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Abstract

It has been known for some time that temporal dependence (motion) plays a key role in the

super-resolution (SR) reconstruction of a single frame (or sequence of frames). While the im-

pact of global time-invariant translations is relatively well known, the general motion case has

not been studied in detail. In this paper, we discuss SR reconstruction for both motion models

from a frequency-domain point of view. A noniterative algorithm for SR reconstruction is pre-

sented using spatio-temporal filtering. The concepts of motion-compensated windows and sinc

interpolation kernels are utilized, resulting in a finite impulse response (FIR) filter realization.

In the simulations, we assume a priori knowledge of the motion (optical flow), which is com-

monly done throughout much of the SR reconstruction literature. The proposed process is lo-

calized in nature, and this enables the selective reconstruction of desired parts of a particular

frame or sequence of frames.

� 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

The problem of super-resolution reconstruction in image processing has been of

much interest among researchers and practitioners for some time (see e.g., Bose

et al., 1993; Hardie et al., 1997; Huang and Tsai, 1984; Irani and Peleg, 1993;

Kim et al., 1990; Patti et al., 1994, 1995, 1997; Schultz and Stevenson, 1994; Tekalp,
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1995; Tekalp et al., 1992 and others). Recently, an in depth survey and discussion on

this problem was published by Baker and Kanade, 2002.

Roughly speaking, this problem can be stated as follows:

Given a number of low resolution frames of the same scene, construct a single frame

of improved resolution.

This can be generalized to a sequence of frames as well (Elad and Feuer, 1999a,b)

such as a video clip.

In most published results the problem is formulated as an estimation problem and

using different optimality criteria and different a priori information, an assortment of

algorithms are suggested. In a number of cases this resulted in algorithms which were

computationally infeasible and simplifications were proposed to ease the computa-

tional load while attempting to minimize the performance degradation (see Elad

and Feuer, 1997, 1999a; Peleg et al., 1987). The problem as stated, can be viewed
as an inverse problem and, in the tradition to many such problems, when the trans-

formation to be inverted is singular or ill conditioned, various regularizations are

proposed. As a result, a solution is always generated. However, the question of

whether one generates a truly higher-resolution image which contains more true in-

formation or just a better looking image, has hardly been addressed. The answer to

this question can be traced to the question of aliasing in the sampling process asso-

ciated with the data image generation. Our focus here is on this aspect only of the

data image generation process.
Basically, the assumption behind the statement of the problem is that the se-

quence of data frames contains information which is not present in a single data

frame. In other words, when each sampled frame is viewed individually, aliasing

has occurred. While, when viewing the whole sequence no aliasing has occurred

(or, alternatively, the degree of aliasing is significantly smaller).

To formalize this we introduce the following notation. Let Iðx; y; tÞ denote the

intensity at point ðx; yÞ on the image plane at time t. We restrict our discussion here

to monochromatic images. This 2Dþ T function (we use this terminology to distin-
guish between 2D, the spatial dimensions and T , the time dimension) will be re-

ferred to as ‘‘image’’ while, when viewed at a fixed time, it will be referred to as

‘‘frame.’’

The dependence on time can result from either motion or temporal changes in the

data generation process (or both). We discuss here only motion related time depen-

dence. In fact, we assume that the perceived motion, or, as commonly referred to in

the literature, the optical flow, has been estimated by some preprocessing of the data.

Namely, using the optical flow constraint equation
oIðx; y; tÞ
ox

dx
dt

þ oIðx; y; tÞ
oy

dy
dt

þ oIðx; y; tÞ
ot

¼ 0; ð1Þ
where
dx
dt

¼ Vxðx; y; tÞ;
dy
dt

¼ Vyðx; y; tÞ ð2Þ
are the known optical flow components.
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The data available are given by
Fig. 1

frame
Idðx; y; tÞ ¼ Iðx; y; tÞsðx; y; tÞ; ð3Þ

where
sðx; y; tÞ ¼
X
l

X
m

X
n

dðx� lDx; y � mDy; t � nDtÞ ð4Þ
defines the sampling lattice (separable rectangular in our case), Dx, Dy, and Dt are the
sampling intervals in the respective directions.

Since the aliasing phenomenon is clearly observed in the frequency domain,much of

our discussion will be in that domain. Let us first restate the relationship between the

image Iðx; y; tÞ and any of its frames, say I0ðx; yÞ ¼ Iðx; y; 0Þ. With bII ðxx;xy ;xtÞ andbII0ðxx;xyÞ the Fourier Transform (FT) of Iðx; y; tÞ and I0ðx; yÞ, respectively, we have
bII0ðxx;xyÞ ¼
1

2p

Z 1

�1
bII ðxx;xy ; gÞdg: ð5Þ
Namely, the support of bII0ðxx;xyÞ is the projection of the support of bII ðxx;xy ;xtÞ on
the ðxx;xyÞ plane. Hence, one can readily imagine a situation where, when sampled
at ðDx;Dy;DtÞ, bII ðxx;xy ;xtÞ has no aliasing, while, the single frame, bII0ðxx;xyÞ, when
sampled at ðDx;DyÞ has aliasing. This is demonstrated in Fig. 1.

In Section 2 we discuss the case where the motion in the image is spatio-temporal

invariant. This motivates the discussion in Section 3 dealing with general motion

and leading to the super-resolution (SR) reconstruction process we propose. The

process is demonstrated in Section 4 and some concluding comments are provided

in Section 5.
. Supports of samples 2Dþ T image FT and their relations to the supports of a sampled single

FT.
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2. Spatio-temporal invariant motion

Let us consider first the case where the motion is spatio-temporal invariant.

Namely,
1 T

fð‘ð2p
Vxðx; y; tÞ ¼ Vx; Vyðx; y; tÞ ¼ Vy : ð6Þ

This case has been discussed in the literature. It is well known that in this case (using

(1) and (2)) we have
Iðx; y; tÞ ¼ Iðx� Vxt; y � Vyt; 0Þ
¼ I0ðx� Vxt; y � VytÞ

ð7Þ
and
 bII ðxx;xy ;xtÞ ¼ bII0ðxx;xyÞdðxxVx þ xyVy þ xtÞ: ð8Þ

Clearly, in this case, the energy of bII ðxx;xy ;xtÞ is restricted to the plane

xxVx þ xyVy þ xt ¼ 0 (which we refer to as the main plane).

Using (3) and (4) we get then
bIIdðxx;xy ;xtÞ ¼
X
‘

X
m

X
n

bII xx

�
� ‘

2p
Dx

;xy � m
2p
Dy

;xt � n
2p
Dt

�
¼

X
‘

X
m

X
n

bII0 xx

�
� ‘

2p
Dx

;xy � m
2p
Dy

�
d xx

��
� ‘

2p
Dx

�
Vx

þ xy

�
� m

2p
Dy

�
Vy þ xt

�
� n

2p
Dt

��
: ð9Þ
Namely, the sampled data energy is restricted to the main plane and its shifted

versions. Clearly, as long as the main plane contains no elements of the reciprocal

lattice (see e.g., Dubois, 1985)1 other thanð0; 0; 0Þ we are guaranteed not to have

aliasing (even if I0ðx; yÞ is not band limited). That is, iff
‘
2p
Dx

Vx þ m
2p
Dy

Vy þ n
2p
Dt

6¼ 0 8ð‘;m; nÞ 6¼ ð0; 0; 0Þ: ð10Þ
To further investigate this condition let us denote
eVVx ¼
Dt
Dx

Vx; eVVy ¼
Dt
Dy

Vy ð11Þ
which are the velocities (or, rather, the optical flow) expressed in the units (pixels/
frame). Then (10) can be rewritten as
‘eVVx þ meVVy þ n 6¼ 0 8ð‘;m; nÞ 6¼ ð0; 0; 0Þ:

Or, equivalently,
he sampling lattice here is fð‘Dx;mDy; nDtÞ : ‘;m; n 2 Zg and the reciprocal lattice is then

=DxÞ;mð2p=DyÞ; nð2p=DtÞ : ‘;m; n 2 ZÞg.
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‘eVVx þ meVVy 6¼ ‘eVVx

h
þ meVVy

i
8ð‘;mÞ 6¼ ð0; 0Þ; ð12Þ
where ½a� ¼ roundðaÞ (the closest integer to a 2 R).

Observing (12) we note that if either eVVx or eVVy or eVVx=eVVy are rational numbers (12)

does not hold. This means that, for I0ðx; yÞ which is not band limited, aliasing is un-
avoidable. When I0ðx; yÞ is band limited, say that
bII0ðxx;xyÞ ¼ 0 for all ðxx;xyÞ such that jxxj >
Wx

2
; or jxy j >

Wy

2

(12) can be relaxed to
‘eVVx þ meVVy 6¼ ‘eVVx

h
þ meVVy

i
; ð13Þ

8ð‘;mÞ 6¼ ð0; 0Þ such that j‘j6 WxDx
2p

and jmj6 WyDy
2p

: ð14Þ
Velocities for which (13) does not hold are referred to in the literature as �critical
velocities� (see Tekalp, 1995).

Another constructive way of stating (14) is through defining
b ¼ min
ð‘;mÞ6¼ð0;0Þ

j‘j6WxDx
2p and jmj6 WyDy

2p

‘eVVx

��� þ meVVy � ‘eVVx

h
þ meVVy

i���: ð15Þ
Then, (13) is equivalent to the requirement b > 0. (Note that we have postulated that

there is aliasing in a single frame, namely, we have both ð2p=DxÞ < Wx and

ð2p=DyÞ < Wy—otherwise there is no need of SR reconstruction).
The significance of b will be further discussed later. It is however clear, that it

provides a measure of how far one is from aliasing in the ideal case discussed

here. Hence, the larger b is the more robust the assumption of ideal case.

Namely, when, as a result of finite image size, the energy of image Fourier Trans-

form (FT) is not restricted to a plane anymore, the size of b is an indication of

what combinations of data size, sampling intervals and velocities will avoid alias-

ing. Clearly, from (15) there are velocities which are preferable as far as aliasing

and SR reconstruction is concerned. It can readily be shown that b ¼ 0 for the
critical velocities mentioned in (Tekalp, 1995), in which case reconstruction is im-

possible.

Furthermore, we observe that the pair ð‘;mÞ leading to b identify the closest rel-

evant shifted plane. Hence, ð2p=DtÞb is the distance between the closest relevant

shifted plane and the main plane. This leads to the following possible reconstruction

procedure.

Assuming that b > 0 the original image can be reconstructed by passing the data

through the filter defined by its frequency response
bhhðxx;xy ;xtÞ ¼ rectWxðxxÞrectWy ðxyÞrectWt ðxxVx þ xyVy þ xtÞ; ð16Þ
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where �

rectaðxÞ ¼

1 for jxj6 a
2
;

0 otherwise;
ð17Þ
and, using our observation earlier, we allow half the minimal distance around the

main plane. Namely, we choose,
Wt ¼
2p
Dt

b: ð18Þ
The result will then be (see (9))
bIIestðxx;xy ;xtÞ ¼ bhhðxx;xy ;xtÞbIIdðxx;xy ;xtÞ
¼ bII0ðxx;xyÞdðxxVx þ xyVy þ xtÞ
¼ bII ðxx;xy ;xtÞ:
Namely, we have achieved perfect reconstruction. This type of filter is referred to in

the literature as �motion compensated filter� (see Tekalp, 1995).

The dependence of b on Wx, Wy , eVVx and eVVy (as presented in Eq. (15)) is quite
intriguing. One could ask, for given Dx , Dy , Dt , Wx and Wy , what is the largest

b possible. Namely, pose the following problem: Find
b� ¼ maxeVVx;eVVy min
ð‘;mÞ6¼ð0;0Þ

j‘j6 WxDx
2p and jmj6 WyDy

2p

‘eVVx

��� þ meVVy � ‘eVVx

h
þ meVVy

i���: ð19Þ
The solution is given in the following proposition.

Proposition 1. With b� as defined in (19) we have
b� ¼ 1

ðLþ 1ÞðM þ 1Þ ; ð20Þ
where L ¼ fixððWxDxÞ=2pÞ and M ¼ fixððWyDyÞ=2pÞ. (By fixðaÞ we mean, round real a
to the nearest integer towards the origin.) This maximum is achieved with
eVV �
x ¼ b� ¼ 1

ðLþ 1ÞðM þ 1Þ ;
eVV �
y ¼ 1

M þ 1
(eVV �
x and eVV �

y are not necessarily unique).

Proof. (The proof of this proposition appears in the appendix.) �

Note that, since we assumed that both Wx > ð2p=DxÞ and Wy > ð2p=DyÞ, Proposi-
tion 1 implies that b < 0:25.
3. General motion

In this section we let the motion (as reflected by the optical flow) be general but

assume it is known and has some continuity properties to be specified in the sequel.
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Our approach to this general case is motivated by the discussion in the previous

section. It is described in Fig. 2.

From Fig. 2 we have
I0estðx; y; tÞ ¼ h0ðx; y; tÞ � � � w0ðx; y; tÞsðx; y; tÞIðx; y; tÞ
� �

¼ h0ðx; y; tÞ � � � I0d ðx; y; tÞ;
ð21Þ
where
I0d ðx; y; tÞ ¼ w0ðx; y; tÞIdðx; y; tÞ
¼ w0ðx; y; tÞsðx; y; tÞIðx; y; tÞ

ð22Þ
and � � � denoted the 2Dþ T convolution. Defining
I0ðx; y; tÞ ¼ w0ðx; y; tÞIðx; y; tÞ; ð23Þ

we can rewrite the above as
I0d ðx; y; tÞ ¼ sðx; y; tÞI0ðx; y; tÞ: ð24Þ

By doing this the process described in Fig. 2 can be viewed as consisting of two parts

(see Fig. 3): (1) Windowing the image and reconstructing the original image from its

windowed versions and (2) sampling the windowed images and reconstructing the

sampled windowed images from their sampled data.

This observation helps us in the choice of the windows and filters to be used and is
discussed next.
Fig. 2. General super-resolution reconstruction.

Fig. 3. Super-resolution reconstruction as a two part process.
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3.1. Motion compensated windowing

Consider a window wðx; y; tÞ symmetric around the origin, with wð0; 0; 0Þ ¼ 1 and

wðx; y; tÞ � 0 outside a finite support X which contains the origin. Then we can write
Iðx; y; tÞ ¼
Z 1Z

�1

Z
I0ðx; y; tÞdðx� x0; y � y0; t � t0Þdx0 dy0 dt0; ð25Þ
where
I0ðx; y; tÞ ¼ wðx� x0; y � y0; t � t0ÞIðx; y; tÞ: ð26Þ

Namely, if for every ðx0; y0; t0Þ we have the windowed image I0ðx; y; tÞ, Iðx; y; tÞ can be

reconstructed.

Our purpose in introducing windowed images is to create a friendlier environment

from a sampling and reconstruction point of view. Motivated by the results of the
previous section we would like to have
I0ðx; y; tÞ � wðx� x0; y � y0; t � t0ÞI0ðx� V 0
x t; y � V 0

y tÞ ð27Þ
in which case I0ðx0 � V 0
x t0; y0 � V 0

y t0Þ � Iðx0; y0; t0Þ.
Observing the optical flow constraint Eq. (1), we note that (27) will follow from

(26) if we have
wðx� x0; y � y0; t � t0Þ
Vxðx; y; tÞ
Vyðx; y; tÞ

� �
� wðx� x0; y � y0; t � t0Þ

Vxðx0; y0; t0Þ
Vyðx0; y0; t0Þ

� �
ð28Þ
and take V 0
x ¼ Vxðx0; y0; t0Þ; V 0

y ¼ Vyðx0; y0; t0Þ so that (28) holds exactly at

ðx; y; tÞ ¼ ðx0; y0; t0Þ:
Assuming sufficiently smooth optical flow and small enough support of wðx; y; tÞ

the approximation (27) holds. Namely, a small support, X, of wðx; y; tÞ is a desired
property of the window.

The RHS of the approximation in (27) contains I0ðx� V 0
x t; y � V 0

y tÞ for which we

have shown that its energy in the frequency domain is restricted to the plane
xxV 0

x þ xyV 0
y þ xt ¼ 0. However, as we well know, the window multiplying it will

cause the FT energy to disperse away from the plane (since bI0I0 ¼ bww � � � bII0). The lar-
ger the support of bww the further away from the plane the energy dispersion. This dis-

persion clearly increases the danger of aliasing in the sampled data of I0. Hence, a
small support of bwwðxx;xy ;xtÞ is a desired property of the window.

Recalling Heisenberg�s Uncertainty Principle we realize that the (practical) sup-

ports of both w and bww cannot be decreased simultaneously. To guarantee as little

aliasing in I0d as possible we choose first the support of bww and the support of w is
then determined. To improve the approximation for the resulting support of w we

use motion compensated windowing. Namely, for every point ðx0; y0; t0Þ we use the

window
w0ðx� x0; y � y0; t � t0Þ ¼ wðx� x0 � V 0
x ðt � t0Þ; y � y0 � V 0

y ðt � t0Þ; t � t0Þ:
ð29Þ
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To demonstrate the benefit from using motion compensated windowing let us

consider a Gaussian window:
wðx; y; tÞ ¼ e�ð1=2Þðx2=r2xþy2=r2yþt2=r2t Þ () bwwðxx;xy ;xtÞ

¼ ð
ffiffiffiffiffiffi
2p

p
Þ3rxryrte

�ð1=2Þðr2xx2
xþr2yx

2
yþr2t x

2
t Þ: ð30Þ
Clearly, the choices of rx, ry , rt determine the shape and size of the supports of the

window in both domains. Let us define the support of the Gaussian function by

choosing q > 0 such that for any jzj > q, e�ðz2=2Þ � 0 (typically, qP 3). Then, it can be

shown that, for the window in (30) to avoid aliasing (see discussion in previous

section) we need to satisfy
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 0
x

rx

� �2

þ
V 0
y

ry

� �2

þ 1

rt

� �2
s

6
2p
Dt

b: ð31Þ
Using now the motion compensated window, w0ðx; y; tÞ ¼ wðx� V 0
x t; y � V 0

y t; tÞ,
the condition becomes
q
rt

6
2p
Dt

b: ð32Þ
The constraint in (32) is clearly less restrictive than in (31). Furthermore, it deter-

mines a lower bound on rt only while rx, ry can still be chosen sufficiently small to
give a small support for w0ðx; y; tÞ and thus, making the approximation in (27) more

accurate.

We conclude that for every type of window one would consider, making it motion

compensated would improve the performance of the SR reconstruction process pro-

posed here.
3.2. Motion compensated filter

Going back to Eq. (21) we note that as far as reconstruction from sampled data is

concerned we can concentrate on the windowed data I0ðx; y; tÞ and its sampled ver-

sion I0d ðx; y; tÞ. We design the reconstruction filter for this data and using the approx-

imation in (27), we can use the same (motion compensated) filter structure as in the

previous section
bh0h0ðxx;xy ;xtÞ ¼ rectWxðxxÞrectWy ðxyÞrectW 0
t
ðxxV 0

x þ xyV 0
y þ xtÞ: ð33Þ
Note however, that V 0
x , V

0
y , and W 0

t depend on ðx0; y0; t0Þ and generally, will be dif-

ferent at different points. Hence, the filter we will use is both spatial and temporal

varying.
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3.3. SR reconstruction process—implementation issues

The impulse response of the filter we have is given by (see (33))
h0ðx;y; tÞ ¼WxWyW 0
t

8p3
Sinc

Wx

2p
x
��

� V 0
x t
��

Sinc
Wy

2p
y

��
� V 0

y t
	�

Sinc
W 0

t

2p
t

� �
¼ hðx;y; tÞ � � � d x

�
� V 0

x t;y� V 0
y t
	
: ð34Þ
Using (22), (29), and (34) we can write
Idðx; y; tÞdðx� x0; y � y0; t � t0Þ
¼ h0ðx; y; tÞ � � � w0ðx

�

� x0; y � y0; t � t0ÞIdðx; y; tÞ

��
dðx� x0; y � y0; t � t0Þ

¼ h0ðx; y; tÞw0ðx; y; tÞ
� �

� � � Idðx; y; tÞ

 �

dðx� x0; y � y0; t � t0Þ ð35Þ

¼ h0pðx; y; tÞ � � � Idðx; y; tÞ
n o

dðx� x0; y � y0; t � t0Þ; ð36Þ
where we have also used the symmetry of the window around the origin. Namely, we

can combine the motion compensated filter and motion compensated window into a
modified filter
h0pðx; y; tÞ ¼ h0ðx; y; tÞw0ðx; y; tÞ
¼ hðx; y; tÞwðx; y; tÞ � � � dðx� V 0

x t; y � V 0
y tÞ:

ð37Þ
This last modification is very significant for our implementation. Recognizing that

any implementation will be done in the discrete domain, the modified filter is

(practically) an FIR filter hence, easily implemented.

At this point we are ready to outline the actual implementation steps for our SR

reconstruction process

Algorithm description

Available are:
1. Sampling intervals Dx, Dy, Dt
2. Resolution increase ratios Rx;Ry ;Rt

3. Choice of window type, wðx; y; tÞ.
4. Data set
Id ½‘;m; n� ¼ Ið‘Dx;mDy; nDtÞ

06 ‘6NL; 06m6NM 06 n6NN
Reconstruction steps:

Step 1: Upsample Id ½‘;m; n� to get
eIId ½e‘‘; emm; enn� ¼ I e‘‘ Dx
Rx

; emm Dy
Ry

; enn Dt
Rt

� �
06 e‘‘6RxNL; 06 emm6RyNM 06 enn6RtNN
by zero insertion.

Step 2: Estimate optical flow at all points ðe‘‘ Dx
Rx
; emm Dy

Ry
; enn Dt

Rt
Þ:
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Step 3: For any desired point
ðx0; y0; t0Þ ¼ e‘‘0 DxRx
; emm0

Dy
Ry

; enn0

Dt
Rt

� �

use Wx ¼ 2p

Dx Rx, Wy ¼ 2p
Dy Ry and:

(a) Calculate (see (15))
b ¼ min
j‘j6Rx�1

jmj6Ry�1

‘eVV 0
x

��� þ meVV 0
y � ‘eVV 0

x

h
þ meVV 0

y

i���
and

W 0
t ¼ 2p

Dt
b

where

eVV 0
x ¼ Dt

Dx
Vxðx0; y0; t0Þ

eVV 0
y ¼ Dt

Dy
Vyðx0; y0; t0Þ
(b) Calculate the window w0ðx; y; tÞ.
(c) Calculate the impulse response of the modified filter h0p½e‘‘; emm; enn� using Eqs. (34)

and (38).

(d) Calculate
I0est½e‘‘; emm; enn� ¼ h0p½e‘‘; emm; enn� � � � eIId ½e‘‘; emm; enn�

(e) Take
Iest½e‘‘0; emm0; enn0� ¼ I0est½e‘‘0; emm0; enn0�
4. SR reconstruction—examples

To demonstrate our reconstruction process we present two examples. One with

spatio-temporal invariant translation and one with rotation. In both cases, in order
to avoid the need of optical flow estimation we have generated the data from a single

high resolution frame with predetermined motion. This motion information was then

used in the algorithm. The algorithm was constructed according to the outline in the

previous section and then applied to the data in each case.

The window chosen was of the form
wðx; y; tÞ ¼ HannW1
ðxÞHannW1

ðyÞHannW ðtÞ;

where
HannW1
ðxÞ ¼

1
2

1þ cosðpxW1
Þ

� 	
for jxj6W1;

0 otherwise:

(



Fig. 4. Data frames for Experiment 1.

Fig. 5. Data frames for Experiment 2.

Fig. 6. The spectrum of a single data frame.
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The data in both examples was generated from a 512� 512 frame of Lenna.

In each case the motion was used to create data frames of 55� 51 pixels each.

The resolution improvement we generated for both examples is Rx ¼ Ry ¼ 3 and

Rt ¼ 1 (i.e., no resolution improvement in the temporal direction). Since our choice

for the window size for both experiments was W1 ¼ 7 samples and W ¼ 9 frames the
number of data frames generated was 19ð¼ 2� 9þ 1Þ.

In Figs. 4 and 5 we show data frames for Experiments 1 and 2, respectively

(zoomed in to 300%). The lack of detail is apparent and in the spectrum of one such
frame, seen in Fig. 6, we can clearly observe aliasing.



Fig. 7. An interpolated (lowpass filtered) single data frame.

Fig. 8. The spectrum of the (2Dþ T ) image at xt ¼ 0 (Example 1).
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An attempt to reconstruct a frame of higher resolution using a lowpass filter (in-

terpolation) on a single data frame is presented in Fig. 7. While somewhat more

�pleasant� to look at, this frame contains no additional information compared to ori-

ginal data frames (Fig. 4) hence, is not a true SR reconstruction.

Example 1. Using eVVx ¼ 1
9
and eVVy ¼ 1

3
we generated the 19 frames constituting the

sampled version of the 2Dþ T image. The 2Dþ T spectrum of this data is presented

in Fig. 8—actually, in the figure we present the spectrum at the plane xt ¼ 0. We can

clearly observe in the figure the concentration of energy around the main plane

xx þ 3xy þ 9xt ¼ 0 and its shifted versions (in fact, we see the lines of intersection of

these planes with xt ¼ 0). Hence, as predicted by our analysis, there is (almost) no

aliasing in the data and properly carried our SR reconstruction is possible.

For the velocities given we have calculated b ¼ 1
9
and the result of our reconstruc-

tion is the frame in Fig. 9. Comparing with Fig. 4 (or Fig. 7) we observe clearly the

added details in the reconstructed frame.

In order to get a quality measure for the reconstructed frame we scaled its inten-

sity to the range and calculated the MSE (compared to the true frame down sampled

by a factor of 3). The reconstructed frame has MSE¼ 0.0003466 (with both frames

intensities scaled to ½0; 1�).

Example 2. To generate the data for this example we have used the optical flow as

given in Fig. 10 (for illustrational purposes we present in the figure the optical flow

values only for a downsampled set of pixels). This optical flow is the result of a



Fig. 9. SR reconstructed frame from the spatio-temporal invariant motion data (Example 1).

Fig. 10. Optical flow (at a subsampled set of pixels) of the rotational data (Example 2).
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rotation around a point outside the frame. Again, 19 frames were generated at the

low resolution as our data. Using our algorithm we have carried out an SR recon-

struction and the resulting frame is presented in Fig. 11. To demonstrate the local
Fig. 11. SR reconstructed frame from the rotational data (Example 2).
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nature of the algorithm we have reconstructed only a section of 40� 40 pixels,

highlighted in the figure by a white frame around it. Again, the results are quite

encouraging.

We again calculated the MSE (only for the reconstructed section) and got
MSE¼ 0.002033. This is clearly worse than the result in our first experiment but

hardly surprising. Experiments we conducted with a more drastic changes in optical

flow gave even worse results. As we pointed out, the reconstruction proposed does

depend on the assumption that within a localizing window the optical flow is almost

constant. The further we are from this assumption the worse the results. Clearly, in-

creasing the frame rate will improve the results.
5. Conclusion

We have presented here an SR reconstruction method which uses spatio-temporal

varying filtering. In the process, we have investigated the conditions under which the

reconstruction is possible from the sampling and aliasing point of view. By viewing

the sampled data in the 2Dþ T dimensional space much insight and understanding

have been gained and are described here.

In our reconstruction, as is common to most such existing algorithms, we assume
knowledge of the optical flow. The general procedure we outline is motivated by the

simple case of spatio-temporal invariant optical flow (constant translational motion)

and uses motion compensated filters and motion compensated localizing windows and

filters. Hence, it is localized in nature and can be used to reconstruct any desired part

of a single frame or image (video clip).

We should point out that in this paper we have just presented the approach and

its feasibility. The question of optimizing the choices of the different design param-

eters and window shapes is beyond the scope here and is currently under investi-
gation
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Appendix

Proof. In this appendix we prove Proposition 1. The proof will consist of two parts.

First we will show that for every real eVVx and eVVy
min
ð‘;mÞ6¼ð0;0Þ

j‘j6 L and jmj6M

‘eVVx

��� þ meVVy � ‘eVVx

h
þ meVVy

i���6 1

ðLþ 1ÞðM þ 1Þ ðA:1Þ
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and then, that for eVV �
x ¼ 1=ððLþ 1ÞðM þ 1ÞÞ and eVV �

y ¼ 1=ðmaxfðLþ 1Þ; ðM þ 1ÞgÞ we
get
min
ð‘;mÞ6¼ð0;0Þ

j‘j6 L and jmj6M

‘eVV �
x

��� þ meVV �
y � ‘eVV �

x

h
þ meVV �

y

i��� ¼ 1

ðLþ 1ÞðM þ 1Þ ðA:2Þ
which establishes that the RHS is indeed the maximum.

Let us first define, for any given eVVx and eVVy , the sequence
ak ¼ ‘k eVVx þ mk
eVVy � ‘k eVVx

h
þ mk

eVVy

i
; ðA:3Þ
where ð‘k;mkÞ are all the distinct integer pairs with 06 ‘k 6 L and 06mk 6M . We

will assume that the sequence fakg is ordered. Namely,
� 1

2
6 a1 6 a2 6 � � � 6 aK�1 6 aK 6

1

2
; ðA:4Þ
where K ¼ ðLþ 1ÞðM þ 1Þ is the total number of distinct pairs ð‘k;mkÞ, hence

number of elements in the sequence. Using the ‘‘pigeon-hole’’ principle (see e.g.,
Schrijver, 1986) we can readily argue that
min
16 k6K�1

ðakþ1 � akÞ6
aK � a1
K � 1

: ðA:5Þ
Then, either
06 aK � a1 6
K � 1

K
ðA:6Þ
in which case, from (A.5)
06 min
16 k6K�1

ðakþ1 � akÞ6
1

K
ðA:7Þ
and
min
16 k6K�1

ð‘kþ1

��� � ‘kÞeVVx þ ðmkþ1 � mkÞeVVy � ð‘kþ1

h
� ‘kÞeVVx þ ðmkþ1 � mkÞeVVy

i���
6 min

16 k6K�1
ð‘kþ1

��� � ‘kÞeVVx þ ðmkþ1 � mkÞeVVy � ‘kþ1
eVVx

h
þ mkþ1

eVVy

i
þ ‘k eVVx

h
þ mk

eVVy

i��� ¼ min
16 k6K�1

jakþ1 � akj6
1

K
: ðA:8Þ
Or
K � 1

K
< aK � a1 6 1
in which case
0P aK � a1 � ½aK � a1� >
K � 1

K
� 1 ¼ � 1

K
: ðA:9Þ
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Then, since
ð‘K
��� � ‘1ÞeVVx þ ðmK � m1ÞeVVy � ð‘K

h
� ‘1ÞeVVx þ ðmK � m1ÞeVVy

i���
6 ð‘K
�� � ‘1ÞeVVx þ ðmK � m1ÞeVVy � N

��

for any integer N , we have from (A.9)
ð‘K
��� � ‘1ÞeVVx þ ðmK � m1ÞeVVy � ð‘K

h
� ‘1ÞeVVx þ ðmK � m1ÞeVVy

i���
6 jaK � a1 � ½aK � a1�j6

1

K
: ðA:10Þ
Since for any distinct pairs 06 ‘j; ‘n 6L and 06mj;mn 6M we have j‘j � ‘nj6L,
jmj � mnj6M and ðð‘j � ‘nÞ; ðmj � mnÞÞ 6¼ ð0; 0Þ it follows from (A.8) and (A.10) that
min
ð‘;mÞ6¼ð0;0Þ

j‘j6 L and jmj6M

‘eVVx

��� þ meVVy � ‘eVVx

h
þ meVVy

i���6 1

K

as required.

Let us now choose eVVx ¼ 1=ððLþ 1ÞðM þ 1ÞÞ and eVVy ¼ 1=ðM þ 1Þ, then

‘eVVx þ meVVy ¼ ð‘þ mðLþ 1ÞÞ=ððLþ 1ÞðM þ 1ÞÞ and since j‘eVVx þ meVVy � ½‘eVVxþmeVVy �j ¼
j � ‘eVVx � meVVy � ½�‘eVVx � meVVy �j w.l.o.g. we can assume that ‘eVVx þ meVVy > 0. Then
1

ðLþ 1ÞðM þ 1Þ 6 ‘eVVx þ meVVy ¼
‘þ mðLþ 1Þ

ðLþ 1ÞðM þ 1Þ 6
LþMðLþ 1Þ
ðLþ 1ÞðM þ 1Þ

¼ 1� 1

ðLþ 1ÞðM þ 1Þ
which directly implies that
‘eVVx

��� þ meVVy � ‘eVVx

h
þ meVVy

i���P 1

ðLþ 1ÞðM þ 1Þ :
Hence, one can either choose ð‘;mÞ ¼ ð1; 0Þ or ð‘;mÞ ¼ ðL;MÞ and in both cases the

lower bound 1=ððLþ 1ÞðM þ 1ÞÞ is reached so that (A.2) is proven which completes
the proof of the proposition. �
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