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Abstract

This paper develops the idea of min–max robust experiment design for dynamic system identification. The idea of min–max experiment design
has been explored in the statistics literature. However, the technique is virtually unknown by the engineering community and, accordingly, there
has been little prior work on examining its properties when applied to dynamic system identification. This paper initiates an exploration of
these ideas. The paper considers linear systems with energy (or power) bounded inputs. We assume that the parameters lie in a given compact
set and optimise the worst case over this set. We also provide a detailed analysis of the solution for an illustrative one parameter example and
propose a convex optimisation algorithm that can be applied more generally to a discretised approximation to the design problem. We also
examine the role played by different design criteria and present a simulation example illustrating the merits of the proposed approach.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The goal of experiment design is to adjust the experimen-
tal conditions so that maximal information is gained from
the experiment. Background to this problem can be found in
early statistics literature (Cox, 1958; Fedorov, 1972; Karlin &
Studden, 1966; Kempthorne, 1952; Kiefer & Wolfowitz, 1960;
Wald, 1943; Whittle, 1973; Wynn, 1972) as well as in the
engineering literature (Arimoto & Kimura, 1973; Gagliardi,
1967; Goodwin, Murdoch, & Payne, 1973; Goodwin & Payne,
1973; Goodwin, Payne, & Murdoch, 1973; Goodwin & Payne,
1977; Hildebrand & Gevers, 2003a; Levadi, 1966; Mehra, 1974;
Zarrop, 1979). A recent survey is contained in Gevers (2005)
where many additional references can be found. The focus in
the engineering literature has been predominately on experi-
ment design for dynamic system identification.

A key issue with experiment design for dynamic systems
is that the model is typically nonlinearly parameterised. This

� This paper was not presented at any IFAC meeting. This paper was
recommended for publication in revised form by Associate Editor Johan
Schoukens under the direction of Editor Torsten Söderström.

∗ Tel.: +61 2 49216087; fax: +61 2 49216993.
E-mail address: james.welsh@newcastle.edu.au (J.S. Welsh).

0005-1098/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2006.12.013

means, amongst other things, that the Fisher information matrix
(Goodwin & Payne, 1977, p. 6) which is typically used as the
basis for experiment design, depends, inter alia, on the true sys-
tem parameters (i.e. the nominal optimal experiment depends
on the very thing that the experiment is aimed at finding).

This issue has been recognised in the statistics literature
where several approaches have been explored. These include:
• Sequential design, where one iterates between parameter esti-

mation, on the one hand, and experiment design using the cur-
rent parameter estimates, on the other, see Chernoff (1975),
Ford and Silvey (1980), Ford, Titterington, and Wu (1985),
Müller and Pötscher (1992), Walter and Pronzato (1997), and
Wu (1985).

• Bayesian design (Atkinson, Chaloner, Juritz, & Herzberg,
1993; Atkinson & Doner, 1992; Chaloner & Larntz, 1989;
Chaloner & Verdinelli, 1995; El-Gamal & Palfrey, 1996;
Sebastiani & Wynn, 2000). The Bayesian approach is char-
acterised by the minimisation of the expected value (over the
prior parameter distribution) of a local optimality criterion
related to the information matrix.

• Min–max design (Biedermann & Dette, 2003; D’Argenio &
Van Guilder, 1988; Dette, Melas, & Pepelyshev, 2003;
Fedorov, 1980; Landaw, 1984; Melas, 1978; Pronzato &
Walter, 1988).
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However, there has been little work on robust experiment
design for engineering problems. This has been highlighted in
the recent survey paper (Hjalmarsson, 2005, p. 427) where it
is stated that “…as usual in experiment design, in order to
compute the optimal design the true system has to be known.
Methods that are robust with respect to uncertainty about the
system is a wide open research field.”

Preliminary work in the engineering literature on robust ex-
periment design includes substantial work on iterative design
(Gevers, 2005; Hjalmarsson, 2005) and an insightful sub-
optimal min–max solution for a one parameter problem (Walter
& Pronzato, 1997, p. 339). Actually the latter problem will be
discussed in detail in Section 3 of the current paper. Also, a
number of very recent engineering papers refer to the idea of
min–max optimal experiment design—see for example papers
presented at SYSID’06, e.g., Gevers and Bombois (2006),
Goodwin, Welsh, Feuer, and Derpich (2006), and Mårtensson
and Hjalmarsson (2006).

Our goal in the current paper is to develop the idea of
min–max optimal experiment design for dynamic system iden-
tification. To gain insight into this approach, we explore an il-
lustrative example in depth.

We assume prior knowledge in the form that the system
parameters, �, are contained in a given compact set �. We then
choose a design criterion f (M(�), �) where M(�) is the Fisher
information matrix, evaluated at �, and design the experiment to
optimise the worst case of f (M(�), �) over �. Notice that this
differs from the usual approaches to experiment design in the
engineering literature which typically optimise f (M(�0), �0)

for some given nominal value �0.
Our approach is more akin to the usual formulation of ro-

bust optimal control which typically considers the worst case
(Zhou, Doyle, & Glover, 1996). Indeed, there are substan-
tial links between the work presented here and continuous
game theory (Başar & Bernhard, 1995; Başar & Olsder, 1995;
Fudenberg & Tirole, 1991; Owen, 1995; Szép & Forgó, 1985).
We explore some of these connections below.

The merits of the approach proposed in this paper are illus-
trated by an example (presented in Section 5) which shows, for
a realistic second order system, that an order of magnitude im-
provement in the worst case performance in experiment design
can be achieved at the expense of only a few percent degrada-
tion in the nominal performance.

The layout of the remainder of the paper is as follows: in
Section 2 we give a general formulation of the min–max ap-
proach to robust optimal experiment design. Section 3 explores
an illustrative one parameter example in considerable detail so
as to give insight into the problem. In Section 4 we describe the
extension to multi-parameter systems. In Section 5 we present
several results illustrating the merits of the proposed approach.
Finally, in Section 6 we draw conclusions.

2. Experiment design criteria

2.1. The information matrix

So as to be specific we first consider a single input single
output linear discrete time system, with input {ut } and output

{yt }, of the form

yt = G1(q)ut + G2(q)wt ,

where G1 and G2 are rational transfer functions, q is the
forward shift operator, G2(∞) = 1, and {wt } is zero mean
Gaussian white noise of variance �. We let ��[�T, �T, �]T

where � denotes the parameters in G1 and � denotes the para-
meters in G2.

We recall that the log likelihood function (Goodwin & Payne,
1977, p. 130) for data Y given parameters �, is

ln p(Y |�) = −N

2
ln 2� − N

2
ln � − 1

2�

N∑
t=1

ε2
t , (1)

where

εt�G2(q)−1[yt − G1(q)ut ]. (2)

Fisher’s information matrix is obtained by taking the following
expectation (Goodwin & Payne, 1977, p. 130):

M�EY |�

[(
� ln p(Y |�)

��

)(
� ln p(Y |�)

��

)T
]

, (3)

where from (1)

� ln p(Y |�)

��

= − 1

�

N∑
t=1

εt

�εt

��
− 1

2�

��

��

[
N − 1

�

N∑
t=1

ε2
t

]
,

from (2)

�εt

��
= −G2(q)−1

{
�G2(q)

��
εt + �G1(q)

��
ut

}
and where EY |� denotes the expectation over the distribution of
the data given �.

We assume an open-loop experiment so that wt and ut are
uncorrelated. We also assume that G1, G2 and � are indepen-
dently parameterised. Taking expectations, as in (3), M can be
partitioned as

M =
[
M1 0

0 M2

]
where M1 is the part of the information matrix related to �, and
M2 is independent of the input. Thus,

M1�
1

�

N∑
t=1

(
�εt

��

)(
�εt

��

)T

, (4)

where �εt/�� satisfies

�εt

��
= −G2(q)−1 �G1(q)

��
ut .

Notice that M1 depends on the full parameter vector �. Assum-
ing N is large, it is more convenient to work with the scaled
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average information matrix for the parameters � (Goodwin &
Payne, 1977, p. 134; Walter & Pronzato, 1997, p. 208),

M(�, �u)� lim
N→∞

1

N
M1�.

Utilising Parseval’s Theorem, we finally have that

M(�, �u) = 1

�

∫ �

0
M̃(�, 	)�u(e

j	) d	, (5)

where

M̃(�, 	)�Re

⎧⎨⎩�G1(ej	)

��

∣∣∣G2(e
j	)

∣∣∣−2
[

�G1(ej	)

��

]H
⎫⎬⎭

and �u is the discrete time input spectral density (considered
as a generalised function). Here, H is the conjugate transpose
operator.

It is also possible to do a parallel development (Goodwin &
Payne, 1977, p. 142) for continuous time models. In the latter
case, (5) is replaced by

M(�, �u) =
∫ ∞

0
M̃(�, 	)�u(	) d	, (6)

where

M̃(�, 	)�Re

{
�G1(j	)

��
|G2(j	)|−2

[
�G1(j	)

��

]H
}

,

where G1 and G2 are continuous time transfer functions (as-
sumed independently parameterised) and �u is the continuous
time input spectral density.

Notice that the results presented below do not depend on �
since it appears as a scaling factor in (4). Also, we see from
(6) that, in M(�, �u), G2 simply plays the role of a frequency
dependent weighting. This is easily included in the analysis.
However, for simplicity we assume white noise, although the
extension to nonwhite noise is straightforward. Hence in the
sequel we refer only to �.

2.2. Brief review of design criteria for nominal experiment
design

Since M is a matrix, we need a scalar measure of M for the
purpose of experiment design. In the nominal case typically
treated in the engineering literature (i.e. when a fixed prior
estimate of � is used), several measures of the “size” of M have
been proposed. Some examples are:

(i) D-optimality (Goodwin & Payne, 1977, p. 126)

Jd(�, �u)�[det M(�, �u)]−1. (7)

(ii) Experiment design for robust control (Hildebrand &
Gevers, 2003a, 2003b; Hjalmarsson, 2005, p. 427).

Jrc(�, �u)� sup
	

g(�, 	)HM
−1

g(�, 	), (8)

where g is a frequency dependent vector related to the 
-
gap (Hildebrand & Gevers, 2003a, 2003b).

Many other criteria have been described in the statis-
tics literature, such as A-optimality (tr M(�, �u)

−1), L-
optimality (tr WM(�, �u)

−1, for some W �0) and E-optimality
(�max(M(�, �u)

−1)); see Kiefer (1974). On the other hand, in
the engineering literature, (Bombois, Scorletti, Gevers, Van
den Hof, & Hildebrand, 2005), for example, proposed a crite-
rion that leads to the required accuracy to achieve a given level
of robust control performance. Other criteria will be discussed
in Section 4.

A common feature of all these nominal experiment design
approaches is that they are aimed at choosing �u to minimise a
function of the type shown in (7) and (8). Notice, however, that
the optimal input spectrum depends, inter-alia, on the unknown
parameter vector �.

2.3. Min–max robust design

A min–max robust design criterion is the basis of the ap-
proach described in the current paper. Specifically, we assume
that we have available a priori information showing that the
parameters can take any value in a compact set �. We also con-
strain the allowable set of input signals. A typical constraint
(Goodwin & Payne, 1977, p. 133; Walter & Pronzato, 1997, p.
308; Zarrop, 1979, p. 26) used in experiment design is that the
input energy is constrained, i.e. we define1

S(R+
0 )�

{
�u : R → R+

0 : supp�u ⊂ R+
0 and∫ ∞

−∞ �u(	) d	 = 1

}
.

The min–max robust optimal input spectral density, �∗
u, is then

chosen as

�∗
u = arg min

�u∈S(R+
0 )

sup
�∈�

J (M(�, �u), �), (9)

where J is an appropriate scalar measure of M . We are assuming
for the moment that �∗

u exists and is unique; these points will be
studied in the next section. Notice also that we allow J to depend
explicitly on �; this point will be of practical importance—see
discussion below.

2.4. A mixed policy game approach

An alternative approach to that described above would be
to extend the space to include “mixed policies” (Başar &
Bernhard, 1995, p. 35) by introducing a (generalised proba-
bility) density � on �, i.e. � ∈ S(�). The counterpart of (9)
would now take the form

�∗
u = arg min

�u∈S(R+
0 )

sup
�∈S(�)

J ′(�, �u),

1 In general, given a set X ⊂ Rn, we will denote by S(X) the set of all
generalised functions �u on Rn (Rudin, 1973, Chapter 6) such that �u is the
derivative of some probability distribution function on Rn, and supp �u ⊂ X,
where supp �u is the support of �u (i.e. roughly speaking, S(X) is the set
of all (generalised) probability density functions on X).
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where J ′ is an appropriate scalar measure of the form

J ′�
∫

f

(∫
S�M̃(�, 	)ST

� �u(	) d	

)
�(�) d�,

where f is a scalar-valued function, e.g. f (L)=tr L−1 or f (L)=
�max(L

−1); M̃ is the single frequency information matrix and
S� is a parameter dependent scaling matrix (see Section 4.1 for
further discussion of S�).

Notice that if f were linear, it could be introduced into the
inner integral, and in that case it can be shown that this approach
is equivalent to the previous one (see the proof of Theorem 3
for an idea of how the equivalence is established).

3. An illustrative example

Before delving into the general multi-parameter case, we first
consider an illustrative continuous time one parameter problem
to gain insight. We take G2(s) = 1 and let

G1(s) = 1

s/� + 1
. (10)

Notice that this problem has also been discussed in Goodwin
and Payne (1977, p. 142) for the case of nominal experi-
ment design. Also, the problem has been studied in Walter and
Pronzato (1997, p. 339) in the context of min–max robust ex-
periment design but where the input is restricted to a single
sinusoid. Actually we will see below that the later restriction
unduely limits the solution space and does not lead to the op-
timal strategy when � ∈ [�, �], with �/� > 2 + √

3 (see the
Appendix). This is heuristically reasonable since if � lies in an
interval, then it makes sense to spread the input energy in some
sense to cover the possible � scenarios.

For the model (10), it follows that

M(�, �u) =
∫ ∞

0
M̃(�, 	)�u(	) d	,

where M̃ is the “single frequency” normalised information ma-
trix given by

M̃(�, 	) =
∣∣∣∣�G1(�, 	)

��

∣∣∣∣2 = 	2/�4

(	2/�2 + 1)2
. (11)

3.1. Nominal optimal experiment design for the illustrative
example

Before turning to the robust design problem, we will briefly
review the nominal experiment design problem for this case.
Here one assumes that a prior estimate, �̂, of � is available.
Based on this information, the function �u is chosen so as to
optimise some scalar-valued function of M(̂�, �u) subject to
a constraint on the input power. In the nominal case it can
be shown that we only need to use a single frequency input
for this example (Goodwin & Payne, 1977, p. 143), namely,
�u(	) = (	 − 	∗). Moreover, by differentiation of the single
frequency information matrix given in (11), it is readily seen

10–1 100 101
0

10

20

30

40

50

60

70

80

90

100

θ

C
o
s
t

Fig. 1. [�2M(�,�u)]−1 as a function of � for nominal input (dotted), robust
optimal input (solid) and ‘1/f ’ noise (dashed).

that the optimal input frequency is

	∗ = �. (12)

This is an intuitively pleasing result, i.e. one places the test
signal at the (nominal) 3 dB break point. However, Eq. (12)
reinforces the fundamental difficulty in nominal experiment
design, namely, the optimal experiment depends on the very
thing that the experiment is aimed at estimating.

To gauge the importance of the dependence on �, we notice
that M̃(�, 	) in our example decays at the rate of 40 dB per
decade as a function of both � and 	. Hence, given the prior
estimate of the parameter, �̂, say we choose 	∗= �̂ for the input
signal frequency. Also, say that the true parameter lies in the
range (0.1̂����10̂�), then min�∈�M̃(�, 	) is approximately

1
100 th of the nominal value! This suggests that nominal experi-
ment design is limited to those cases where an extremely good
prior estimate is available. This point is reinforced in Fig. 1
which shows a plot of [�2M(�, �u)]−1 versus � for the nominal
optimal input.

Remark 1. The reason for multiplying M(�, �u) by �2, and

then inverting, as in Fig. 1, is that M
−1

is a variance measure
and thus [�2M]−1 gives relative (mean square) errors. More
will be said about this type of scaled cost function in the context
of robust design below. Interestingly, the scaling turns out to be
equivalent (for this example) to the MMDE cost function used
in (Walter & Pronzato, 1997, p. 339).

3.2. Some properties of the min–max robust optimal
experiment design

We next turn to robust experiment design as described in
Section 2. For the illustrative problem we use (see Remark 1
and Section 4)

J (M(�, �u), �)�[�2M(�, �u)]−1.
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Thus, our min–max robust optimal experiment design can be
stated as finding

�∗
u = arg min

�u∈S(R+
0 )

J (�u), (13)

where

J (�u)� sup
�∈�

[∫ ∞

0

	2/�2

(	2/�2 + 1)2
�u(	) d	

]−1

(14)

and ��[�, �]. In the sequel, we will give further insights into
the above design problem.

We first observe that, since �2M̃(�, 	) in (14) is continuous
in � ∈ � for every 	 ∈ R+

0 and it is bounded by an integrable
function which is independent of � (use e.g. C/	2, where C is
large and independent of �), the integral is continuous in �; see
Bartle (1966, p. 46). This implies, with the compactness of �,
that we can change “sup” in (14) to “max”.

Furthermore, if we make the following change of variables:

x� ln � − ln �

ln � − ln �
,

y� ln 	 − ln �

ln � − ln �
,

�u(	) = 2

k	
�̃u

(
ln 	 − ln �

ln � − ln �

)
,

k�2(ln � − ln �) (15)

then the problem can be rewritten as

�̃
∗
u = arg max

�̃u∈S(R)

min
x∈[0,1]

∫ ∞

−∞
ek(x−y)

(ek(x−y) + 1)2
�̃u(y) dy. (16)

To simplify the notation, let F(x, y)�f (x − y), where
f (u)�eku/(eku + 1)2.

The following theorems give some properties of �∗
u and

�̃
∗
u. Notice that Lemma 2 and Theorem 5 are different in that

Lemma 2 states that the optimal input has compact support,
which is a technical requirement for proving other results. The-
orem 5, on the other hand, states that the optimal input has
finite support, which is a stronger result than Lemma 2, but its
proof relies on the previous theorems.

Some of the results below are based on the fact that if f is a
continuous function on [a, b], then

min
g∈S([a,b])

∫ b

a

f (x)g(x) dx = min
x∈[a,b] f (x). (17)

By choosing as g a Dirac delta at a point x ∈ [a, b] for which
f (x) is minimum, we see that the right side of (17) is not less
than its left side. The other inequality can be deduced from the
Mean Value Theorem for integrals (Apostol, 1974, p. 360).

Lemma 2. Considering the problem stated in (16), the optimal
input �̃

∗
u, if it exists, has all its energy inside [0, 1]. Namely,∫

R−[0,1]
�̃

∗
u(y) dy = 0.

Thus, the spectral density of the optimal input has compact
support, i.e. �̃

∗
u ∈ S([0, 1]) (or, equivalently, �∗

u ∈ S(�)), so
we can replace (16) with

�̃
∗
u = arg max

�̃u∈S([0,1])
min

x∈[0,1]

∫ 1

0

ek(x−y)

(ek(x−y) + 1)2
�̃u(y) dy.

Proof. Notice2 that �F/�y > 0 for y < x and �F/�y < 0
for y > x. It follows that for any x ∈ [0, 1] we have∫ ∞
−∞ F(x, y)�̃

∗
u(y) dy�

∫ ∞
−∞ F(x, y)�̃

′
u(y) dy, where �̃

′
u is

given by

�̃
′
u(y)��̃

∗
u(y)X[0,1](y) + (y)

∫ 0−

−∞
�̃

∗
u(�) d�

+ (y − 1)

∫ ∞

1+
�̃

∗
u(�) d�

and X[0,1] is the indicator function of [0, 1]. The result
follows. �

Theorem 3. For the problem stated in (13) or (16), there exists
at least one optimal input, that is, there exists a �∗

u ∈ S(R+
0 )

such that for every �u ∈ S(R+
0 ),

J (�∗
u)�J (�u).

Proof. By Lemma 2, (16) can be related to a two-person zero-
sum game on the unit square with kernel F, such that player x
tries to minimise F by using a pure strategy, and player y tries
to maximise this quantity by using a mixed strategy (Başar &
Olsder, 1995, p. 25). Hence, in order to prove the existence of
�̃

∗
u (or of �∗

u, which is the same), we can make use of a version
of the Minimax Theorem, due to Glicksberg (1950), which
states that if F is an upper or lower semicontinuous function
on [0, 1] × [0, 1], then

inf
�x∈S([0,1])

sup
�y∈S([0,1])

∫ 1

0

∫ 1

0
F(x, y)�x(x)�y(y) dy dx

= sup
�y∈S([0,1])

inf
�x∈S([0,1])

∫ 1

0

∫ 1

0
F(x, y)�x(x)�y(y) dy dx

�Vm (18)

where Vm is called the average value of the game. Furthermore,
if F is continuous then, by a standard compactness argument
(such as that given in the paragraph before (15)), there exist
�∗

x , �∗
y ∈ S([0, 1]) such that for every �x , �y ∈ S([0, 1]),∫ 1

0

∫ 1

0
F(x, y)�∗

x(x)�y(y) dy dx

�
∫ 1

0

∫ 1

0
F(x, y)�∗

x(x)�∗
y(y) dy dx

�
∫ 1

0

∫ 1

0
F(x, y)�x(x)�∗

y(y) dy dx. (19)

2 This version of the proof was suggested by an anonymous reviewer.
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It is evident from (19) that (�∗
x, �

∗
y) defines a saddle point

solution in mixed strategies for the game (Başar & Olsder, 1995,
p. 27). In our case F is continuous, hence these results apply.
Furthermore, by (19) and the compactness of [0, 1],∫ 1

0

∫ 1

0
F(x, y)�∗

x(x)�∗
y(y) dy dx

= min
�x∈S([0,1])

∫ 1

0

∫ 1

0
F(x, y)�x(x)�∗

y(y) dy dx

= min
x∈[0,1]

∫ 1

0
F(x, y)�∗

y(y) dy. (20)

From (18) to (20), we have

min
x∈[0,1]

∫ 1

0
F(x, y)�∗

y(y) dy

= max
�y∈S([0,1])

min
x∈[0,1]

∫ 1

0
F(x, y)�y(y) dy.

If we take �̃
∗
u = �∗

y , we then have an optimal solution to (16).
This proves the existence of an optimal input. �

Theorem 4. For the problem stated in (13) or (16), there is
a unique optimal input. Moreover, 0 and 1 do not belong to
the support of �̃

∗
u (or, equivalently, �, � /∈ supp �∗

u), and �̃
∗
u is

symmetric with respect to 1
2 , that is, �̃

∗
u(y) = �̃

∗
u(1 − y) (i.e.

�∗
u(	) = �∗

u(��/	)).

Proof. To prove this, we utilise some results from Karlin
(1957). We first need to establish that f is a proper Pólya
frequency function. This means, in particular, that we need to
show that for every n ∈ N and every set of values {xi}i=1,...,n

and{yj }j=1,...,n such that x1 < · · · < xn and y1 < · · · < yn, the
determinant of the matrix (f (xi − yj ))i,j is positive. Now,

f (x − y) = ek(x−y)

(ek(x−y) + 1)2
= ek(x+y)

(ekx + eky)2
.

Then, if we let zi�ekxi > 0 and wj�ekyj > 0, we obtain

sgn det(f (xi − yj ))i,j = sgn det

(
wizj

(wi + zj )
2

)
i,j

= sgn det

(
1

(wi + zj )
2

)
i,j

.

The determinant in the last line is given by the following ex-
pression, known as Borchardt’s identity (Krattenthaler, 1998,
p. 29):

det

(
1

(wi + zj )
2

)
i,j

=
∏

1� i<j �n(wj−wi)(zj−zi)∏
1� i,j �n(wi+zj )

perm

(
1

wi+zj

)
i,j

, (21)

where perm X is the permanent (Horn & Johnson, 1985, p. 8)
of a square matrix X, and it is defined as

perm

(
1

wi + zj

)
i,j

�
∑
�∈Sn

n∏
i=1

1

wi + z�(i)

> 0, (22)

where Sn denotes the symmetric group of order n (i.e. the set
of all permutations on {1, . . . , n}).

From (21), (22) and the ordering of {xi}ni=1 and {yj }nj=1, we
can see that the determinant of (f (xi−yj ))i,j is indeed positive.

Now, since f is even, positive, analytic, and a proper Pólya
frequency function such that f ′(0) = 0, we have by Theorems
1 and 2 of Karlin (1957) that �̃

∗
u is unique, 0, 1 /∈ supp �̃

∗
u and

�̃
∗
u is symmetric with respect to 1

2 . �

Theorem 5. For the problem stated in (13) or (16), the optimal
input (�∗

u or �̃
∗
u, respectively) has finite support. That is, if �̃

∗
u

is such that

min
x∈[0,1]

∫ 1

0
f (x − y)�̃

∗
u(y) dy

= max
�̃u∈S([0,1])

[
min

x∈[0,1]

∫ 1

0
f (x − y)�̃u(y) dy

]

then supp �̃
∗
u is finite.

Proof. This proof is based on a result in Karlin (1957), which
is included here for the sake of completeness. We will focus
on the problem stated in (16).

We will first show that if �∗
x is defined as in the proof of

Theorem 3, and y0 ∈ [0, 1] is in the support of �̃
∗
u, then∫ 1

0
f (x − y0)�

∗
x(x) dx = Vm. (23)

From (19), we have that∫ 1

0
f (x − y)�∗

x(x) dx�Vm, y ∈ [0, 1]. (24)

If this inequality were strict for y=y0, then by the continuity of
f there would be an interval [a, b] ⊂ [0, 1] for which a�y0 �b

and∫ 1

0
f (x − y)�∗

x(x) dx < Vm, y ∈ [a, b]. (25)

Thus, integrating both sides of (24) weighted by �̃
∗
u, and taking

(25) into account, we obtain∫ 1

0

∫ 1

0
f (x − y)�∗

x(x)�̃
∗
u(y) dy dx < Vm

which contradicts the definition of Vm. This proves (23).
Now, if supp �̃

∗
u is infinite, then (23) holds for an infinite

number of points in a compact interval, so those points have
at least one limit point. On the other hand, the integral of
the left side of this expression is an analytic function of y in
some region � containing R, and its right side is constant.
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Thus, we have two analytic functions which are equal in a set
which has a limit point in �, so by a well-known result of com-
plex analysis (Rudin, 1987, p. 209) they must be equal in �.
In particular it holds that∫ 1

0
f (x − y)�∗

x(x) dx = Vm, y ∈ R. (26)

However, since f is bounded and f (u) → 0 for |u| → ∞,

lim
y→∞

∫ 1

0
f (x − y)�∗

x(x) dx = 0 	= Vm

which contradicts (26). Thus, �̃
∗
u has finite support. �

Remark 6. Theorem 5 basically says that the robust optimal
input is a finite linear combination of sinusoids. This is a rather
surprising result, since the nominal optimal input is a single
sinusoid of frequency equal to �, so one would expect that
the robust optimal signal should have a continuous spectrum
to account for all the possible values of this parameter. On
the other hand, this property also says that it is very easy to
implement such a signal; the only remaining problem is to
determine the amplitudes and frequencies of its sinusoids. This
is addressed in the Appendix (analytically) and Section 3.4
(numerically).

3.3. Bandlimited ‘1/f ’ noise input

The results presented above are concerned with the optimal
solution to the problem. We will also explore sub-optimal so-
lutions. In the latter context, the following result will be useful.

Lemma 7. Let �u ∈ S([0, 1]). Also let

�min(�u)� min
�∈�

J (M(�, �u), �) (27)

�max(�u)� max
�∈�

J (M(�, �u), �). (28)

Then

�min(�u)� min
�u∈S(R+

0 )

max
�∈�

J (M(�, �u), �)��max(�u). (29)

Proof. The second inequality follows from the definition of the
optimisation problem.

To establish the first inequality, we notice from (27) that

1

�min(�u)
= 1

min
�∈�

J (M(�, �u), �)

= max
�∈�

[J (M(�, �u), �)]−1

= max
�∈�

∫ �

�

	2/�2

(	2/�2 + 1)2
�u(	) d	.

Thus, for any feasible function �u, we must have

1

�min(�u)
�

∫ �

�

∫ �

�
�u(�)

	2/�2

(	2/�2 + 1)2
�u(	) d	 d�. (30)

Now let us assume that the first inequality in (29) is false; i.e.

�min(�u) > min
�u∈S(R+

0 )

max
�∈�

J (M(�, �u), �)

= max
�∈�

J (M(�, �∗
u), �)

and therefore,

1

�min(�u)
< min

�∈�
[J (M(�, �∗

u), �)]−1

= min
�∈�

∫ �

�

	2/�2

(	2/�2 + 1)2
�∗

u(	) d	. (31)

Hence, if we form a convex combination of the integrals on the
right-hand side of (31) using �u(�), we must have

1

�min(�u)
<

∫ �

�
�u(�)

∫ �

�

	2/�2

(	2/�2 + 1)2
�∗

u(	) d	 d�. (32)

However,

	2/�2

(	2/�2 + 1)2
= �2/	2

(�2/	2 + 1)2
. (33)

Thus, changing the order of the variables of integration in (32)
and using (33) gives

1

�min(�u)
<

∫ �

�

∫ �

�
�∗

u(�)
	2/�2

(	2/�2 + 1)2
�u(	) d� d	. (34)

We see that (34) contradicts (30) if we choose �u in (30) as
�∗

u. This contradiction establishes the result. �

Remark 8. It is impossible to find an input �u which brings
�min(�u) equal to �max(�u). This is due to the fact that, for
a fixed �u, the cost function J (M(�, �u), �) is an analytic
function of � on R, and it vanishes as |�| → ∞; thus, if we
force �min(�u) = �max(�u), then this cost function would be
constant in the interval [�, �], which implies, by its analyticity,
that it would be constant in R, and hence equal to 0. This is
impossible, since the integral of �u over [�, �] is equal to 1,
and �u can only take nonnegative values over that interval.

Remark 9. We see from Lemma 7 that, if a feasible design,
�u, is found such that �min(�u) and �max(�u) are “close”,
then the corresponding cost function will be “close” to opti-
mal. In particular, if one could choose an input, �u, such that
�min(�u) = �max(�u), then this input would have been opti-
mal. Alas, by Remark 8, there is no feasible input which brings
�min(�u) to �max(�u). However, we will now examine a par-
ticular sub-optimal input such that �min(�u) and �max(�u) are
within a factor of 2 of each other.
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With the above as background, we next consider the follow-
ing feasible input

�1/f
u (	)�

{ 1/	
ln �−ln �

, 	 ∈ [�, �],
0 otherwise.

(35)

For this input, we have the following result.

Theorem 10. Consider the bandlimited ‘1/f ’ noise input given
in (35). Let �min(�

1/f
u ) and �max(�

1/f
u ) be the corresponding

limits as in (27) and (28). Then

�min(�
1/f
u ) = 2 ln

(
�

�

)
� + �

� − �
,

�max(�
1/f
u ) = 4 ln

(
�

�

)
�

2 + �2

�
2 − �2

.

Proof. Upon substitution of (35) on (14), we obtain

1

J (M(�, �1/f
u ), �)

= 1

ln
(

�
�

) ∫ �

�

	2/�2

(	2/�2 + 1)2

d	

	

= �
2 − �2

2 ln
(

�
�

) �2

(�2 + �
2
)(�2 + �2)

.

The function f (�) = �2/[(�2 + �
2
)(�2 + �2)], in �, increases

to a maximum at � =
√

� � and then decreases. Finally, since

f (�) = f (�) we conclude that

1

�max(�
1/f
u )

= �
2 − �2

2 ln
(

�
�

) �2

(�2 + �
2
)(�2 + �2)

∣∣∣∣∣∣
�=�

= �
2 − �2

4 ln
(

�
�

) 1

�
2 + �2

and

1

�min(�
1/f
u )

= �
2 − �2

2 ln
(

�
�

) �2

(�2 + �
2
)(�2 + �2)

∣∣∣∣∣∣
�=

√
��

= 1

2 ln
(

�
�

) � − �

� + �

which completes the proof. �

Corollary 11. For bandlimited ‘1/f ’ noise input, the optimal
cost, J ∗, must satisfy

�min(�
1/f
u )�J ∗ �2�min(�

1/f
u ).

Proof. From Theorem 10,

�max(�
1/f
u ) = 4 ln

(
�

�

)
�

2 + �2

�
2 − �2

�4 ln

(
�

�

)
�

2 + �2 + 2��

�
2 − �2

= 4 ln

(
�

�

)
� + �

� − �

= 2�min(�
1/f
u ).

The result then follows from Lemma 7. �

Remark 12. The above result is rather surprising since it shows
that ‘1/f ’ noise performs very well for this problem. This is
an interesting result since “conventional wisdom” suggests an
input more akin to bandlimited white noise (e.g. a PRBS signal).
However, one can easily verify that using � = 0.1 and � =
10, bandlimited ‘1/f ’ noise is almost an order of magnitude
superior to bandlimited white noise—see Table 1 presented
below.

3.4. Discrete approximation to the optimal input

As we have seen in Section 3.2, and as it is well known
in the statistics literature (see e.g. Walter & Pronzato, 1997,
p. 340), finding an exact solution to problems of the type (13),
(14) is, in general, extremely difficult. Some algorithms have
been proposed, e.g. the relaxation algorithm of Shimizu and
Aiyoshi (1980). Here we pursue an alternative idea of finding
an approximate design by discretisation of the design space (see
also Walter & Pronzato, 1997, p. 341). Since f is continuous,
it is well known (Owen, 1968, p. 78) that this approach can
approximate the optimal solution as closely as desired.

To develop this approach, we first approximate the integral
in Eq. (14) by a Riemann sum. Specifically, utilising Lemma
2, we choose a grid of N points ��	m = �m �� for 0�m�N

such that 	0 = �0 = �, 	N = �N = �. Then

Jm�
[∫ �

�

	2/�2
m

(	2/�2
m + 1)2

�u(	) d	

]−1

≈
[

N−1∑
n=0

	2
n/�

2
m

(	2
n/�

2
m + 1)2

�u(	n)(	n+1 − 	n)

]−1

=
[

N−1∑
n=0

Am,nEn

]−1

(36)

where Am,n�(	2
n/�

2
m)/[(	2

n/�
2
m + 1)2] > 0 and En��u(	n)

(	n+1 − 	n). Notice that the matrix A = {Am,n} is symmetric
and has positive entries.
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Table 1
Relative values of cost for the different input signals

max�∈� [�2
M(�,�u)]−1 Bayesian cost on � Bayesian cost on ln �

Single frequency at 	 = 1 7.75 4.8 2.26
Bandlimited white noise 12.09 9.05 2.96
Bandlimited ‘1/f ’ noise 1.43 1.51 1.07
Robust min–max optimal input 1.00 1.45 1.12
Bayesian design (for uniform distribution on �) 5.4 1.00 1.61
Bayesian design (for uniform distribution on ln �) 1.53 1.46 1.00

We can now state the following discrete approximation to
the optimisation problem in Eq. (13):

E∗ = arg min
E∈Sd

max
0�m<N

(eT
mAE)−1, (37)

where Sd�{E ∈ RN : 1TE=1, En �0}, E�[E0 · · · EN−1]T,
em is the mth column of the N-dimensional identity matrix, and
1 is an N-dimensional vector of ones.

It is well known that a finite dimensional min–max optimisa-
tion problem, such as (37), can be converted into a standard lin-
ear programming (LP) problem; see McKinsey (1952, p. 296),
Dantzig (1951), and Gale, Kuhn, and Tucker (1951).

It is also quite straightforward to compute a discrete approx-
imation to the Bayesian optimal input for the example problem.
For example, say that we use J (M(�, �u), �) as a Bayesian risk
and, for the sake of illustration, assume that � has a uniform
distribution on �. Then, the Bayesian design problem becomes

�B
u = arg min

�u∈S(R+
0 )

1

� − �

×
∫ �

�

[∫ ∞

0

	2/�2

(	2/�2 + 1)2
�u(	) d	

]−1

d�.

We can approximate this, as in (36), by

EB = arg min
E∈Sd

1

N

N−1∑
k=0

exp

{[
ln � − ln �

N

]
k + ln �

}

× (eT
k AE)−1.

In the next section, we will also consider a Bayesian design for
the case when ln � has a uniform distribution on (ln �, ln �).

3.5. Numerical results

We present below numerical results for the problem de-
scribed above where we take � = 0.1, � = 10, N = 100 and
compare:

(i) A nominal input of frequency 1 rad/s (notice that this is
the optimal input if the initial estimate of the parameter is
�̂ = 1).

(ii) Bandlimited white noise input, limited to the frequency
range [0.1, 10] rad/s.

(iii) Bandlimited ‘1/f ’ noise input, limited to the frequency
range [0.1, 10] rad/s.

10-1 100 101

-0.05

0

0.05

0.15

0.25

E
n
e
rg

y

0.3

0.2

0.1

ω

Fig. 2. Values of E for the discretised robust optimal input.

(iv) The approximate discretised robust optimal input gener-
ated by LP.

(v) The approximate discretised Bayesian optimal input for a
uniform distribution on �.

(vi) The approximate discretised Bayesian optimal input for a
uniform distribution on ln �.

Relative costs for the different experimental conditions are
shown in Table 1. Notice that the costs have been scaled so that
the optimal value is 1.

We see from Table 1 that bandlimited white noise gives poor
performance under all criteria. Indeed, we see from the table
that bandlimited ‘1/f ’ noise is almost an order of magnitude
better than a bandlimited white noise input for all cost func-
tions. Furthermore, the discretised min–max optimum gives a
further 40% improvement for the min–max cost function. The
discretised min–max optimal input energy, �∗

u, is shown in
Fig. 2. Notice that the above results are consistent with The-
orem 5, which asserts that the unique optimal input has fi-
nite support. The corresponding values of [�2M(�, �∗

u)]−1 as
a function of � are shown in Fig. 1, where they can be com-
pared to the corresponding values for the nominal optimal in-
put and bandlimited ‘1/f ’ noise. It is interesting to notice from
Fig. 1 that [�2M(�, �∗

u)]−1 is an almost constant function of �.
This should be compared with the comments in Remark 9. The
comparative costs are given in Table 1.
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4. Generalisation to multi-parameter problems

For the multi-parameter case we return to the general ex-
pression for M(�, �) given in (5) and (6). Again for simplicity,
we assume white noise (G2(q) = 1) and hence refer only to �
although the extension to coloured noise offers no additional
difficulties. We convert this problem into an approximate dis-
crete form as was done in Section 3 by discretising the input
and parameter spaces. We write

Qk(E)�
∑
m

AkmEm, �k ∈ �

as an approximation to the integral in (6) i.e. Qk is the infor-
mation matrix corresponding to the kth (discretised) element
�k of the parameter set �, the index m denotes the frequency
and Em is the input energy at the mth frequency.

There exist many possible choices for the inner design crite-
rion J (M(�, �u), �) in the multi-parameter case—see the dis-
cussion in Section 2.2 and recent results in Welsh, Goodwin,
and Feuer (2006). Three alternatives are discussed below.

4.1. Minimal eigenvalue

The use of the minimum eigenvalue of the information ma-
trix as a design criterion for nominal experiment design has
previously been studied (Mareels et al., 1987). For the robust
case, we propose to optimise the worst case of the following re-
lated criterion which uses the minimum eigenvalue of a scaled
version of the information matrix

J1(M(�, �u), �)�(�min{S�M(�, �u)S�})−1, (38)

where �min denotes the minimum eigenvalue and S� is a pa-
rameter dependent scaling matrix. One possible choice for
S� is diag[�1, . . . , �m]. The motivation for this choice is that
M(�, �u)

−1 is a measure of the parameter covariance matrix.
Hence S−1

� M(�, �u)
−1S−1

� is the covariance normalised by the
nominal values of each parameter. Therefore it is a measure
of the relative error. This seems to be an important property
in the robust design context (where we maximise over � ∈ �)
since it ensures that one is maximising (over �) the relative
errors. These errors are normalised and thus better scaled for
comparison purposes.

Another useful property of J1(M(�, �u), �) is that, due to
the normalisation by S�, the scaled information matrix does
not depend on the system gain. This simplifies the problem of
discretisation of the set � by eliminating one degree of freedom
(the gain). This also makes sense, heuristically speaking, since
the system gain simply scales the output.

4.2. Relative frequency domain errors

This criterion is motivated by robust control (Zhou et al.,
1996). It is well known (Goodwin, Graebe, & Salgado, 2001,
p. 147), that the achieved sensitivity, S, is related to the nominal

sensitivity, S0, via

S = S0

1 + T0�G/G

where T0 is the nominal complementary sensitivity and
�G/G is the relative error in G. Indeed, this leads to the
well-known sufficient condition for robust stability, namely
‖To�G/G‖∞ < 1.

Say we put an upper bound on ‖T0‖∞, then we see that
what is important is the infinity norm of the relative error in
G, �G/G. Then, noting that the covariance of all unbiased
estimates of � are lower bounded by (NM)−1 where N is the
number of data points (see Goodwin & Payne, 1977, p. 6), we
can obtain a measure of the size of �G/G as∥∥∥∥NE|�G|2

|G|2
∥∥∥∥∞

= max
	

�G(j	)T

�� M
−1 �G(−j	)

��

|G(j	)|2
� J2(M(�, �u), �). (39)

Note that here we use the per-sample information matrix M .
It is readily seen that J2(M(�, �u), �) is a dimensionless

quantity. Thus the associated experiment design is independent
of the system gain in the same way that this was true for J1
(see (38)).

Remark 13. We see that the criterion J2 has the form

J2(M(�, �u), �) = max
	

g(	)H M
−1

g(	),

where

g(	)��G(−j	)/��

|G(j	)| . (40)

Thus we see that (39) maximises xH M
−1

x where x is re-
stricted to the particular set of vectors given in (40). This can
be compared with J1(M(�, �u), �) which is actually equiva-

lent to maximising yH M
−1

y over the set of vectors y where
y = S�Z and ZH Z = 1.

4.3. A criterion related to the 
 gap

Hildebrand and Gevers (2003a, 2003b) have suggested the
following criterion for nominal experiment design such that the
worst case 
 gap is minimised:

J3(M(�, �u), �)

� max
	

�max

{[
Re �G

��

Im �G

��

]
M

−1 [
Re �G

�� Im �G

��

]}
[1 + |G|2]2

∣∣∣∣∣∣∣∣∣∣∣
	

= max
	

�max

[
RT

	M
−1

R	 RT
	M

−1
I	

IT
	M

−1
R	 IT

	M
−1

I	

]
[1 + |G	|2]2

, (41)
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where the subscript 	 denotes ‘frequency 	’, R	�Re{�G(	)/

��} and I	�Im{�G(	)/��}.

Remark 14. Not surprisingly, there is a connection be-
tween J2(M(�, �u), �) and J3(M(�, �u), �) since both are
motivated by robust control. Specifically, it is readily seen
that

�G

��

T

M
−1 �Ḡ

��
= RT

	M
−1

R	 + IT
	M

−1
I	 = tr L	,

where L	 appears in (41), i.e.

L	�
[

RT
	M

−1
R	 RT

	M
−1

I	

IT
	M

−1
R	 IT

	M
−1

I	

]
.

We notice that �max(L	)� tr L	 �2�max(L	). Hence, we
see that the criteria J2(M(�, �u), �) and J3(M(�, �u), �) are
loosely connected. Moreover, Remark 13 links both criteria to
J1(M(�, �u), �).

A potential issue with the criterion J3(M(�, �u), �) is that,
unlike J1(M(�, �u), �) and J2(M(�, �u), �), it is not dimen-
sionless. This is not an issue in the case of nominal experiment
design. However, it could be a problem with respect to robust
design when one wishes to compare the criteria for different
values of � ∈ �. A possible normalisation for J3(M(�, �u), �)

is given in Welsh et al. (2006).

Remark 15. Notice that the above criteria are convex in terms
of �u. This follows since the supremum of a family of convex
functions is itself convex.

5. Numerical example

To illustrate the merits of the robust optimal experi-
ment design procedure on a realistic example, we have
evaluated a discretised approximation to each of the crite-
ria J1(M, �), J2(M, �) and J3(M, �) on a multi-parameter
design example. The system is given by G2(s) = 1
and

G1(s) = K

s2 + a1s + a0
.

We assume prior knowledge of the parameters as follows:

�1�a1 ∈ [1, 2], �2�a0 ∈ [1, 9], �3�K ∈ [1, 2].

The parameter and frequency ranges were all divided into
logarithmically spaced grids for the optimisation. For our ex-
ample we chose each range to contain 20 values. We also used
the Matlab� optimisation toolbox to carry out the min–max
designs.

In all our simulations we approximated the integral in (6) by
the following discretisation:

M(�, �u) =
∫ ∞

0
Re{Q(	)}�u(	) d	

≈
20∑

n=1

Re{Q(	n)}
∫
�n

�u(	) d	

=
20∑

n=1

Re{Q(	n)}En,

where

Q(	)��G1(j	)

��
|G2(j	)|−2

[
�G1(j	)

��

]H

and En�
∫
�n

�u(	) d	 is the input energy in the fre-

quency range �n. We have chosen �n�	n+1 − 	n, where
	n = 0.3(10)(n−1)/20.

The discrete approximation to the robust optimal input was
found for each of the criteria max� J1, max� J2 and max� J3.
For those criteria depending on a maximum over a frequency
range (i.e. max� J2 and max� J3), we limited 	 to [0.3, 3] rad/s.
(This choice was motivated by the region of possible pole
locations.)

Sample results are shown in Fig. 3. Fig. 3(a) shows the dis-
cretised optimal input energy distribution for criterion max� J1.
Notice again that the input has finite support. Fig. 3(b) shows
the discretised optimal input energy for max� J2. We see from
Figs. 3(a) and (b) that the optimal input is roughly the same
whether we use max� J1 or max� J2. Fig. 3(c) shows the dis-
cretised optimal input energy distribution for max� J3. Finally,
Table 2 compares the evaluated cost functions obtained with dif-
ferent design criteria for different inputs. The table also shows
the values of the corresponding cost functions for bandlimited
‘1/f ’ noise and bandlimited white noise.

Our choice of bandlimited ‘1/f ’ noise is motivated by earlier
results in Section 3 where we showed that bandlimited ‘1/f ’
noise was near optimal for robust experiment design for the
illustrative problem.

The results in Table 2 have been normalised so that the opti-
mal design gives a value of 1. Observations from this table are:

(1) Bandlimited ‘1/f ’ noise gives much better results in the
multi-parameter case for all criteria than does bandlimited
white noise. We believe this to be a surprising and inter-
esting observation!

(2) For max� J1, the discretised robust optimal input is ap-
proximately twice as good as bandlimited ‘1/f ’ noise and
about 5 times as good as bandlimited white noise.

(3) For max� J2, the discretised optimal input is about 1.7
times better than the optimal input for max�J1. The ro-
bust optimal input for max� J2 is about 3 times as good
as bandlimited ‘1/f ’ noise and almost 9 times as good as
bandlimited white noise.
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Fig. 3. Values of E for the discretised robust optimal input obtained from criteria max� J1 (a), max� J2 (b) and max� J3 (c).

Table 2
Values of cost for the criteria

max� J1 max� J2 max� J3

Optimal input for max� J1 1 1.73 1.55
Optimal input for max� J2 1.14 1 1.32
Optimal input for max� J3 1.78 2.43 1
Bandlimited ‘1/f ’ noise 2.08 3.13 1.22
Bandlimited white noise 5 8.8 1.93

(4) For max� J3, the criterion seems to be less sensitive to the
test signal.

(5) We also notice that the discretised optimal inputs for
max� J1 and max� J2 are quite similar whilst the dis-
cretised optimal result for max� J3 is considerably
different.

To further motivate our robust design approach, we also tried
nominal experiment design for this example. Here we assumed
nominal parameter values in the centre of the a priori region,
i.e. we chose �̂1 = 1.5, �̂2 = 5 and �̂3 = 1.5. We then found
the corresponding exact nominal optimal input using J1 as our
design criterion. For this input, in the case where the true pa-
rameters take any value in the a priori region, we found that
the range of the cost is 30–2700. This lies in stark contrast to
the range of cost for the discretised robust optimal input which

turns out to be 26–400. Thus, we see that the discretised robust
optimal input gives almost 700% improvement in the worst
case performance relative to the nominal optimal input. How-
ever, this is achieved with a negligible change (10%) in the best
case performance, which provides a strong incentive to move
to a robust design criterion.

6. Conclusion

This paper has described and analysed a min–max approach
to robust optimal experiment design for dynamic system iden-
tification. The paper has also evaluated and compared several
different design criteria. Two illustrative examples have been
presented, one with a scalar parameter and the other with mul-
tiple parameters, showing that substantial improvements in the
worst case performance are achieved using a discretised ro-
bust design procedure relative to what is achieved via nominal
experiment design procedure. The paper also opens up many
potential research issues. For example, it is surprising that ban-
dlimited ‘1/f ’ noise performs so well. This suggests that we
should not use (near) white inputs such as PRBS. Instead, it
may be valuable to investigate binary inputs whose energy dis-
tribution approximates bandlimited ‘1/f ’ noise. Also, the re-
sults in Section 5 suggest that the problem of linking robust
control and experiment design may still offer many interesting
research challenges.
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Appendix A. Explicit solution of the robust experiment de-
sign problem

To obtain an explicit solution to the robust experiment
design problem for the illustrative example, we will use
some ideas3 from Bohnenblust, Karlin, and Shapley (1950),
McKinsey (1952, Chapter 12), and Karlin (1957).

From Section 3.2, the problem can be stated as

�∗
y = arg max

�y∈S([0,1])
min

�x∈S([0,1])

×
∫ 1

0

[∫ 1

0

ek(x−y)

(ek(x−y) + 1)2
�x(x) dx

]
�y(y) dy. (42)

The kernel of the associated game is F(x, y)�f (x −y), where
f (u)�eku/(eku + 1)2.

Let us denote the optimal mixed strategies of players x and
y of game (42) by �∗

x and �∗
y (=�̃

∗
u), respectively. Also, let

�x(x)�
∫ 1

0

ek(x−y)

(ek(x−y) + 1)2
�∗

y(y) dy,

�y(y)�
∫ 1

0

ek(x−y)

(ek(x−y) + 1)2
�∗

x(x) dx.

When k is very small, F(x, y) is strictly concave in y ∈ [0, 1]
for every x ∈ [0, 1]. Thus, �y(y) (which appears in (42) by
taking �x = �∗

x) is a linear combination of strictly concave
functions in y, so it is strictly concave as well, and it has a
unique maximum at y = 1

2 (because of the symmetry of F).
This means that

�̃
∗
u(y) = �∗

y(y) = (y − 1/2). (43)

Notice that this coincides with the single sinusoid robust design
given in Walter and Pronzato (1997, p. 339). On the other hand,
by the Minimax Theorem (Glicksberg, 1950), �∗

x must satisfy

�∗
x = arg min

�x∈S([0,1])

∫ 1

0

ek(x−1/2)

(ek(x−1/2) + 1)2
�x(x) dx,

that is,

�∗
x(x) = 1

2(x) + 1
2(x − 1). (44)

If we increase the value of k, F(x, y) eventually ceases to be
strictly concave in y for every x. This implies that there is a
number k1 ∈ R+ such that, for k > k1, �y(y) has at least two
maxima. This value can be computed by setting the second

3 The idea behind this method was suggested by an anonymous reviewer.

derivative of �y(y) equal to zero for y = 1
2 , which gives an

equation whose only positive root is k1=2 ln(2+√
3) ≈ 2.6339.

Thus, (43) and (44) hold for 0 < k�k1. However, for values
of k slightly greater than k1, (44) still holds, so �y(y), with �∗

x

given by (44), has two maxima at, say, y′ and 1 − y′, where

�

�y

[∫ 1

0

ek(x−y)

(ek(x−y) + 1)2
�∗

x(x) dx

]∣∣∣∣∣
y=y′

= 0.

This equation has only one real solution y′ between 0 and 1
2 ,

from which we obtain

�̃
∗
u(y) = �∗

y(y) = 1
2(y − y′) + 1

2(y − [1 − y′]). (45)

Expressions (44) and (45) hold as long as �y(y) has two max-
ima, which is true while (44) satisfies

�∗
x = arg min

�x∈S([0,1])

∫ 1

0
�x(x)�x(x) dx

= arg min
�x∈S([0,1])

∫ 1

0

1

2

[
ek(x−y′)

(ek(x−y′) + 1)2

+ ek(x−(1−y′))

(ek(x−(1−y′)) + 1)2

]
�x(x) dx. (46)

�x(x) has local minima at x = 0, 1 and 1
2 , so (44) and (45)

hold for k1 < k�k2, where k2 ∈ R+ is such that

�

�y

[∫ 1

0

ek2(x−y)

(ek2(x−y) + 1)2
�∗

x(x) dx

]∣∣∣∣∣
y=y′

= 0,

ek2(1/2−y′)

(ek2(1/2−y′) + 1)2
+ ek2(y

′−1/2)

(ek2(y
′−1/2) + 1)2

= e−k2y
′

(e−k2y
′ + 1)2

+ e−k2(1−y′)

(e−k2(1−y′) + 1)2
.

The first equation gives y′ in terms of k = k2, and the last
equation gives the minimal value of k, say k2, for which x = 1

2
is a global minimum of �x(x). This system of equations gives
k2 ≈ 3.6855.

For values of k slightly higher than k2, (45) still holds, but
(44) changes to

�∗
x(x) = �(x) + (1 − 2�)(x − 1/2) + �(x − 1), (47)

where � ∈ [0, 0.5]. This expression satisfies (46) for every �,
but we must assure that (45) still satisfies (42) when using (47),
which happens for a particular choice of �. One way to find the
optimal value of � is to substitute (47) into (42) and to force
the derivative of the integral in (42) with respect to y equal to
zero for y = y′. (See the proof of Theorem 12.5 of McKinsey,
1952 for an example of how to use this idea in convex games.)

Continuing in this way, we can see that it is possible, at
least in principle, to get an “explicit” solution to the robust
experiment design problem.
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Fig. 4. �x (dashed) and �y (solid) for various values of k. The dotted line corresponds to the average value, Vm.

In Fig. 4 we can see the shapes of �x and �y for various
values of k. These figures have been generated by an LP al-
gorithm as explained in Section 3.4. We can also see from the
figures that the minimum value of �x coincides with the maxi-
mum value of �y ; this is a consequence of the Minimax Theo-
rem, which states that both values are equal, and their common
value is the so-called average value, Vm, of a game on the unit
square with kernel F.

It can be further shown (Karlin, 1957) that the number of
support points of both �∗

x and �∗
y go to infinity as k → ∞, that

they are lower semicontinuous in k and that they differ by at
most 1. Namely, the number of support points of �∗

x is not less
than that of �∗

y .
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