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Abstract

Motivated by motion compensated filtering in image processing we
consider the problem of sampling and reconstruction of signals with sam-
pling rates below the Nyquist rate. It is assumed that temporal depen-
dence can be induced via motion. This way, the data consists of both
spatial and temporal sampling and we analyze here the conditions for
reconstruction for a number of typical motions. Extensive simulation ex-
periments are also provided which further support the analysis.

1 Introduction
Motivated by the problem of motion compensated filtering in video processing
and super resolution problems (see e.g. [1]), we consider the following problem:
Let I0 (x) be a Wx- band limited signal, namely

bI0 (ωx) = 0 for |ωx| > Wx

2
(1)

where bI0 (ωx) denotes the Fourier transform of I0 (x). Suppose that I0 (x) is
sampled at intervals ∆x where ∆x > 2π

Wx
. It is well known that, in this case,

I0 (x) cannot be reconstructed from the data {I0 (c∆x)}c∈Z. Here we assume
that the signal can be ’moved’ and through this motion a temporal dimension
is added to the problem. This motion can be achieved by moving the sampling
device rather than the sampled signal. As an example one may consider moving
the 1D scanning sensor array in a direction orthogonal to the scanning direction
(a patent application for this application is under review).
By applying this motion we generate a two dimensional signal given by

I (x, t) = I0 (x− f (t)) (2)
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where f (t) represents the motion. Initially, we consider general motion. All
we require is that f (0) = 0. Suppose now the data we generate results from
sampling both in the x direction (with the same sampling interval ∆x as before)
and in the temporal direction with sampling interval ∆t. Hence the data we
have now is {I (c∆x, n∆t)}(c,n)∈Z×Z.
The problem we address in this paper is, under what conditions can one

reconstruct I0 (x) from the data {I (c∆x, n∆t)}(c,n)∈Z×Z. We provide a general
reconstruction formula which is applicable to all cases treated here. As it turns
out, this is basically, a direct application of Papoulis generalized sampling ex-
pansion (GSE). Our main thrust in the current paper is related to the question
of existence and not to the associated question of practical reconstruction. Note
that, since we assume knowledge of f (t), once I0 (x) is reconstructed, I (x, t)
can be reconstructed as well by using (2). The main contribution of this paper
is to provide thorough analysis of a number of specific motions. In each case we
specify the conditions on the motion parameters required to achieve the desired
reconstruction.
Previous work on this problem includes the special case of constant velocity

motion [5] and [4]. Also, some results have been reported on constant accelera-
tion motion in [5] . However, in the latter case, the question of whether or not
reconstruction is actually possible has not been addressed. Here we give nec-
essary and sufficient conditions for reconstruction with general global motion.
Constant velocity and acceleration motions are special cases of our result.
The paper is organized as follows: After presenting, in Section 2, the general

case, we proceed to analyze some specific types of motion in Section 3 - namely,
constant velocity, constant acceleration and two periodic (oscillatory) motions.
Next, in Section 4, we present some simulation results which demonstrate the
validity of our analysis and the feasibility of the proposed reconstruction process.
Section 5 contains some concluding remarks.

2 The General Case
We establish first the result for the general case as posed in the previous section
and then relate the results to some specific types of motions.
Before proceeding, we introduce some notation which will be used in the

sequel (This notation is common in Number Theory, see e.g. [6]). For m,n ∈ Z,
m|n means that m divides into n, gcd (m,n) refers to the greatest common
devisor of m and n. The relationship m ≡ n (modQ), for Q ∈ N, means that
Q| (m− n) and is called congruence relationship. Given Q ∈ N, n denotes the
set of all integers congruent to n and the set {0, 1, ..., Q− 1} is called the set of
least (nonnegative) residues modulo Q and the set

©
0, 1, ..., Q− 1ª is the least

residue system modulo Q.
Let us also denote

N =

»
Wx∆x

2π

¼
(3)
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c =
2π

∆x
(4)

and the mapping F : Z → [0, 1) defined by

F [n] =

»
f (n∆t)

∆x

¼
− f (n∆t)

∆x
(5)

where bac denotes the largest integer smaller than a and dae denotes the smallest
integer larger than a. Then, clearly

0 ≤ ∆xF [n] < ∆x for all n ∈ Z (6)

We next introduce:

Definition 1 Denote by nF the set of integers which result in the same value
under the mapping F (namely, F [n] = F [n1] for all n, n1 ∈ nF ) and let
NF denote the set NF = {nm}Mm=1 such that (nm)F are all disjoint and
MS
m=1

(nm)F = Z. Then, the Resolution Gain Factor (RGF) MF is the num-

ber of elements in NF .

We note that by the definition of f (t) we can always assume that 0 ∈ NF

and arbitrarily choose n1 = 0.
Let

xm = ∆xF [nm] for every nm ∈ NF (7)

We can then state the general result:

Theorem 2 I0 (x) can be reconstructed from the data {I (c∆x, n∆t)}(c,n)∈Z×Z
if and only if

MF ≥ N (8)

The reconstruction formula is:

I0 (x) =
∞X

k=−∞

NX
m=1

I (k∆x, nm∆t)ϕm (x− k∆x)

=
∞X

k=−∞

NX
m=1

I0 (k∆x+ xm)ϕm (x− k∆x) (9)

where xm = ∆xF [nm] , nm ∈ NF ,

ϕm (x) =
1

c

Z − c(N−2)
2

− cN
2

Φm (ωx, x) e
jxωxdωx (10)

and {Φm (ωx, x)}Nm=1 are the solutions of the following set of linear equations
NX

m=1

ej(ωx+rc)xmΦm (ωx, x) = ejrcx for r = 1, ...,N (11)

in which x is arbitrary and ωx ∈
³
− cN

2 ,− c(N−2)
2

´
.
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Proof. : First we note that (8) ensures that (11) can indeed be written with
distinct xm’s. Furthermore, the matrix of coefficients of the equations in (11)
has the form

1 ejωxx2 ejωxx3 · · · ejωxxN−

1 ej(ωx+c)x2 ej(ωx+c)x3 · · · ej(ωx+c)xN

1 ej(ωx+2c)x2 ej(ωx+2c)x3 · · · ej(ωx+2c)xN

...
...

...
. . .

...
1 ej(ωx+Nc)x2 ej(ωx+Nc)x3 · · · ej(ωx+Nc)xN



=


1 1 1 · · · 1
1 ejcx2 ejcx3 · · · ejcxN

1 ej2cx2 ej2cx3 · · · ej2cxN

...
...

...
. . .

...
1 ejNcx2 ejNcx3 · · · ejNcxN

 · diag
©
1, ejωxx2 , ..., ejωxxN

ª

Since 0 ≤ xm 6= xr < ∆x , from (4) we have ejcxm 6= ejcxr . Then, recognizing
that the first matrix is a Vandermonde matrix, this implies that it is nonsingular
and so is the whole coefficient matrix. Hence, (8) ensures the existence of
{Φm (ωx, x)}Nm=1.
Once this is established we have converted the problem to a special case of

a result due to Papoulis (see e.g. [3] or [2]) and (9) follows.
An immediate observation from (9) is that one may not need the whole data

set in order to reconstruct the signal. Furthermore, when we look at the data
available as samples of I0 (x) we note that in fact we have generated a periodic
(or recurrent) sampling pattern withMF irregularly spaced (in general) samples
in each period. As the above theorem states, in order to be able to reconstruct
I0 (x) we need to make sure that f (t) and ∆t are such that (8) is satisfied. From
an implementation point of view, if MF > N , one would, all else being equal,
want to choose the subset of N values {xm} which are closest to being uniformly
spaced in the interval [0,∆x) as this will result in the best conditioned matrix
of coefficients in (11).

Remark 3 The reconstruction functions ϕm (x− k∆x) in (9) can be viewed as
impulse responses of reconstruction filters. This approach has been described
in [8] where these same functions have been derived in a somewhat different
way. However, the conditions for their existence, and hence, the conditions for
reconstruction, are the same. These conditions are our main interest in this
paper.

Next, we investigate some special cases.

3 Special Cases
In this section we look at motions with constant velocity or constant acceleration
which have been considered elsewhere in the literature. We also look at periodic
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motions, which we feel are of practical interest. For each motion we determine
the conditions on the motion parameters in relation to the sampling rates∆x,∆t
so that (8) is satisfied.

3.1 Motion with constant velocity

Consider the case
f (t) = V t (12)

Then, clearly, if F [n1] = F [n2] for some n1 < n2 we must have

V∆t

∆x
=

m

n2 − n1

for some integer m. Hence, if V∆t
∆x is an irrational number, F [n1] 6= F [n2] for

any n1 6= n2, which means that NF = Z. Hence, MF =∞ and reconstruction
(at least theoretically) is possible for any bandwidth signal.
Let us assume now that V∆t

∆x is a rational number. Then we make the claim:

Claim 4 Let V∆t
∆x = R

Q such that gcd (R,Q) = 1. Then

MF = Q (13)

Proof. : As we already observed, F [n2] = F [n1] iff

m

n2 − n1
=

V∆t

∆x
=

R

Q
(14)

Since R and Q are coprime integers this will hold iff Q| (n2 − n1) (namely, Q
divides n2 − n1). Or

F [n2] = F [n1]⇔ n2 ≡ n1 (modQ) (15)

This means that NF is the set of least residues (as mentioned earlier), namely,
is equal to {0, 1, ..., Q− 1} which completes the proof.
Remark 5 This type of motion has been extensively considered in the literature
and the reconstruction methods presented, typically use filters which are referred
to as ’Motion Compensated Filters’ (see e.g. [5]). The corresponding recon-
struction formulae make use of the whole data set hence, they are not unique.
Indeed, there is some freedom in the choice of these reconstruction filters. It can
be shown that there exists a choice of filter which results in exactly the formula
given by (9). However, in most of the existing literature, while recognizing that
there are some ’critical velocities’ for which reconstruction is not possible, no
conditions have been presented. As far as we know, these type of reconstruction
conditions appeared first in [4] for the constant velocity case only.
Using our terminology here, the condition given in [4] is

min
0<n≤bWx∆x

2π c
F [n] > 0 (16)

and can readily be shown to be equivalent to (13).
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3.2 Motion with constant acceleration.

The study of this case is motivated, again, by related work in video processing
(see e.g. [5] and [1]). In these references the authors show that frequency domain
insights are not helpful here and propose to use short time Fourier transforms
for the reconstruction. However, the question whether reconstruction is possible
at all, has not been addressed.
We have here

f (t) = at2 (17)

where a is constant and, without loss of generality, we assume it is positive.
Then,

F [n] =

&
a (∆t)2

∆x
n2

'
− a (∆t)2

∆x
n2 (18)

and we observe again, that if a(∆t)
2

∆x is irrational F [n1] 6= F [n2] whenever n1 6=
n2 , which in turn means thatMF =∞ (recall thatMF is the count of elements

in NF ). Let us then consider the case when
a(∆t)2

∆x = R
Q is a rational number

(gcd (Q ,R) = 1). We can readily show that F [n1] = F [n2] for any integer
value R if and only if it is true for R = 1, so from here on, without loss of
generality, we will assume a(∆t)2

∆x = 1
Q .

We make the following claim:

Claim 6 Let a(∆t)2

∆x = 1
Q , Q > 0 be a given integer. Its unique factorization

(see e.g. [6]) is given by

Q = 2mo

IY
i=1

pmi
i (19)

where pi > 2 are distinct prime numbers mo ≥ 0 and mi > 0, . Then

MF =M0

IY
i=1

µµ
pi − 1
2

¶µ
pmi−1 +

¹
mi − 1
2

º¶
+ 1

¶
(20)

where

M0 =


1 formo = 0
4+2mo−1

3 for mo even
5+2mo−1

3 for mo odd

(21)

Proof. : (See Appendix A).
As an illustration, say Q = 360 = 23325, using the above formula, the RGF is

MF = 36. We recall that this result means that if
a(∆t)2

∆x = R
360 (R any natural

number coprime with 360) we could use the data generated to reconstruct a
signal of bandwidth up to 36 2π∆x .
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Figure 1: Periodic Motion - Case 1 (T=20).

3.3 Periodic Motion

Perhaps the most interesting type of motion to consider for practical applications
is different types of periodic motion where we assume that there exists a T > 0
for which f (t+ T ) = f (t). As is well known, sampling a periodic function does
not necessarily result in a periodic sequence unless ∆tT = R

Q - a rational number.
Obviously, in this case, f ((n+Q)∆t) = f (n∆t) and if the resulting period Q,
is less than N , reconstruction will be impossible. Hence, ∆tT irrational or Q ≥ N
is a necessary condition for reconstruction in this case. To generate necessary
and sufficient conditions we need to consider more specific possible choices for
the periodic function f (t).

Case 7 f (t) = V
¡§

t
T

¨− t
T

¢
(See Figure 1).

For this motion we obtain

F [n] =

&
V
¡§
∆t
T n
¨− ∆tT n

¢
∆x

'
− V

¡§
∆t
T n
¨− ∆tT n

¢
∆x

(22)

We can then prove the following claim:

Claim 8 Let ∆tT = R1

Q1
and V

∆x =
R2

Q2
with gcd (Qi, Ri) = 1, i = 1, 2, and let

g = gcd (Q1, R2). Then the RGF is given by

MF = min

µ
Q1,

Q1Q2
g

¶
(23)
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Figure 2: Periodic Motion - Case 2 (T=20).

Proof. : Define

F1 [n] =

»
R1
Q1

n

¼
− R1

Q1
n (24)

then 0 ≤ mn = Q1F1 [n] < Q1 are integers and since, F1 [n1] = F1 [n2] ⇔
R1n1 ≡ R1n2 (modQ1)⇔ n1 ≡ n2 (modQ1) , we have a one to one correspon-
dence between the sets{0, 1, ..., Q1 − 1} and {m0,m1, ...,mQ1−1}. Furthermore,
for any n1, n2 ∈ {0, 1, ..., Q1 − 1}, n1 ≡ n2 (modQ1)⇒ n1 = n2.
We can now rewrite F [n] as

F [n] =

»
R2

Q1Q2
Q1F1 [n]

¼
− R2

Q1Q2
Q1F1 [n]

=

&
R2

g

Q1Q2

g

mn

'
−

R2

g

Q1Q2

g

mn

where, by definition, gcd
³
Q1Q2

g , R2

g

´
= 1. Hence, F [n1] = F [n2] ⇔ mn1 ≡

mn2

³
mod Q1Q2

g

´
⇒ the set of n ∈ {0, 1, ..., Q1 − 1} for which F [n1] 6= F [n2]

(namely, the setNF ) is given by {0, 1, ...,Q1 − 1}∩
n
n : 0 ≤ mn < Q1Q2

g − 1
o
⇒

MF = min
³
Q1,

Q1Q2

g

´
as claimed.

It can be observed from this claim that, if ∆tT = R1

Q1
while V

∆x is irrational

MF = Q1. On the other hand, if ∆tT is irrational MF =∞ no matter what V
∆x

is.

Case 9 f(t) = V
¯̄§

t
T − 1

2

¨− t
T

¯̄
(See Figure 2).
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Here

F [n] =

&
V
¯̄§
∆t
T n− 1

2

¨− ∆tT n
¯̄

∆x

'
− V

¯̄§
∆t
T n− 1

2

¨− ∆tT n
¯̄

∆x
(25)

For this case, we prove the following claim:

Claim 10 Let ∆tT = R1

Q1
and V

∆x =
R2

Q2
with gcd (Qi, Ri) = 1, i = 1, 2, and let

g = gcd (Q1, R2). Then the RGF is given by

MF = min

µ¹
Q1
2

º
+ 1,

Q1Q2
g

¶
(26)

Proof. : The proof is quite similar to the proof of Claim 3. Define

F1 [n] =

¯̄̄̄»
R1
Q1

n− 1
2

¼
− R1

Q1
n

¯̄̄̄
(27)

then 0 ≤ mn = Q1F1 [n] ≤
j
Q1

2

k
are integers and since, F1 [n1] = F1 [n2]

⇔ R1n1 ≡ R1n2 (modQ1) or R1n1 ≡ −R1n2 (modQ1) ⇔ n1 ≡ n2 (modQ1)
or n1 ≡ −n2 (modQ1), we have a one to one correspondence between the
sets

n
0, 1, ...,

j
Q1

2

ko
and

n
m0,m1, ...,mbQ12 c

o
. Furthermore, for any n1, n2 ∈n

0, 1, ...,
j
Q1

2

ko
, n1 ≡ n2 (modQ1) or n1 ≡ −n2 (modQ1)⇒ n1 = n2.

We can now rewrite F [n] as

F [n] =

»
R2

Q1Q2
Q1F1 [n]

¼
− R2

Q1Q2
Q1F1 [n]

=

&
R2

g

Q1Q2

g

mn

'
−

R2

g

Q1Q2

g

mn

where, by definition, gcd
³
Q1Q2

g , R2

g

´
= 1. Hence, F [n1] = F [n2] ⇔ mn1 ≡

mn2

³
mod Q1Q2

g

´
⇒ the set of n ∈

n
0, 1, ...,

j
Q1

2

ko
for which F [n1] 6= F [n2]

(namely, the set NF ) is given by
n
0, 1, ...,

j
Q1

2

ko
∩
n
n : 0 ≤ mn < Q1Q2

g − 1
o
⇒

MF = min
³j

Q1

2

k
+ 1, Q1Q2

g

´
as claimed.

Here too, it can be observed from the claim above that, if ∆tT = R1

Q1
while V

∆x

is irrational, MF =
j
Q1

2

k
+ 1. On the other hand, if ∆tT is irrational, MF =∞

no matter what V
∆x 6= 0 is.
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Figure 3: The original signal Io (x) and its reconstructed version from the un-
dersampled data.

4 Simulation results
To illustrate the analysis we have applied the above mentioned motion aided
sampling to the following signal

Io (x) =
4X

i=1

sin (2πfix) (28)

where f1 = 2.1, f2 = 2.36, f3 = 2.56, f4 = 2.7. This is clearly a bandlimited
signal with bandwidth Wx = 4πf4 = 10.8π. Suppose that we are constrained
to sample this signal at ∆x = 1. This clearly represents undersampling (since,
the Nyquist sampling interval is 2π

Wx
= 10

54). In Figure 3 we see a section of the
original signal and its reconstruction from the undersampled data using lowpass
filter of bandwidth Wx - we observe that, in this case, the aliasing is quite
distinct.
We next introduce motion and experiment with the various types of motions

described above. In each case, we sample in time at∆t = 1 and then reconstruct
the signal from the sampled data. The reconstruction is done in two stages.
First, we convert the continuous filters of eqn. (10) into discrete filters using
the result in [9]. This results in a uniformly sampled version of the signal at
intervals ∆ex = 0.1 (which is considerably higher than the Nyquist rate of the
signal). Then, using a lowpass filter on this uniformly sampled signal the original
signal is reconstructed.
For each experiment we evaluate the Signal to Distortion Ratio (SDR) de-

fined by

SDR =

R
[Io (x)]

2 dxR
[Io (x)− Irec (x)]

2
dx

(29)
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The results are summarized in Table 1. In this table, for each experiment, we
enter the type of motion used, the motion parameters, the RGF (in all cases
the actual RGF was identical to the one calculated using our analysis) as well
as the resulting SDR.

Motion Type V a T RGF Uniformity Ratio SDR (dB)

Const. velocity 1/6 6 1 603
5/6 6 1 628
7/6 6 1 628

Const. acceler. 1/36 8 9 113
1/22 12 4 112
1/40 9 11 95
1/20 6 7 84

Periodic 1 1/6 10/13 10 51 104
5/6 10/13 10 3 131
7/6 10/13 10 2.3 94
1/6 6/13 6 31 62
5/6 6/13 6 2.2 95
7/6 6/13 6 7 75
1/6 6/7 6 31 62

Periodic 2 7/6 6/13 4 - -
7/6 8/13 5 - -
7/6 9/13 5 - -
1/6 10/13 6 55 61
5/6 10/13 6 7 72
7/6 10/13 6 3.5 84
Table 1: Summary of experiment results.

We have stated earlier in the paper that, intuitively, the closer the resulting
additional samples are to uniform sampling the more robust the reconstruction
should be. To illustrate this claim, for each experiment we have calculated a
measure of this ’uniformity’ by taking the ratio of the maximal and minimal
distances between adjacent sampling points.
To test the sensitivity we have also carried further experiments on the two

periodic motions above. We have introduced errors in the motion parameters
and used the resulting SDR as a measure of performance. From our extensive
experiments we make the following observations:

1. The reconstruction is more sensitive to errors in the period T than to
errors in the velocity V .

2. Periodic motion Type 1 is more robust than Type 2.

3. For identical errors, in both motions, the robustness increases as one de-
creases of the Uniformity Ratio (as was predicted above).

In Figure 4 we present a sample of the results. For this experiment we obtain
Uniformity Ratio=3 and SDR=35.
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Figure 4: Comarison of original and reconstructed signal for periodic motion
type 1, with V = 5/6, T = 10/13 and error in the T .

5 Conclusion
We have addressed the problem of using motion as a temporal enhancement
for spatial sampling rates. While a number of algorithms for reconstruction of
signals from their combined spatial and temporal samples have been previously
described in the literature, most current results do not address the question
’when is this reconstruction possible?’. In this paper we analyze a number of typ-
ical motions, each with its own parameters, and derive necessary and sufficient
conditions which guarantee, in each case, the feasibility of signal reconstruc-
tion. To demonstrate the validity of our analysis we have carried out extensive
simulations. The paper has given a representative set of these results. In the
experiments we have also tested the sensitivity of the reconstruction to errors
in the motion parameter measurements. We have observed that, in the case of
periodic motions, the reconstruction is quite robust to errors in the velocity and
considerably more sensitive to errors in the period.
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The proof of Claim 2

Proof. To prove Claim 2 we first define a set of integers eN
eN =

n
0 ≤ enj < Q : (nj)

2 ≡ enj (modQ) , nj ∈ NF

o
(30)

Note that, from Definition 1 of NF , we can readily see that for every n ∈ Z,
(n)

2 is congruent modulo Q to exactly one element in eN . This set is commonly
referred to as the set of (least ,nonnegative) quadratic residues (see e.g. [7]).
Furthermore, since by definition, for any nj , nk ∈ NF , j 6= k, (nj)

2 and (nk)
2are

not congruent modulo Q, we have enj 6= enk. Hence, there is a one-to-one
correspondence between NF and eN (namely, the two sets have the same number
of elements,MF ). Next we need to prove the following three preliminary results:

Claim 11 Let Q1, Q2, Q ∈ N , fN1,fN2, eN the corresponding sets of quadratic
residues and M1,F ,M2,F ,MF the respective element counts of these sets. Then,
if Q1, Q2 are (positive) coprime and Q = Q1Q2 we obtain

MF =M1,F ·M2,F (31)
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Proof. Let en1j ∈ fN1 and en2k ∈ fN2. Consider the following system of congru-
ences:

(x)2 ≡ en1j (modQ1)
(x)

2 ≡ en2k (modQ2) (32)

Then, by the Chinese Remainder Theorem (see e.g. [6] or [7]) and (30) we know
that this system always has solutions and the squares of any two solutions differ
by a multiple of Q. Define enj,k as

enj,k = min
r∈Z

n
(x)

2 − rQ ≥ 0
o

(33)

then 0 ≤ enj,k < Q and, since en1j is not congruent to any other element of fN1
neither is en2k to any other element of fN2, enj,k 6= enc,m whenever (j, k) 6= (c,m).
Hence, the set {enj,k : 0 ≤ j < M1,F , 0 ≤ k < M2,F } contains exactlyM1,F ·M2,F

elements. Next we show thateN = {enj,k : 0 ≤ j < M1,F , 0 ≤ k < M2,F } (34)

From (32) and (33) we have 0 ≤ enj,k < Q and (x)2 ≡ enj,k (modQ) soenj,k ∈ eN ⇒ eN ⊆ {enj,k : 0 ≤ j < M1,F , 0 ≤ k < M2,F }.
Let enr ∈ eN . Hence, there exists n ∈ Z such that (n)2 ≡ enr (modQ). On

the other hand, by definition of fN1 and fN2, there exist en1c ∈ fN1 and en2m ∈ fN2
such that

(n)
2 ≡ en1c (modQ1)
≡ en2m (modQ2)

Hence, for the corresponding enc,mwe have (n)2 ≡ enc,m (modQ) ≡ enr (modQ)
and since 0 ≤ enr, enc,m < Qwe must have enr = enc,m. Hence, eN ⊇ {enj,k : 0 ≤ j < M1,F , 0 ≤ k < M2,F },
which establishes (34). This completes the proof.

Claim 12 Let Q = 2mo .Then

Mo (=MF ) =


1 formo = 0
4+2mo−1

3 formo even
5+2mo−1

3 formo odd

(35)

Proof. Considering the congruence relationship x2 ≡ eni (modQ) we use a
result in [6] which states that for odd ni an x satisfying the the congruence
relationship exists iff eni ≡ 1 (mod g) where g is the greatest common devisor of
Q = 2mo and 8. This means that for the set {1, 3, ..., 2mo − 1} the number of
integers for which an x exists is given by

1 for mo = 1, 2

2mo−3 for mo ≥ 3 (36)

14



Next we observe that we can write

{0, 1, ..., 2mo − 1} = {0}
mo[
r=1

2mo−r {1, 3, ..., 2r − 1} (37)

and that only the sets where mo − r is even contain elements for which an x
exists. Hence we consider separately odd and even mo. For mo odd only the
sets with odd r (= 2ro + 1) are counted and we get (note that {0} counts for 1)

Mo = 2 +

mo−1
2X

ro=1

2(2ro+1)−3

= 2 +
2mo−1 − 1

3

=
2mo−1 + 5

3

For mo even only the sets with even r (= 2ro) are counted and we get

Mo = 2 +

mo
2X

ro=2

22ro−3

= 2 + 2
2mo−2 − 1

3

=
2mo−1 + 4

3

which completes the proof.

Claim 13 Let Q = pm where p > 2 is prime. Then

MF = 1 +
p− 1
2

µ¹
m− 1
2

º
+ pm−1

¶
Proof. We consider the set {0, 1, ..., pm − 1} and want to find for how many
of its elements eni, the congruence x2 ≡ eni (modQ) has solutions. Since we can
write

{0, 1, ..., pm − 1} = ©0, p, 2p, ..., p2, ..., pm − p
ª[ {1, 2, ..., p− 1, p+ 1, ..., pm − 1}

where one set contains all the elements which are devisable by p, there are pm−1

of them, and the second are the remaining elements, pm−1 (p− 1) of them. Or

{0, 1, ..., pm − 1} = {0}
m−1[
r=1

pr {1, 2, .., p− 1}
pm−1−1[
k=0

{kp+ 1, ..., kp+ p− 1}

As stated earlier, whether an element 0 ≤ en < pm belongs to eN is equivalent
to whether the congruence x2 ≡ en (mod pm) has a solution. From a result in
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[7] we have that if p does not divide into en the above congruence has a solu-
tion iff the congruence x2 ≡ en (mod p) has a solution. Furthermore, in the set
{1, 2, ..., p− 1} there are exactly p−1

2 elements for which the above congruence
has a solution. Noting also that x2 ≡ (enpr) (mod pm) can have a solution iff
r is even and if the congruence x2 ≡ en (mod pm−r) has a solution and that
kp+ en ≡ en (mod p) we can conclude that (including the element 0 for which the
congruence has a trivial solution)

MF = 1 +

¹
m− 1
2

º
p− 1
2

+ pm−1
p− 1
2

= 1 +
p− 1
2

µ¹
m− 1
2

º
+ pm−1

¶
which completes the proof.
The proof of Claim 2 then consists of recalling the factorization of a general

Q as given in (19) and applying the three claims above.
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