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Abstract

This paper develops the idea of min-max robust experiment desiglyf@mic system identification. The idea of min-max experiment
design has been explored in the statistics literature. However, the techriguéually unknown by the engineering community and,
accordingly, there has been little prior work on examining its propertiesapelied to dynamic system identification. This paper initiates
an exploration of these ideas. The paper considers linear continuousytiteens with energy (or power) bounded inputs. We assume that
the parameters lie in a given compact set and optimise the worst casthisveet. We also provide a detailed analysis of the solution for
an illustrative one parameter example and propose a convex optimiséjmnitran that can be applied more generally to a discretised
approximation to the design problem. We explore the role played by diffelesign criteria and present a simulation example illustrating
the merits of the proposed approach.
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1 Introduction e Sequential design, where one iterates between parameter
estimation, on the one hand, and experiment design using

The goal of experiment design is to adjust the experi- the current parameter gstimates, on the other - see (Cher-
mental conditions so that maximal information is gained noff, _197,,5; Ford and Silvey, 1989? Ford et al., 1985; Wu,
from the experiment. Background to this problem can be 1985; Miller and Btscher, 1992; Walter and Pronzato,
found in early statistics literature (Wald, 1943; Cox, 1958 1997)-_ i i
Kempthorne, 1952; Kiefer and Wolfowitz, 1960; Karlin ® Bayesian design (Chaloner and Larntz, 1989; Atkinson
and Studden, 1966; Fedorov, 1972; Whittle, 1973; Wynn, ~and Doner, 1992; Atkinson et al., 1993; Chaloner and
1972) as well as in the engineering literature (Levadi, 1966  Verdinelli, 1995; Sebastiani and Wynn, 2000; El-Gamal
Gagliardi, 1967; Goodwin and Payne, 1973; Goodwin and Palfrey, 1996). The Bayesian approach is charac-
et al. 1973b.a: Arimoto and Kimura. 1973: Mehra. 1974 tense(_j by the m|n|m|_sat.|on.of the expected _valu_e (oyer
Goodwin and Payne, 1977; Zarrop, 1979; Hildebrand and thg prior parameter cﬁstnbutpn) ofa I.ocal optimality-cri
Gevers, 2003a). A recent survey is contained in (Gevers, terion related to the information matrix. _

2005) where many additional references can be found. The® Min-max design (Pronzato and Walter, 1988; Landaw,

focus in the engineering literature has been predominately 1984 D'Argen.io and Van Guilder, 1988; Mglas, 1978;
on experiment design for dynamic system identification. Fedorov, 1980; Biedermann and Dette, 2003; Dette et al.,

2003).

A key issue with experiment design for dynamic systems is

that the model is typically nonlinearly parameterised.sThi However, there has been little work on robust experiment
means, amongst other things, that the Fisher information design for engineering problems. This has been highlighted
matrix (Goodwin and Payne, 1977), which is typically used in the recent survey paper (Hjalmarsson, 2005), where it is
as the basis for experiment design, depends, inter alidneon t Stated that “...as usual in experiment design, in order to
true system parameters (i.e. the nominal optimal experimen compute the optimal design the true system has to be known.

depends on the very thing that the experiment is aimed atMethods that are robust with respect to uncertainty about
finding). the system is a wide open research field.”

This issue has been recognised in the statistics literaturePreliminary work in the engineering literature on robust ex
where several approaches have been explored. These inperiment design includes substantial work on iterative de-
clude: sign (Hjalmarsson, 2005; Gevers, 2005) and an insightful
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sub-optimal min-max solution for a one parameter prob- where G; and G, are rational transfer functions; is
lem (Walter and Pronzato, 1997). Actually the latter prob- the forward shift operatorGs(oco) = 1, and {w,} is
lem will be discussed in detail in section 3 of the current zero mean Gaussian white noise of variante We let
paper. Also, a number of very recent engineering papers re-g = [#7, 47, %]T where# denotes the parameters Gy
fer to the idea of min-max optimal experiment design - see and~ denotes the parametersdy.

for example papers presented at SYSID'06, e.g., (Gevers

and Bombois, 2006; Goodwin et al., 2006aNensson and  We recall that the log likelihood function (Goodwin and
Hjalmarsson, 2006). Payne, 1977) for datd given parameterg, is given by

Our goal in the current paper is to develop the idea of min- N N 1 XN
max optimal experiment design for dynamic system identi-  logp(Y|8) = ——log27m — —log¥ — — Z 2 (2
fication. To gain insight into this approach, we explore an 2 2 2% t=1
illustrative example in depth.

where
We assume prior knowledge in the form that the system &1 2 Ga(q) ye — Gilg)ud] - 3)
parametersq, are contained in a given compact setWe
then choose a design criterigi{ M (), 6) where M (0) is
the Fisher information matrix, evaluated @&tand design
the experiment to optimise the worst case f¢f\/ (9), 6)
over ©. Notice that this differs from the usual approaches MARE
to experiment desigiin the engineering literaturavhich
typically optimise f(M (6,),00) for some given nominal
valuef. where from (2)

Fisher’s information matrix is obtained by taking the fol-
lowing expectation (Goodwin and Payne, 1977)

) (alogé’ém)ﬂ @

Our approach is more akin to the usual formulation of ro-  516g p(v'|3)

bust optimal control which typically considers the worst o5

case (Zhou et al., 1996). Indeed, there are substantial link N N
between the work presented here and continuous game the- 1 Ost 1 9% 1 9

ory (Basar and Olsder, 1995; Basar and Bernhard, 1995; -y th@_g 2% 08 [N Z ] ,
Fudenberg and Tirole, 1991; Owen, 1995¢8and Forg, t=1
1985). We explore some of these connections below.

from (3)
The merits of the approach proposed in this paper are illus-
trated by an example (presented in Section 5) which shows, Oet = —Gag)! {8G2(q> ¢ G (q) t} (6)
for a realistic second order system, that an order of magni- 9 9 ap

tude improvement in the worst case performance in exper-
iment design can be achieved at the expense of only a few
percent degradation in the nominal performance.

and wherély- 3 denotes the expectation over the distribution
of the data giverps.

We assume an open loop experiment so thaandu, are
uncorrelated. We also assume tidat, G, andX are inde-
pendently parameterised. Taking expectations, as in\(4),
can be partitioned as

The layout of the remainder of the paper is as follows: In
Section 2 we give a general formulation of the min-max ap-
proach to robust optimal experiment design. Section 3 ex-
plores an illustrative one parameter example in considerab
detail so as to give insight into the problem. In Section 4 we
describe the extension to multi-parameter systems. In Sec- M; O
tion 5 we present several results illustrating the merithef M= 0 M

: . ; 9
proposed approach. Finally, in Section 6 we draw conclu-
sions.

)

where M is the part of the information matrix related o

. ) o and M, is independent of the input. Thus,
2 Experiment Design Criteria

1 Oe de\ "
2.1 The Information Matrix M2 5D (_t> (8_0t> ®)

So as to be specific we first consider a single input single

output linear discrete time system, with indut;} and out-

put {y;}, of the form: e
t

ve = Gi(g)ur + Gala)wy (1) R )

wherede; /06 satisfies




Notice that M; depends on the full parameter vectér (i) D - optimality (Goodwin and Payne, 1977)
AssumingN s large, it is more convenient to work with . _ o
the scaled average information matrix for the parameters Ja(0, o) = [det M (6, ¢u)] . (15)

0, (Goodwin and Payne, 1977; Walter and Pronzato, 1997{“) Experiment design for robust control (HjalmarssonQ20
Hildebrand and Gevers, 2003b,a)

. 1

M(B, ¢u) 2 Jre(0, 60) 2 sup g(0,0) D 'g(0,0)  (16)

Utilising Parseval's Theorem, we finally have that where g is a frequency dependent vector related to the

v-gap (Hildebrand and Gevers, 2003b,a).

_ 1 [~ "
M8, ¢u) = — /M(ﬁ’w)%(ej )dw (11) Many other criteria have been described in the statisties i
0 erature, such ag-optimality (tr M (6, ¢,,) 1), L-optimality
(tr WM (0, $,)~t, for some M > 0) and E-optimality

where Amax(M (0, ¢,)~1)); see (Kiefer, 1974). On the other hand,
i . m in the engineering literature, (Bombois et al., 2005), for e
V(5. 6u) 2 Re { G (e7) (G| {3G1(€‘7w)} ample, proposed a criterion that leads to the required accu-
[ 00 00 racy to achieve a given level of robust control performance.
(12) Other criteria will be discussed in Section 4.

and ¢, is the discrete input spectral density (considered as

a generalised function). Her# is the conjugate transpose A common feature of all these nominal experiment design
operator. approaches is that they are aimed at choogipgo min-

imise a function of the type shown in (15) and (16). Notice,
It is also possible to do a parallel development (Goodwin however, that the optimal input spectrum depends, intey-al
and Payne, 1977; Walter and Pronzato, 1997) for continuousOn the unknown parameter vectar

time models. In the latter case, (11) is replaced by
2.3 Min-Max Robust Design

M(B,w)d, (w)dw (13) A min-max robust design criterion is the basis of the ap-
proach described in the current paper. Specifically, we as-
sume that we have available a-priori information showing

where that the parameters can take any value in a compacd set
We also constrain the allowable set of input signals. A typ-

5 [9G1(jw) H ical constraint (Goodwin and Payne, 1977; Zarrop, 1979;
|G2(jw)| {] , Walter and Pronzato, 1997) used in experiment design is
90 that the input energy is constrained, i.e. we define

M(ﬂv ¢u) =

~ ~ 0G1 (jw)

M(B,6.) Re{ 5
(14

G and@- are continuous time transfer functions (assumed

independently parameterised) apgis the continuous time ~ (R{) £ {% ‘R —[0,1] :

supp ¢, C R and}
input spectral density.

ffooo Ou(w)dw =1

17)
Notice that the results presented below do not depend onTh€ min-max robust optimal input spectral density, is
3 since it appears as a scaling factor in (8). Also, we see then chosen as
from (13) that, inM (53, ¢.,), G2 simply plays the role of a * _ . . i 1
frequency dependent weighting. This is easily included in u = arg ¢u£i?Ro+>§28 J(M(9, ). 6) (18)
the analysis. However, for simplicity we assume white noise o
although the extension to non-white noise is straightfodwva  where J is an appropriate scalar measure /df. We are
Hence in the sequel we refer only do assuming for the moment thaf, exists and is unique; these

points will be studied in the next section. Notice also that

2.2 Brief Review of Design Criteria for Nominal Experi- We allow.J to depend explicitly or#; this point will be of
ment Design practical importance — see discussion below.

. — . . — 1 In general, given a seX C R, we will denote by (X) the
SinceM is a matrix, we need a scalar measurelbfor the set of all generalised functions, on R (Rudin, 1973) such that

purpose of experiment design. In the nominal case typically 4 is the derivative of some probability distribution function on
treated in the engineering literature (i.e. when a fixedrprio R and supp ¢. C X, wheresupp ¢, is the support of, (i.e.
estimate of is used), several measures of the “size"\éf roughly speaking,” (X) is the set of all (generalised) probability
have been proposed. Some examples are: density functions onx).




2.4 A Mixed Policy Game Approach 3.1 Nominal Optimal Experiment Design for the Illustra-
tive Example

An alternative approach to that described above would be
to extend the space to include “mixed policies” (Basar and Before turning to the robust design problem, we will briefly

Bernhard, 1995) by introducing a (probability) dengjtgn review the nominal experiment design problem for this case.
©. The counterpart of (18) would now take the form: Here one assumes that a prior estimatef ¢ is available.
¢* —arg min sup J'(€, ) (19) Baseq on this information, the functicm is chosen so as
P €L (RT) ce7(0) to optimise some scalar-valued function &f(6, ¢,,) sub-
. , ject to a constraint on the input power. In the nominal case
whereJ' is an appropriate scalar measure of the form: it can be shown that we only need to use a single frequency

N input for this example (Goodwin and Payne, 1977), namely,
J & /f [/ SeN[(H,w)SeTqbu(w)dw £(0)do (20) ¢u(w) = §(w—w*). Moreover, by differentiation of the sin-
gle frequency information matrix given in (23), it is readil

where f is a scalar-valued function, e.g§(L) = tr L= or seen that the optimal input frequency is

F(L) = Amax(L~1); M is the single frequency information w* =0, (24)
matr@x andSy is a parameter df_ependent scaling matrix (see Thjs is an intuitively pleasing result, i.e. one places & t
Section 4.1 for further discussion 6§). signal at the (nominal) 3dB break point. However, equation

) ] ] . ] ] (24) reinforces the fundamental difficulty in nominal exper
Notice that if f were linear, it could be introduced into the  jment design, namely, the optimal experiment depends on
inner integral, and in that case it can be shown that this the very thing that the experiment is aimed at estimating.
approach is equivalent to the previous one (see the proof of

Theorem 3 for an idea of how the equivalence is established).tq gauge the importance of the dependencé,ame notice
thatJvNI(&w) in our example decays at the rate of 40dB per
3 An lllustrative Example decade as a function of boftandw. Hence, given the prior
estimate of the paramet@, say we choos& = g for the
Before delving into the general multi-parameter case, we input signal frequency. Also, say that the true paramessr li
first consider an illustrative continuous time one paramete in the range(0.10 < 0 < 1060), thenmingeg M (6,w) is

problem to gain insight. We tak@s(s) = 1 and let approximatelyl /100" of the nominal value! This seems to
1 suggest that nominal experiment design is limited to those
Gi(s) = ———. (21) cases where an extremely good prior estimate is available.

s/0+1 This point is reinforced in Figure 1 which shows a plot of

[02M (0, ¢,)]~* versusd for the nominal optimal input.

Notice that this problem has also been discussed in Goodwin o -

and Payne (1977) for the case of nominal experiment design.Remark 1 The reason fcinjijltmlymg b§" as in Figure 1
Also, the problem has been studied in Walter and Pronzatoand then inverting is thall/ = is a variance measure and
(1997) p339 in the context of min-max robust experiment thus[#?M|~! gives relative (mean square) errors. More will
design but where the input is restricted to a single sinusoid be said about this type of scaled cost function in the context
Actually we will see below that the later restriction unduel  of robust design below. Interestingly, the scaling turnstou
limits the solution space and does not lead to the optimal be equivalent (for this example) to the MMDE cost function
strategy. This is heuristically reasonable sincglies in an used in Walter and Pronzato (1997) p339.

interval, then it makes sense to spread the input energy in

some sense to cover the possiblscenarios. \AYAY
For the model (21), it follows that 3.2 Some Properties of the Min-Max Robust Optimal Ex-
oo periment Design
6.6, = [ o.0)ou)de (@2 | | o
J We next turn to robust experiment design as described in

Section 2. For the illustrative problem we use (see Remark 1
where M is the “single frequency” normalised information and Section 4)

matrix given by J(M(0, ba),0) 2 [0 D6, 6.)] . (25)
~ 8G1(0,w)|”
M(9,w) = Y Thus, our min-max robust optimal experiment design can be
2 /g stated as finding
w
IS (23) N = inJ(¢, 26
(w2/02 +1)2 ¢, = arg %Emy}?Rg) (¢u) (26)
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Fig. 1. [0*M(0,¢.)]" " as a function of¢ for nominal input
(dotted) and ‘1/f’ noise (solid).

where

2/62

T(u) £ TP

£ sup
0co

oo -1
[ / bu(w) dw] (27)
0
and

02(9:9<0<0). (28)

In the sequel, we will give further insights into the above
design problem.

We first observe that, since the integrand in (27) is continu-
ous ing € O for everyw € Ry and it is bounded by an in-
tegrable function which is independenttfuse e.gC'/w?,
where(C' is large enough and independen®dfthe integral

is continuous ir?; see (Bartle, 1966). This implies, with the
compactness dd, that we can change theudp” symbol in
(27) to “max”.

Furthermore, if we make the following changes of variables

A Inf—1nfb
r= ——"—"-—
Inf —1Iné
A Inw—1né
YT oo (29)
2 ~ (Inw—1nd
ulw) = 5 G (me-mg)
kE=2(Ind —1nd)
then the problem can be rewritten as
N T ek ;
omses o iy [ e 0
(30)

To simplify the notation, letF'(x,
flu) = eFv/(ebv 4+ 1)2.

y) 2 f(z - y), where

The following theorems give some propertiesifand ;.
Notice, however, that Lemma 2 and Theorem 5 are different
in that Lemma 2 states that the optimal input has compact
support, which is a technical requirement for proving other
results. Theorem 5, on the other hand, states that the opti-
mal input has finite support, which is a stronger result than
Lemma 2, but its proof relies on the previous theorems.

Lemma 2 Considering the problem stated in (30), the op-
timal input ¢, if it exists, has all its energy insid@, 1].

Namely,

R—1[0,1]

Pu(y)dy = 0. (31)

Thus, the spectral density of the optimal input has compact

support, |e¢* € .7([0,1]) (or, equivalentlyg’ € .7(0)),
so we can replacé30) with

1

ek(@=y)
/ (ek(ﬂu—y) +1)2
0

P

Pu(y)dy -

(32)

max min

= arg _
p.€7(]0,1]) z€[0,1]

PROOF. Notice? that F/dy > 0 for y < z and
OF /9y < 0 for y > . It follows that for anyx € [0, 1] we

flaveffooo F(x,y)¢5(y)dy <[> F(z,y)¢,(y)dy, where
¢!, is given by

0

() 2 3 (0) Koy (0) + 6(») / Fi(r)dr

-1 /0052(7)dT

and X/, ;) denotes the indicator function {f, 1]. The result
follows.

(33)

\AAY

Theorem 3 For the problem stated i§26) or (30), there
exists at least one optimal input, that is, there exists, ae
S (R{) such that for every,, € . (R{),

J(67) < J(du) - (34)

PROOF. By Lemma 2, (30) can be related tdvao-person
zero-sum game on the unit squavih kernel ', such that

2 This proof was suggested by an anonymous reviewer.



the playerx tries to minimiseF' by using apure strat-
egy, and playery tries to maximise this quantity by using

amixed strategyBasar and Olsder, 1995). Hence, in order

to prove the existence af’, (or, which is the same, af}),

we can make use of a version of the Minimax Theorem, due

to (Glicksberg, 1950), which states thathfis an upper or
lower semicontinuous function dn, 1] x [0, 1], then

11
inf //F T, Y) o y) dy dx
mef"(wl)uyey [01)O J pa()ity(0)

// (2, y) () 1y (y) dy dix

0 0
(35)

= sup inf
uyey( [0,1))#= € ([0,1]

£y,

where V,,, is called theaverage valueof the game. Fur-

thermore, if " is continuous then, by a usual compactness is symmetric with respect ty2, that is, ¢*( )=
argument (such as the one given in the paragraph before(j e oF (w) =

(29)), there exisu;, u; € 7([0,1]) such that for every
pias by € ([0, 1]),

1 1
//Flyur tiy(y) dy dx
0 0
y(y) dy dx

< F(z,y)py (),

(36)

Se—-
O\H

1
/nyﬂm py (y) dy da .
0

AN
o—__

This last expression says that;, 1, ) defines ssaddle point
solution in mixed strategider the game (Basar and Olsder,
1995).

Since in our casé”’ is continuous, these results apply. Fur-
thermore, by (36) and the compactnessiof |,

1
/Fwyum 1y (y) dy da
0

o —

e min
ne€7([0,1]

1 1
)O/O/wax 1) dy dz (37)

1

[ P dy.

0

min
z€[0,1]

Hence, by (35), (36) and (37),

1
}/F(x,y)u;j(y) dy
0
1

_ in [ P, dy (38
w2 [ TV 09
0

min
z€0,1

so if we takegzb* 1y, We have an optimal solution to (30).
This proves the eX|stence of an optimal input.

\AYAY

Theorem 4 For the problem stated i(26) or (30), there is
a unique optimal input. Moreove, and 1 do not belong to

the support ofzs* (or, equivalentlyg, 6 gé supp ¢*) andqs*
1 5 (1—y)
¢7,(00/w)).

PROOF. To prove this, we will make use of some results
from (Karlin, 1957). However, to this end it is necessary to
show first thatf is a strictly positive definite function.

By Bochner's Theorem (Bochner, 1959),is strictly posi-
tive definite if and only if its Fourier transform is positive
everywhere. Now, the Fourier transform piis

/ f(t)e “tat

flw) =

Tk iy
1
™ __ 50, weR.

~ k2 sinh mw/k
Hence, Bochner’'s Theorem applies.

Now, sincef is strictly positive definite, analytic antt (R),
it is a positive analytic regular Blya frequency function
(Karlin, 1957, 1959). Together with the fact th&{0) = 0,

it implies by Theoremgd and2 of (Karlin, 1957) thaty?, is
unique, thal, 1 ¢ supp ¢! and that¢} is symmetric with
respect tal /2.

WVAYAY

Theorem 5 For the problem stated i(26) or (30), the op-
timal input @} or ¢, respectively) has finite support. That



is, if ¢* is such that

/f

max min
duc(]0,1]) | z€l0:1]

thensupp 5: is finite.

min
z€[0,1]

/fx— 1Buly 4 (40)

PROOF. This proof is based on a result in (Karlin, 1957),
which is included here for the sake of completeness. We will
focus on the problem stated in (30).

We will first show that if % is defined as in the proof of
Theorem 3, andy € [0, 1] is in the support ofﬁ* then

1
[ = s @) = Vin. (41)
0
By (36), we have that
1
/f x)dr <V, €[0,1]. (42)
0

If this inequality were strict fogy = yo, then by the continu-

ity of f there would be an intervak, b] C [0, 1] for which
a < yo < band
1
/f x)dx < Vi, € [a,b]. (43)
0

Thus, integrating both sides of (42) weighted %y and
taking (43) into account, we obtain

1 1
//fu—ymmm@@mwz<un (44)
0 O

which contradicts the definition df,,,. This proves (41).

Now, if supp 5’; is infinite, then (41) holds for an infinite

number of points in a compact interval, so those points have

at least one limit point. On the other hand, the integral of
the left side of this expression is an analytic functiony af
R, and its right side is constant, so by a well-known result
of complex analysis (Rudin, 1987) we have that
1
JECEHE
0

yeR.  (45)

However, sincef is bounded ang (u) — 0 for |u| — oo,
1
lim [ f(z—y)u
y—00
0

S@)de =04V, (46)

which contradicts (45). Thus)’, (as well as¢?) has finite
support.

\AAY

Remark 6 Theorem 5 basically says that the robust opti-
mal input is a finite linear combination of sinusoids. This is
a rather surprising result, since the nominal optimal input
is a single sinusoid of frequency equal&pso one would
expect that the robust optimal signal should have a contin-
uous spectrum to account for all the possible values of this
parameter. On the other hand, this property also says that it
is very easy to implement such a signal; the only remaining
problem is to determine the amplitudes and frequencies of
its sinusoids. This will be addressed in Sections 3.3 (analy
ically) and 3.5 (numerically).

\AYAY

3.3 Explicit Solution of the Robust Experiment Design
Problem

In order to obtain an explicit solution to the robust exper-
iment design problem for the illustrative example, we will
use some ideasfrom (Bohnenblust et al., 1950; McKinsey,

1952; Karlin, 1957, 1959).

According to the results of the previous section, the proble
can be stated as

¥ =ar max min
o guuey([o 1]) pe€5([0,1])
; ek(z—y)
/ / (ek=v) 4 1)2 pa () d | py(y) dy . (47)
0

As before, the kernel of the associated gamé'{s, y) =
f(.%‘ - y), WhGI'Ef(u) 2 eku/(eku + 1)2.

Let us denote the optimal mixeg strategies of playeand
y of game (47) byu; andy;, (= ¢;,), respectively. Also, let

L ke )
U, (x) = ] w12 oy (y) dy
0
e R
0

3 The idea behind this method was suggested by an anonymous
reviewer.



Whenk is very small,F'(z,y) is a strictly concave function
iny € [0,1] for everyxz € [0,1]. In that case, we have

that ¥, (y) (which appears in (47) by taking, = %) is a
linear combination of strictly concave functionsgn so it

is strictly concave as well, and it has a uniqgue maximum at

y = 1/2 (because of the symmetry &f). This means that

Puly) = py(y) = 6(y —1/2). (49)

Hence, by the Minimax Theorem (Glicksberg, 1950},
must satisfy

) _ k(@—1/2) 5o
Hp=arg min /m pe(2) dz (50)
0

that is, ) .
e (x) = 56(:c) + 55(1’ -1). (51)

If we increase the value df, F(z,y) eventually ceases to
be strictly concave iy for everyz. This implies that there

is @ numberk; € R* such that, fork > k;, ¥, (y) has at

least two maxima. The valug can be computed by setting

the second derivative of,(y) equal to zero foy = 1/2:

1
82 . ekl(xfy) .
0 y=1/2
This implies

e31/2 4 gm3R/2 _ge=k1/2 _gek/2 = 16, (53)

The only positive root of this equation is = —21In(2 —
V3) ~ 2.6339.

Thus, (49) and (51) hold fob < k£ < k;. However, for
values oft slightly greater thaw,, (51) still holds, sol, (y),
with p given by (51), has two maxima at, sgy.andl —y/,
where

b ek(@—y) .

y=y’

This equation has only one real solutighbetween0 and
1/2, namely

1
y' = z In[2e"(1 4 €*)]

1
= In[e?* —6e*+1++v/etk — 16e3* + 30e2+ — 16k + 1]
(55)

from which we obtain

Fu(w) = w3 (0) = 50y — ') + 500 —[1—/]). (56)

Expressions (51) and (56) hold as long®g(y) has two
maxima, which is true while (51) satisfies

1
Wy =arg min /‘IJ»L(Z‘)/.LL(I) dx

MIGAV([OJ])
1
1 ek@—y")
- ' Sl 57
arguzeglﬂl(?o,l]) /2 [(ek(m—y’)+1)2 ( )
0
hla—(1-y"))
+ (ek(zf(lfl//)) I 1)2 :uai(x) dr .

U, (z) has local minima at = 0, z = 1 andz = 1/2, so
(51) and (56) hold fok; < k < ko, wherek, € R™ is such
that

1
bl k2 (z—y)
| o e =0

dy (ek2(z=v) 4 1)
y=y’
ek2(1/2—y") ek2(y'=1/2)
% — + — (58)
(e 2(1/2—y") 1)2 (ekz(y 1/2) 4 1)2
e~ kay’ e k2(1-y)

 (e7R2v 4 1)2 + (e=k2(1=9") 4 1)2°

The first equation giveg’ in terms ofk = k», and the last
equation gives the minimal value @f say k., for which
x = 1/2 is a global minimum of¥,(z). This system of
equations giveg, ~ 3.6855.

For values ofk slightly higher thark,, (56) still holds, but
(51) changes to

pr(z) = ad(z) + (1 — 2a)d(x — 1/2) + ad(z — 1) (59)

wherea € [0,0.5]. This expression satisfies (57) for every
«, but we must assure that (56) still satisfies (47) when using
(59), which happens for a particular choicenofOne way to
find the optimal value of: is to substitute (59) into (47) and

to force the derivative of the integral in (47) with respert t

y equal to zero fol = y'. (See the proof of Theorei2.5

of (McKinsey, 1952) for an example of how to use this idea
in convex games.)

Continuing in this way, we can see that it is possible, at
least in principle, to get an “explicit” solution to the ratiu
experiment design problem. However, the expressions get
rather complicated as we increase the valué,dfo this is
probably not a practical way of solving the problem.

In Figure 2 we can see the shapesiof and ¥,, for vari-
ous values ofc. These figures have been generated by the
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Fig. 2. ¥, (dashed) andl, (solid) for various values of. The dotted line corresponds to the average valie,

algorithm developed in Section 3.5. We can also see from PROOF. The second inequality follows from the definition
the figures that the minimum value &f, coincides with the of the optimisation problem.

maximum value of¥,; this is a consecuence of the Mini-

max Theorem, which states that both values are equal, andro establish the first inequality, we notice from (60) that
their common value is the so-called average valig, of a
game on the unit square with kerngl

1 1
It can be further shown (Karlin, 1957) that the number of min () min J(M(0,¢,),0)
support points of botl; and u; go to infinity ask — oo, _ — = 1
that they are lower semlcontlnuous functionskoind that - %?g [7(2(6,6.),0)] (63)
they differ by at mostl. Namely, the number of support 7
points of ., is always greater than or equal to thatugf. w?/6? _
) = Imax / s & u(w)dw
00 (W?/602 +1)2
0

3.4 Bandlimited1/f’ Noise Input

The results presented above are concerned with the optimallhus, for any feasible function,,, we must have
solution to the problem. We will also explore sub optimal
solutions. In the latter context, the following result wik

6 0
useful. 2/92 o 6
) P //¢ G fulde d0.
Lemma 7 Letg, € .7([0,1]). Also let ]

— N\ & e TR T (64)
Omin(by) = s J(M(9, ), 0) (60) Now let us assume that the first inequality in (62) is false;
man(By) 2 max J(M(0,3,),0). (61) i.e. assume that
€
Then Qmin(¢,) > min | max J(M(0,¢,),0)
min(@,) < min_ max J((0,6,),0) < Amas(B,) e T (RG) 0O
€S (RY) 0€O ©2) = max J(M(0,6%),0) (65)
€



and therefore, With the above as background, we next consider the follow-

1 _ ing feasible input
Cnin(B) 069 Yo e

W2 /92 . o/ (w) £ { nf—Inf . (70)
m ¢u(w)dw.  (66) 0, otherwise

Hence, if we form a convex combination of the integrals on
the right hand side of (66) using, (f), we must have Theorem 10 Consider the bandlimited1y/f’ noise input

3 given in(70). Let anin (¢ /f) and aqz ( 1/f) be the cor-
s / B
amzn
(4

= min
0c©

\tb\%l

For this input, we have the following result.

w?/6? responding limits as i§60) and (61). Then
w0t 67 ()dw d) . p g if60) and (61).

Im\%‘

(Wie+ 12 Y
min Ly = 21 = 71
o e )
However,
2/92 92/ 2 and 2
w w ANE +0
= . 68 1/ fy — =
@202+ 12 (02/? +1)° (68) Omaz(P,/)) = 41n <9> 7 (72)
Thus, changing the order of the variables of integration in
(67) and using (68) gives PROOF. By direct calculation we obtain
79 e 7 2 g2
1 1 w*/0 dw
< //gb: Bu(w)df dw . _ -t / dw
i ¢ AR JO10,0/7),0) 1 (F) ) (/02417
£z Ly}
(69) 5 ) N
. . ) = = (— 5 5 ) (73)
We see that (69) contradicts (64) if we chogsgin (64) as In (g) 2(0% +w?) J lyp
¢r. This contradiction establishes the result. =
7 — 02 02
VvV 21n( ) 02 +9°)(02+6)

Remark 8 It is impossible to find an input, which brings ) o s 2 a9 2N )
Cmin(G) €QUAl 10 ag (6 ). This is due to the fact that, for ~ The functionf(6) = 6%/[(6+6")(6*+67)], in ©, increases
a fixed¢,, the cost function/(M (6, ¢,,),6) is an analytic to a maximum afl = /86 and then decreases. Finally since
function ofé on R, and it vanishes a®| — oo; thus, if f(8) = f(6) we conclude that
we force ay,in(dn) = max(¢w), then this cost function
would be constant in the intervé, 6], which implies, by its 1 52
analyticity, that it would be constant iR, and hence equal 1/f

amam( ) 21n (

DN

ISSSSARISAY

02
) (02 +8°)(62 + 62)

to 0. This is impossible, since the integral of over [0, 6] 0=0
is equal tol, and¢,, can only take nonnegative values over — 9 -
that interval. _ov -0 1 (74)
41In (g) 9 +6?
\AVAY -
and

Remark 9 We see from Lemma 7 that, if a feasible design, Y
o, 1s found such thad,,;,, (¢, ) andna. (P,,) are “close”, 1 6 — 6? 62
then the corresponding cost function will be “close” to op- /f\ 7 —2 5
timal. In particular, if one could choose an input,,, such min(¢u'")  2In (E) (62 +67)(62 +6) 9—\/07
that apmin(dn) = Qmaz(Pw), then this input would have 1 -0 B
been optimal. Alas, by Remark 8, there is no feasible input S ———— (75)
which bringsa,,in (6 t0 mas (64, ). However, we will now 21n (g) 0+0
examine a particular sub-optimal input such thaf,;,, (¢.) -
and au,q.(6,,) are within a factor of2 of each other. which completes the proof.

\AYAY \AYAY%

10



Corollary 11 For bandlimited 1/f’ noise input, the opti- for 0 < m < N so thatwy = 0y = 0, wy = 05 = 0. Then
mal cost,J*, must satisfy
- -1

6
2 /02
Cmin (64 1) < J* < 20min (01/7) . (76) s / _ W
I (W2/62, +1)2 Pulw)dw
0
- —1
PROOF. ¢From Theorem 10, N Nz‘:l Wi/ ) )
~ . (w%/@?n—l—l)Q ulWn J\Wnt1 — Wn
- —2 2 Ln=
0\ 6 +6 (78)
L/fy — 41 Z
amaz<¢u ) n <9> 52 B 92 FN_1 —1

0\ 0 + 06>+ 200 = | 2_ AmnEn
< 4In | = ) Ln=0

0 0" — 62

7 i 2 where
=4 <g> % (77) A & — Sl (79)

20Ol (N YRV

ANCE)
=4 ln é 70—_ 0 and
= 20min (gbql/f) ,_ Ep £ ¢u(wn) (@nt1 — wn) - (80)

Notice that the matrixd = {4,,,} is symmetric and has
The result then follows from Lemma 7. positive entries.
\VAVAVS We can now state the following discrete approximation to

the optimisation problem in equation (26)

Remark 12 The above result is rather surprising since it

shows that1/f" noise performs very well for this problem. E* = arg min gﬂ?ﬂg\,(efw‘l]ﬂf1 (81)
This is an interesting result since “conventional wisdom” BeSa 0=ms<

probably suggests an input more akin to bandlimited white A N . N
noise (e.g. a PRBS signal). However, one can easily verifywhere.#; = {E € R : 1'E = 1,E, > 0}, E =

that usingd = 0.1 and§ = 10, bandlimited 1/’ noise is [Ey E1 -+ Enx_1]Y, ey is them!" column of theN di-
almost an order of magnitude superior to bandlimited white mensional identity matrix, antlis anN dimensional vector
noise — see Table 1 presented below. of ones.

\AAY It is known that a finite dimensional min-max optimisation

problem, such as (81), can be converted into a standard linea
programming (LP) problem; see (McKinsey, 1952; Dantzig,
1951; Gale et al., 1951). For completeness, we present the

. . .  details below. Let
As we haven seen in Section 3.3, and as it is well known in

the statistics literature (see e.g. Walter and Pronzat®1})9
finding an exact solution to problems of the type (26), (27) F
is, in general, extremely difficult. Some algorithms have
been proposed, e.g. the relaxation algorithm of Shimizu and
Aiyoshi (1980).

3.5 Discrete Approximation to the Optimal Input

(1>

e RNV+! (82)

then we can readily show that (81) is equivalent to the fol-

o o ) lowing optimisation problem:
Here we pursue an alternative idea of finding an approximate

design by discretisation of the design space (see also Walte

and Pronzato (1997) p341). Singés continuous, it is well max CF (83)
known (Owen, 1995) that this approach can approximate the

optimal solution as closely as desired. subject to

To develop this approach, we first approximate the integral AF >0

in equation (27) by a Riemann sum. Specifically, utilising ~

Lemma 2, we choose a grid of pointsf < w,, = 6,, < 6 BF =1 (84)

11



where

AL -14 c R2VX(N+1)

01
B2 [017] e RV (85)
éé[l 0--- 0] ERlX(N+1)

and1l € RVx1,
This problem is readily recognised as an LP problem.

It is also quite straightforward to compute a discrete ap-
proximation to the Bayesian optimal input for the example

problem. For example, say that we usg\V/ (6, ¢,,),0) as a
Bayesian risk and, for the sake of illustration assume &hat
has a uniform distribution o®. Then, the Bayesian design
problem becomes

1
min ——
b ®RHO — 0

(Z)B

= arg

0 g} -1
w?/0?
o Lo
We can approximate this, as in (78), by
N-1 -
1 log 6 — log @
B _ il = o=
E —argErrelg}deZ_oexp{{ N ]k—l—log@}
(ef AE)7T. (87)

In the next section, we will also consider a Bayesian de-
sign for the case whelvg 6 has a uniform distribution on

(log @ , log®).
3.6 Numerical Results

We present below numerical results for the problem de-
scribed above where we talke= 0.1, § = 10, N = 100
and compare

(i) A nominal input of frequency [rad/s] (Notice that this
is the optimal input if the initial estimate of the parameter
isf=1).

(i) Band limited white noise input, limited to the frequency
range[0.1, 10] [rad/s].

(iii) Band limited 1/ f’ noise input, limited to the frequency
range[0.1, 10] [rad/s].

(iv) The approximate discretised robust optimal input gen-
erated by Linear Programming.

(v) The approximate discretised Bayesian optimal input for
a uniform distribution or®.

12

0.3

0.251 b

0.2 4

0.15F 1

Energy

0.1+ b

0.05_}
0

-0.05 .
10

10

Fig. 3. Values ofF for discretised robust optimal input.

(vi) The approximate discretised Bayesian optimal input for
a uniform distribution orlog 6.

Relative costs for the different experimental conditiors a
shown in Table 1. Notice that the costs have been scaled so
that the optimal value is.

We see from Table 1 that bandlimited white noise gives
poor performance under all criteria. Indeed, we see from
the table that bandlimitedl/ f’ noise is almost an order
of magnitude better than a bandlimited white noise input
for all cost functions. Furthermore, going to the disceslis
min-max optimum gives a furthei0% improvement for the
min-max cost function. The discretised min-max optimal
input energyg:, is shown in Figure 3. Notice that the above
results are consistent with Theorem 5, which asserts tkat th
unique optimal input has finite support. Figure 4 shows the
corresponding values &?M (0, ¢)]~* as a function of).

It is interesting to notice from Figure 4 th@? M (0, ¢*)] !

is an almost constant function éf This should be compared
with the comments in Remark 9. The comparative costs are
given in Table 1.

4 Generalisation to Multi-parameter Problems

For the multi-parameter case we return to the general ex-
pression forM (3, ) given in (11) and (13). Again for sim-
plicity, we assume white noise and hence refer onl§ &-
though the extension to coloured noise offers no additional
difficulties. We convert this problem into an approximate
discrete form as was done in Section 3 by discretising the
input and parameter spaces. We write

0, € ©

Qk(E) £ Agn B, (88)

as an approximation to the integral in (13) i@y is the
information matrix corresponding to thé&*" (discretised)



Table 1
Relative Values of Cost for the Different Input Signals

max [0*M (0, ¢.)] "

Bayesian cost oA | Bayesian cost otog 6

6O
Single frequency ab = 1 7.75 4.8 2.26
Bandlimited white noise 12.09 9.05 2.96
Bandlimited 1/’ noise 1.43 1.51 1.07
Robust min-max optimal input 1.00 1.45 1.12
Bayesian design (for uniform distribution @) 5.4 1.00 1.61
Bayesian design (for uniform distribution dog 6) 1.53 1.46 1.00

100

90

80

70F

60

50

Cost

401

30

201

10

! 10° 10
[

Fig. 4. Variation of cost versug for robust optimal input.

elementy;, of the parameter séd, the indexm denotes the
frequency andz,, is the input energy at thex'” frequency.

There exist many possible choices for the inner design cri-
terion J(M (0, ¢.,),0) in the multi-parameter case — see the

discussion in Section 2.2 and recent results in (Welsh gt al.
2006). Three other alternatives are discussed below.

4.1 Minimal Eigenvalue

The use of the minimum eigenvalue of the information ma-
trix as a design criterion fanominalexperiment design has
previously been studied (Mareels et al., 1987). Forobest
case, we propose to optimise the worst case of the follow-
ing related criterion which uses the minimum eigenvalue of
a scaled version of the information matrix,

(Amin{SQM(e’ ¢u)59})_1

where \,;, denotes the minimum eigenvalue afg is a

A

JI(M(ead)u)ae) = (89)

important propertyin the robust design contexivhere we
maximise ovel¥ € ©) since it ensures that one is maximis-
ing (over®) the relative errors. These errors are normalised
and thus better scaled for comparison purposes.

Another useful property of/; (M (6, ¢,),0) is that, due to
the normalisation by, the scaled information matrix does
not depend on the system gain. This simplifies the prob-
lem of discretisation of the s@ by eliminating one degree

of freedom (the gain). This also makes sense, heuristically
speaking, since the system gain simply scales the output.

4.2 Relative Frequency Domain Errors

This criterion is motivated by robust control (Goodwin et al
2001). Itis well known (Zhou et al., 1996), that the achieved
sensitivity, S, is related to the nominal sensitivityy, via

So

§— 20
14+ Ty AG/G

(90)

where T is the nominal complementary sensitivity and
AG/G is the relative error irG. Indeed, this leads to the
well known sufficient condition for robust stability, namel
1T, AG/Gll0 < 1.

Say we put an upper bound diTy||-, then we see that

what is important is the infinity norm of the relative error in

G, AG/G. Then, noting that the covariance of all unbiased

estimates of) are lower bounded byNM)~! whereN is

the number of data points (see (Goodwin and Payne, 1977)),

we can obtain a measure of the sizeaf//G as
)

{ G (jw)[?
Jo(M (0, ¢u),0) . (91)

aG(jw)™ 1 9G(—jw)
00 90

= max
w

NE|AG?
G2

o0
A

Notice that here we use the per-sample information matrix

parameter dependent scaling matrix. One possible choicejs.

for Siis diag[fy, ..., 6,,]. The motivation for this choice is
that M (0, ¢,) "1 is ~a measure of the parameter covariance
matrix. HenceS, 'M (0, ¢,) 'S, is the covariance nor-

It is readily seen thatly(M (6, 4,),0) is a dimensionless
quantity. Thus the associated experiment design is indepen

malised by the nominal values of each parameter. Thereforedent of the system gain in the same way that this was true

it is a measure of theelative error. This seems to be an

13

for J; (see (89)).



Remark 13 We see that the criteriod, has the form We notice that

Jo(M(0,6.),0) = maxg(w)' M 'gw)  (92) Amas (L) < 1 Ly < 2\ max(Lu) (98)
where .
(w) 2 W (93) Hence, we see that the criteridy(M (0, ¢,),0) and
|G (jw)| J3(M(6,¢,),0) are loosely connected. Moreover, Re-

mark 13 links both criteria to/; (M (6, ¢.,), 6).

L ——1 .
Thus we see thg91) maximisest*M z wherex is re- o . o — .
stricted to the particular set of vectors given (@3). This A Potential issue with the criteriod; (A(0, ¢.), ¢) is that,

can be compared with; (M (6, ¢,.),§) which is actually  unlike Ji(M(6, $,),0) and Jo(M (0, ¢.),0), it is not di-
mensionless. This is not an issue in the case of nominal

experiment design. However, it could be a problem with re-
spect to robust design when one wishes to compare the cri-
teria for different values of € ©. A possible normalisation
VVV for J3(M (6, ¢.),0) is given in (Welsh et al., 2006).

equivalent to maximising*ﬁfly over the set of vectorg
wherey = SyZ and Z*Z =1

4.3 A Criterion Related to the Gap \VAVAY/

Hildebrand and Gevers (2003b,a) have suggested the fol-Remark 15 Notice that the above criteria are convex in
lowing criterion for nominal experiment design such th&th terms ofg,,. This follows since the supremum of a family of

worst case’ gap is minimised, convex functions is itself convex.
J3(M(0, ¢u),0) \AAY
Re %% | — -
/\max ¢ 99 M ! |:Re @ Im 9G :|
Im oG 00 a0 .
2 nax 90 5 Numerical Example
w [1+[GP?
To illustrate the merits of the robust optimal experiment de
1 — 1 ¥ sign procedure on a realistic example, we have evaluated a
RIM "R, RLM I, discretised approximation to each of the critefid M, 6),
M ITMCR, ITM L Jo(M, ) and.J3(M, #) on a multi-parameter design exam-
= 94 i
max TESTeREE (94) ple. The system is
: . , K
where the subscript denotes ‘frequency’ and Gi(s) = — (99)
s+ ai1s+ag
0G(w)
A
R, = Re{ o6 } and, as before, we tak@;(s) = 1.
s [OGw)
I, =Im 20 : (95) We assume prior knowledge of the parameters as follows:
Remark 14 Not surprisingly, there is a connection between 01 = a € [1,2]
Jo(M (0, ¢,,),0) and J3(M (0, ¢,,),0) since both are moti- a
vated by robust control. Specifically, it is readily seenttha 02 = ao € [1,9) (100)
;= K € [1, 2}
oGT 180G e 1
06 M 00 R,M Ry +1,M 1, Notice that the above parameter ranges correspond to the
=tr L, (96) pole locations shown in Figure 5.
whereL,, appears in(94), i.e. The parameter and frequency ranges were all divided into

logarithmically spaced grids for the optimisation. For our
BT R RTRE I example we chose each range to contain 20 values. We also
o e A B (97) used the Matla® optimisation toolbox to carry out the min-
IM "R, ITM I, max designs.

w
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In all our simulations we approximated the integral in (13)
by the following discretisation

o}

M@@@z/ﬁd@@}%@ﬂw

0
=3 [ Ref@)) ul)is oy

n
An

~ 3" Re{Q(wn)} / ()
n=1 An

Energy

-0.05 L 5
10
Frequency (rad/sec)

20
= Z Re{Q(wn)} En

where
Fig. 6. Values ofF for the discretised robust optimal input obtained

0G1 (jw o o [0G{(jw H from criterionmaxg J1.
Q) 2 20U 6 gy 2 [ 2GRN a0p)
00 00
and 0.6
mé/%ww (103) 0sf
A,
0.4F g
is the input energy in the frequency rande,. We have
chosen . 03l ]
A, £ Wn41 — Wn (104) g

0.2t 1
wherew,, = 0.3(10)(»=1/20,
0.1+ b
The discrete approximation to the robust optimal input
was found for each of the criterimaxg J;, maxg Jo and < -
maxy J3. For those criteria depending on a maximum over
a frequency range (i.eaaxy Jo andmaxy J3), we limitedw -0.1
to [0.3, 3] [rad/s]. (This choice was motivated by the region
of possible pole locations.)

10°
Frequency (rad/sec)

Fig. 7. Values ofF for the discretised robust optimal input obtained
from criterionmaxg Jo.

Sample results are shown in Figures 6 to 8. Figure 6 shows
the discretised optimal input energy distribution forexiibn
maxy J1. Notice again that the input has finite support.

Figure 7 shows the discretised optimal input energy for
maxy Jo. We see from Figures 6 and 7 that the optimal input
is roughly the same whether we usexy J; or maxg Jo.

Imag
o
T

Figure 8 shows the discretised optimal input energy distri-
bution formaxy J3.

Finally, Table 2 compares the evaluated cost functions ob-

-12 -1 08  -06  -04 02 0 tained with different design criteria for different inputhe
Real table also shows the values of the corresponding cost func-
tions for bandlimited 1/f" noise and bandlimited white
Fig. 5. Region of pole locations. noise.

15



0.3

Energy

-0.05 L 5
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Fig. 8. Values ofF for the discretised robust optimal input obtained
from criterionmaxg J3.

Table 2
Values of Cost for the Criteria
maxg J1 | maxg Jo | maxg Js
Optimal input formaxg Ji 1 1.73 1.55
Optimal input formaxg J2 1.14 1 1.32
Optimal input formaxg J3 1.78 2.43 1
Bandlimited 1/ f’ noise 2.08 3.13 1.22
Bandlimited white noise 5 8.8 1.93

Our choice of bandlimited!'/ f* noise is motivated by earlier
results in Section 3 where we showed that bandlimitgg™

To further motivate our robust design approach, we also
tried nominal experiment design for this example. Here we
assumed nominal parameter values in the centre of the a
priori region, i.e. we chos@, = 1.5, 6, =5 andfs; = 1.5.

We then found the corresponding exact nominal optimal
input usingJ; as our design criterion. For this input, in
the case where the true parameters take any value in the
a priori region, we found that the range of the cosBis

to 2700. This lies in stark contrast to the range of cost for
the discretised robust optimal input which turns out to be
26 to 400. Thus we see that the discretised robust optimal
input gives almostr00% improvement in the worst case
performance relative to the nominal optimal input. However
this is achieved with a negligible change)%) in the best
case performance. This provides a strong incentive to move
to a robust design criterion since we see from Figure 5 that
the region of possible pole locations is quite realistictfos
example.

6 Conclusion

This paper has described and analysed a min-max approach
to robust optimal experiment design for dynamic system
identification. The paper has also evaluated and compared
several different design criteria. Two illustrative exde®
have been presented, one with a scalar parameter and the
other with multiple parameters, showing that substarial i
provements in the worst case performance are achieved us-
ing a discretised robust design procedure relative to what i
achieved via nominal experiment design procedure. The pa-
per also opens up many potential research issues. For exam-
ple, it is surprising that bandlimited / f’ noise performs so

noise was near optimal for robust experiment design for the well. This suggests that we should not use (near) white in-

illustrative problem.

puts such as PRBS. Instead, it may be valuable to investigate
binary inputs whose energy distribution approximates ban-

The results in Table 2 have been normalised so that thedlimited ‘1/f” noise. Also, the results in Section 5 suggest

optimal design gives a value daf Observations from this
table are:

(1) Bandlimited 1/f’ noise gives much better results in
the multi-parameter case for all criteria than does ban-
dlimited white noise. We believe this to be a surprising
and interesting observation!

(2) Formaxy Ji, the discretised robust optimal input is ap-
proximately twice as good as bandlimitely f’ noise
and aboub times as good as bandlimited white noise.

(3) Formaxy Jo, the discretised optimal input is abou?
times better than the optimal input fataxy J;. The
robust optimal input fomaxy Jo is about3 times as
good as bandlimitedl’/ f’ noise and almost times as
good as bandlimited white noise.

(4) Formaxy J3, the criterion seems to be less sensitive to
the test signal.

(5) We also notice that the discretised optimal inputs for
maxy J; andmaxy Jo are quite similar whilst the dis-
cretised optimal result fanaxy J3 is considerably dif-
ferent.

16

that the problem of linking robust control and experiment
design may still offer many interesting research challenge
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