ∂H(Aq, bq) ≠ ∂H(Ai, bi), q ≠ i}

is open (and dense) in Rm×n
× Rm. This follows from the following facts, which are not hard to prove:

(1) If i ≠ q then Ti,q = {(A, b) | bqAi ≠ biAq} is open and dense.
(2) Li,q = {(A, b) | Ai and Aq are linear independent} is open.
(3) Si = {(A, b) | Ai ≠ 0} is open and dense.
(4) Since Z = (

m
i=1 Si) ∩


i≠q(Ti,q ∪ Li,q) it is then clear that this set is open and dense.

Theorem 4. If f is integrable and almost surely continuous on every hyperplane such that condition (1) is satisfied then G is
continuously differentiable on Z.

Proof. We show that the partial derivatives are continuous in (A, b) ∈ Z, i.e. for all i, j we have limB→0,v→0
∂G

∂Ai,j
(A + B, b

+ v) =
∂G

∂Ai,j
(A, b) and limB→0,v→0

∂G
∂bi

(A + B, b + v) =
∂G
∂bi

(A, b).
To this end, we fix i and define the sets Mi,B,v =


q≠i H(Aq + Bq, bq + vq) and the transformations ϕi,B,v(x,xn) =

[TB
ATi +BTi
‖Ai+Bi‖

]

xxn

+(bi+vi)

ATi +BTi
‖Ai+Bi‖2

, where the columns of [TB
ATi +BTi
‖Ai+Bi‖

] are any orthonormal basis ofRn and limB→0,v→0 ϕi,B,v =

ϕi pointwise.
Then, if fi,B,v = f · 1Mi,B,v ,

∂G
∂bi

(A + B, b + v) =
1

‖Ai + Bi‖

∫
Rn−1

fi,B,v(ϕi,B,v(x, 0)) dx.
Application of the dominated convergence theorem in a similar way as in the proof of Theorem 1, establishes the assertion
for ∂G

∂bi
. The rest of the proof is straightforward. �
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