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Robust hybrid control incorporating over-saturation
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Abstract

A switching controller aimed at dealing with a class of uncertain systems subject to input saturation is presented. The
switching strategy is such that a pre-speci�ed level of over-saturation is allowed, forcing the input deliberately into saturation.
The goal of this method is to use the full authority of the available control. The proposed scheme allows for, up to, 100%
over-saturation. Under these conditions, robust stability of the hybrid scheme is established. c© 1999 Elsevier Science B.V.
All rights reserved.
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1. Introduction

Systems composed of logic-based switching con-
trollers together with the processes they are intended
to control are concrete examples of hybrid dynamical
systems [5]. Within the last decade, a number of ana-
lytical studies of such systems has emerged (see e.g.
references cited in [5]). Stability of these schemes has
been studied in, for example, [8,9], where the robust
stabilizability of hybrid systems is considered.
Methods that employ controller switching to deal

with input constraints have been proposed in, for ex-
ample, [3,10,12]. A key idea encapsulated in these
methods is that ofmaximal constraint admissible sets
that ensure subsequent satisfaction of the constraints.
A number of controllers in a sequence of increasing
performance is precomputed and, at each time, the best
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controller considered “safe” (i.e. such that the con-
straints are not violated) is used. A common feature of
these schemes is that the input constraints are avoided,
and thus over-saturation is never reached. By the term
“over-saturation”, we mean a situation in which a con-
troller initially demands an input level greater than the
available range, followed by truncation via a simple
saturation operation.
In the context of controllers that avoid saturation, it

is recognised that with such cautious designs, the con-
trol capacity of the system is not fully utilised leading
to performance degradation in terms of speed of re-
sponse and disturbance rejection (see e.g. [4]). Thus,
a key design improvement would be to make better
use of the available input authority. In [1] we have
presented a logic-based controller for nominal plants
that allows some level of over-saturation, providing
a better utilisation of the full power of the available
control.
In this paper we present the design of a switching

controller for a class of uncertain systems, namely,
systems described by state equations which depend
on time-varying unknown-but-bounded uncertain
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parameters. The controller is based on a switch-
ing strategy that allows a pre-speci�ed level of
over-saturation, thus rendering an improvement in
performance. The design takes into account system
uncertainties and the algorithm guarantees asymptotic
stability for the complete family of uncertain sys-
tems with allowed over-saturation up to 100%. The
construction of the stabilizing switching controller
involves the solution of algebraic Riccati equations.
Conditions for the existence of these solutions are
provided. We address the SISO case, although the
extension to the multivariable case appears straight-
forward.

2. System and de�nitions

We consider a class of uncertain linear systems de-
scribed by state-space equations of the form

ẋ(t) = (A+ D�(t)E)x(t) + Bu(t); (1)

where x(t)∈Rn is the state, �(t)∈Rp×q is a ma-
trix of uncertain parameters satisfying the bound
�T(t)�(t)6I , u(t)= sat(ũ(t)), ũ(t)∈R is the control
input and sat(·) is the saturation function with satura-
tion level �U , namely, sat(s) = sgn(s)min{|s|; �U}.
The switching controller consists of a bank of N

precomputed gains {Ki}Ni=1, in a sequence of increas-
ing levels of performance. Each gain Ki is computed
such that the control u(t)=−Ki x(t) quadratically sta-
bilizes the uncertain system (1) when no saturation is
present. We next de�ne the notion of quadratic sta-
bilizability and we provide an algorithm from the lit-
erature to compute a suitable stabilizing control law
u(t) = −Ki x(t) (De�nition 2.1 and Theorem 3.1 in
[6]).

De�nition 2.1. The uncertain system (1) is said to be
quadratically stabilizable if there exists a linear feed-
back control law u(t) = −Ki x(t), a positive de�nite
symmetric matrix Pi ∈Rn×n and a constant �i ¿ 0
such that the following condition holds: Given any
admissible uncertainty �(·), the Lyapunov derivative
corresponding to the resulting closed-loop system
and the Lyapunov function V (x)= xTPi x satis�es the
bound

V̇ (x) = xT(ATPi + PiA)x + 2xTPiD�(t)Ex

− 2xTPiBKi x6− �i‖x‖2; (2)

for all pairs (x; t)∈Rn × R. In this inequality, ‖ · ‖
denotes the standard Euclidean norm.

If inequality (2) is satis�ed, it is straightforward
to verify that the corresponding closed-loop system is
uniformly and asymptotically stable; e.g., see [11].

We then have the following theorem from the liter-
ature (see [6]), which applies to a single controller:

Theorem 2.1 (Petersen [6]). Let Q∈Rn×n and ri ∈
R be a given positive-de�nite symmetric weight-
ing matrix and a given positive weighting constant
respectively; and suppose there exists a constant
�i ¿ 0 such that the algebraic Riccati equation

ATP + PA− PBr−1i BTP + �iPDDTP

+
1
�i
ETE + Q = 0 (3)

has a positive-de�nite symmetric solution; denoted Pi.
Then the uncertain system (1) is quadratically sta-
bilizable. Furthermore; a suitable stabilizing control
law is given by u(t) =−Ki x(t); where
Ki = r−1i BTPi: (4)

Next, consider the bank of gains {Ki}Ni=1, com-
puted using (3)–(4) for a sequence of weights
r1¿r2¿ · · ·¿rN ¿ 0 (as explained later). The
controller has a switching strategy that selects which
linear gain Ki is in use at each time in the control law
ũ(t)=−Ki x(t). In selecting each gain, we have noticed
that it is desirable to allow moderate over-saturation
of the control signal. That is, to allow the control
to e�ectively exceed the saturation level. In order to
measure the magnitude of the control saturation we
de�ne an over-saturation index as follows.

De�nition 2.2. Given a saturation function sat(·) and
a scalar control signal ũ(t) we de�ne a function �(t)
as

�(t) =



ũ(t)− sat(ũ(t))
sat(ũ(t))

for ũ(t) 6= 0;
0 for ũ(t) = 0:

(5)

Clearly �(t) = 0 whenever ũ(t) is not saturated, and
�(t) is the relative value of the excess of the control
with respect to the saturation bound �U when ũ(t) is
saturated. The “over-saturation index” is then de�ned
as a constant �� such that the allowed supremum of
the control signal satis�es ‖�(t)‖∞6 ��. Based on
reasonably extensive simulations we have found that
allowing each controller to have up to ��= 1 (i.e. “al-
lowed over-saturation” =100%) gives a good trade-o�
between overshoot and speed of response for a
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variety of systems and operating points. Moreover, a
crucial point to be made below is that with an allowed
over-saturation of up to 100%, the switching scheme
can be shown to be robustly stable, see Theorem 4.2.

3. Preliminary results: comparison of algebraic
Riccati equations

Before presenting the logic-based switching con-
troller design, we introduce the following results.

Theorem 3.1. Consider the algebraic Riccati equa-
tion

ATP + PA− PBr−1BTP + �PDDTP
+
1
�
ETE + Q = 0; (6)

where Q is a positive-de�nite symmetric matrix and
r ¿ 0. Assume that there exists a constant �¿ 0
such that the algebraic Riccati equation (6) has a
positive-de�nite solution; denoted P+.
Now; consider a second algebraic Riccati equa-

tion corresponding to a di�erent positive-de�nite
weighting matrix Q̃¡Q; (meaning that Q − Q̃ is a
positive-de�nite matrix); and the same constants r
and �:

ATP̃ + P̃A− P̃Br−1BTP̃ + �P̃DDTP̃
+
1
�
ETE + Q̃ = 0: (7)

Then; the algebraic Riccati equation (7) has a
positive-de�nite solution P̃+ such that P̃+¡P+.

Proof. Denote byM the inverse of P in the �rst alge-
braic Riccati equation (6) (assuming it exists), namely
M,P−1. Then, pre- and post-multiplying Eq. (6) by
M we have

MAT + AM +M
(
1
�
ETE + Q

)
M

− (Br−1BT − �DDT) = 0: (8)

Then, clearly, M+,P−1
+ is a positive-de�nite so-

lution of (8) (note that M+ exists and M+¿ 0 since
P+¿ 0; e.g., see [2]).
Corresponding to the algebraic Riccati Eq. (8) we

can form a matrixK (see e.g. [7]) as follows:

K=
[
Br−1BT − �DDT −A

−AT − 1
� E

TE − Q
]
: (9)

Now, consider the following algebraic Riccati equa-
tion:

M̃AT + AM̃ + M̃
(
1
�
ETE + Q̃

)
M̃

− (Br−1BT − �DDT) = 0 (10)

and its associated matrix K̃

K̃=
[
Br−1BT − �DDT −A

−AT − 1
� E

TE − Q̃
]
: (11)

We then have that K̃ − K¿0, and we can con-
clude from Theorem 2:2 of Ran and Vreugdenhil [7]
that there exists a solution M̃+ to the algebraic Riccati
equation (10) such that M̃+¿M+¿ 0. Also, it can
be shown that the �rst inequality is a strict inequality,
i.e. M̃+¿M+¿ 0. This, in turn, implies that there
exists a positive-de�nite matrix P̃+,M̃

−1
+ such that

0¡P̃+¡P+. Now, by pre- and post-multiplying
Eq. (10) (with M̃ replaced by the positive-de�nite so-
lution M̃+) by P̃+, we conclude that P̃+ is the solution
to (7).

Corollary 3.1. Consider now two algebraic Riccati
equations of the form (3) corresponding to the same
weighting matrix Q¿ 0 and two di�erent weights ri
and ri+1; such that ri ¿ ri+1¿ 0. To simplify the no-
tation we will call these algebraic Riccati equations
Ri(P; �i) = 0 and Ri+1(P; �i+1) = 0 respectively. As-
sume that there exists a constant �i+1¿ 0 such that
Ri+1(P; �i+1)=0 has a positive-de�nite solution Pi+1.
Then; a constant �i satisfying

�iri = �i+1ri+1 (12)

implies the existence of a positive-de�nite solution Pi
to equation Ri(P; �i) = 0. Furthermore;

Pi+1
ri+1

¿
Pi
ri
: (13)

Proof. Divide equation Ri+1(P; �i+1) = 0 by ri+1 to
obtain

ATP∗ + P∗A− P∗BBTP∗ + �∗i+1P
∗DDTP∗

+
1
�∗i+1

ETE + Q∗
i+1 = 0; (14)

where P∗,P=ri+1, �∗i+1,�i+1ri+1 and Q
∗
i+1,Q=ri+1.

Notice now that the assumption that there ex-
ists a constant �i+1¿ 0 such that Ri+1(P; �i+1) = 0
has a positive-de�nite solution Pi+1 implies that
P∗
i+1,Pi+1=ri+1¿ 0 is a solution of (14) with the
constant �∗i+1,�i+1ri+1.
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Now, we can form the following algebraic Riccati
equation by dividing equation Ri(P; �i) = 0 by ri:

ATP∗ + P∗A− P∗BBTP∗ + �∗i P
∗DDTP∗

+
1
�∗i
ETE + Q∗

i = 0; (15)

where P∗,P=ri, �∗i,�iri and Q
∗
i,Q=ri.

It is easy to see that Q∗
i ¡Q∗

i+1 and we can then
use Theorem 3.1 to conclude that Eq. (15) has a
positive-de�nite solution P∗

i which satis�es

P∗
i ¡P∗

i+1 (16)

when a constant �∗i = �
∗
i+1, is used. Eq. (12) follows

from the last equality and the de�nitions of �∗i and
�∗i+1. The existence of a positive-de�nite solution P

∗
i

to Eq. (15) with a constant �∗i clearly implies that the
matrix Pi,P∗

i ri ¿ 0 is a positive-de�nite solution to
Ri(P; �i) = 0 with the constant �i = �∗i =ri. Inequality
(13) follows, then, from (16).

4. Switching controller

The switching controller we propose consists of a
bank of gains {Ki}Ni=1, a partition of the state space into
N cells {Ci}Ni=1 and a switching strategy that selects a
gain Ki when the state x(t)∈Ci, in such a way that a
prede�ned over-saturation index �� is not exceeded. In
this section we present these elements together with a
design methodology. We then show that the resulting
hybrid scheme is asymptotically stable.

4.1. Bank of gains

Consider the uncertain system (1), which is as-
sumed to be quadratically stabilizable (De�nition 2.1),
subject to input saturation. We propose the following
controller. Let {ri}Ni=1 be a sequence of N values such
that

r1¿r2¿ · · ·¿rN ¿ 0 (17)

and choose a n×n symmetric, positive-de�nite matrix
Q. For the smallest weight rN in (17) �nd a constant
� = �N such that the algebraic Riccati equation (3)
has a positive-de�nite solution. The existence of this
solution is guaranteed, independently of the choice of
the weights Q and rN , by the assumption of quadratic
stabilizability (see, e.g., Theorem 3:3 in [6]). Denote
by PN the positive-de�nite solution corresponding to
rN and �N . Now, for each of the remaining weights
ri ∈{r1; : : : ; rN−1}, compute �i = �N rN =ri according to

(12). With the pairs (ri; �i); i = 1; : : : ; N − 1; thus
obtained, �nd the positive-de�nite solutions Pi from
equation (3). Note, from Corollary 3.1, that these
solutions exist and that the sequence of solutions
{Pi}Ni=1, satis�es inequality (13). Finally, compute
the sequence of gains {Ki}Ni=1 using (4).

4.2. Partition of the state space

We consider ellipsoids de�ned by

{x: xTPi x6Ri} (18)

which will be shown (Corollary 4.1) to be positively
invariant sets under the control u(t) = −sat(Ki x(t)),
where Pi and Ki are solutions of (3) and (4) for given
ri and �i.
In Eq. (18), Ri is given by

Ri =
(1 + ��)2 �U

2
r2i

BTPiB
; i = 1; : : : ; N; (19)

where ��¿ 0 is the over-saturation index (De�nition
2.2) and �U is the saturation level.
The constants Ri are such that |Ki x|6(1 + ��) �U

whenever xTPi x6Ri, i.e. they de�ne ellipsoids such
that an over-saturation of �� is not exceeded.
We next prove that the ellipsoids in the sequence

{x: xTPi x6Ri}Ni=1 are nested.

Theorem 4.1. The ellipsoids {x: xTPi x6Ri}Ni=1; are
nested. Namely;

{x: xTPi+1x6Ri+1}
⊂{x: xTPi x6Ri}; i = 1; 2; : : : ; N − 1: (20)

Proof. Note that (20) holds if and only if for any x
such that xTPi x=Ri, there exists a constant 0¡�¡ 1
such that �2xTPi+1x=Ri+1, which in turn holds if and
only if

xT
(
Pi+1
Ri+1

− Pi
Ri

)
x =

1
�2

− 1¿ 0: (21)

So, a necessary and su�cient condition for the nesting
property is
Pi+1
Ri+1

− Pi
Ri
¿ 0; i = 1; 2; : : : ; N − 1: (22)

Now, from (13), we have that

Pi+1
ri+1

BTPi+1B

ri+1(1 + ��)2 �U
2 ¿

Pi
ri

BTPiB

ri(1 + ��)2 �U
2 (23)

which, from (19) yields
Pi+1
Ri+1

¿
Pi
Ri
; i = 1; 2; : : : ; N − 1: (24)
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Hence, by (22), the ellipsoids de�ned by (18), to-
gether with (3) and (19), are nested.

This nesting property allows us to perform the fol-
lowing partition of the state-space region, contained
in the largest ellipsoid, in N cells {Ci}Ni=1 de�ned as
Ci = {x: xTPi x6Ri and xTPjx¿Rj

j = i + 1; : : : ; N}; i = 1; : : : ; N − 1;
CN = {x: xTPNx6RN}:

(25)

4.3. Switching strategy — stability

Given the state-space partition (25), the controller
is de�ned by the switching strategy

ũ=−Ki x for x∈Ci ; i = 1; : : : ; N: (26)

Since the ellipsoids which de�ne the state partition
are nested (Theorem 4.1), the control (25)–(26) is
well de�ned, in the sense that, for each point of the
state space (contained in the largest ellipsoid consid-
ered), there exists a unique control gain Ki.
We next prove robust stability of the hybrid system

formed by the process and the switching controller.

Theorem 4.2. The uncertain system (1) with input
saturation and the proposed controller (25)–(26)
with ��61 is asymptotically stable for all x such that
xTP1x6R1 (i.e. in the state-space region covered by
the outermost ellipsoid considered).

Proof. Given the hybrid nature of the control system,
we propose a piecewise quadratic candidate Lyapunov
function of the form V (x) = xTPi x, for x∈Ci, i =
1; : : : ; N .
From (1), (3), (4), (26) and Claim 1 of Petersen

[6], we have that the time derivative of the Lyapunov
function inside cell Ci has the following upper bound:

V̇ (x)6 xT
(
ATPi + PiA+ �iPiDDTPi +

1
�i
ETE

)
x

−2xTPiB sat(Ki x)
= −xTQx + ri|Ki x| (|Ki x| − 2 sat(|Ki x|))
for x∈Ci ; i = 1; : : : ; N: (27)

It follows from (19) that for any x(t) such that

x(t)TPi x(t)6Ri (28)

(and, in particular, for x∈Ci) we have |Ki x(t)|6(1+
��) �U62 �U , hence, in (27) we obtain

|Ki x(t)| − 2 sat(|Ki x(t)|)60; ∀x∈Ci : (29)

Clearly then, since Q is positive-de�nite, V̇ is a
negative-de�nite function, i.e.

V̇ (x)¡ 0 for 0 6= x∈Ci ; i = 1; : : : ; N: (30)

We conclude that the trajectories in each cell Ci ap-
proach the origin with a monotonic decrease in V
along the trajectory. Since the ellipsoids are nested and
all contain the origin, this means that the trajectories
will cross the cell boundaries as they approach the ori-
gin. Eventually, the trajectories will enter the smaller
ellipsoid of radius RN where asymptotic convergence
to the origin is assured by (30).

Corollary 4.1. The ellipsoids {x: xTPi X6Ri}; with
��61; are positively invariant sets under the con-
trol u(t) = −sat(Ki x(t)); i.e. for any initial condi-
tion x0 = x(t0) such that xT0Pi x06Ri; then for all
t¿t0; x(t)TPi x(t)6Ri; where x(t) is the solution of
(1) with control u(t) =−sat(Ki x(t)).
To see this; note that for any x(t) along a trajec-

tory that satis�es (28); inequality (30) is satis�ed;
which means that the trajectories will never leave the
ellipsoid {x: xTPi x6Ri}.

Remark 4.1. Note that the inequality (30) also elim-
inates the possibility of chattering when switching at
the boundaries V (x) = xTPi x = Ri, since all the tra-
jectories will head away from the boundaries as they
approach the origin.

Observation 4.1. If the uncertain system (1) is
quadratically stable with u = 0; it can be shown that
as r1 → ∞; the solution to the algebraic Riccati equa-
tion (3) exists and is positive-de�nite. As a result;
it follows that in this case the outermost ellipsoid
can be made arbitrarily large by letting r1 → ∞.
However; if system (1) is not quadratically stable
with u= 0; it can be shown; with a technique similar
to that used to prove Theorem 3:1; that P1=r1 → �M
as r1 → ∞; where �M is a symmetric positive-de�nite
matrix. Hence; the outermost ellipsoid will approach
a limiting ellipsoid; and cannot be expanded to cover
an arbitrarily large set of initial conditions.

5. Illustrative example

To illustrate the switching controller design proce-
dure and the resulting hybrid system performance, we
have chosen a simple pendulum as an example of the
system to be controlled. The equation for this system
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Fig. 1. State trajectories.

is ��=−(g=l)sin �+�=ml2, where � is the angle, m the
mass, l the pendulum length and � the torque input.
We assume that g=l= 10.
The system is linearised around an angle of zero

radians, by using sin � ≈ �. We then obtain the state
equations ẋ1 = x2; ẋ2 =−10x1 +u, with angle and an-
gular velocity as state variables and normalised input
u,�=ml2, which is assumed to be subject to a satura-
tion level of �U=5. This system was used in [12] as an
example of the piecewise-linear LQ control (PLC). In
[1] we presented simulations for this example which
show the performance improvements obtained by us-
ing a design that allows over-saturation.
We will now introduce some level of uncertainty

�∈R into the model to take into account linearization
errors. We then consider a model

ẋ =
([

0 1
−10 0

]
+
[
0
1

]
�[ 1 0 ]

)
x +

[
0
1

]
u

, (A+ D�E)x + Bu (31)

with |�|61, i.e., we introduce an uncertainty of up to
±10% in the element a21 of the A-matrix. The set of
possible initial states is chosen as in the examples of
De Don�a et al. [1], Wredenhagen and Belanger [12]
to be the unit circle.
For this example we have used a set of N = 6

weights: r1=10; r2=0:5; r3=0:2; r4=0:1; r5=0:05
and r6=0:025, andQ=I2×2. Note that we have chosen
r1 so that the set of all possible initial states is included
in the outermost ellipsoid (see Fig. 1). Starting from
the smallest weight r6, we found a positive-de�nite so-
lution to (3) corresponding to a constant �6 =0:5. The
remaining �i; i=1; : : : ; 5; are found, according to (12),

Fig. 2. Control signal.

by making �i=�6r6=ri. Then, the positive-de�nite solu-
tions Pi; i=1; : : : ; 5; corresponding to the pairs (ri; �i),
are computed from (3). Finally, the design of the con-
troller requires the computation of the controller gains
Ki from (4) and the ellipsoid radii Ri from (19). In the
computation of Ri, an over-saturation index of 100%
was used ( �� = 1).
In Fig. 1 we show the state trajectories in the phase

plane for an initial condition (�; �̇) = (54◦; 20◦s−1).
Three di�erent values of � were used for the model
(31), namely, �=−1 (dashed-plot), �=0 (solid-plot)
and � = 1 (dashdot-plot). Notice that although con-
stant values were used, � could be time varying as
in (1). We also show the switching cells Ci contours
(dotted-plot) and the unit circle, surface of all initial
conditions, (solid-plot).
In Fig. 2 we show the controls generated by

the hybrid controller for the three cases: � =
−1 (dashed-plot), � = 0 (solid-plot) and � = 1
(dashdot-plot). Note that in all cases the control ef-
fectively reaches saturation (compare, for example,
with the control generated by the PLC in [12], where
saturation is avoided).

6. Conclusions

This paper has described a logic-based switch-
ing controller aimed at enhancing performance in
the presence of saturating actuators by allowing
over-saturation. Robust stability of the scheme is
established.
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