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AbstractÐIn an earlier work, we have introduced the problem of reconstructing a super-resolution image sequence from a given low

resolution sequence. We proposed two iterative algorithms, the R-SD and the R-LMS, to generate the desired image sequence. These

algorithms assume the knowledge of the blur, the down-sampling, the sequences motion, and the measurements noise characteristics,

and apply a sequential reconstruction process. It has been shown that the computational complexity of these two algorithms makes

both of them practically applicable. In this paper, we rederive these algorithms as approximations of the Kalman filter and then carry out

a thorough analysis of their performance. For each algorithm, we calculate a bound on its deviation from the Kalman filter performance.

We also show that the propagated information matrix within the R-SD algorithm remains sparse in time, thus ensuring the applicability

of this algorithm. To support these analytical results we present some computer simulations on synthetic sequences, which also show

the computational feasibility of these algorithms.

Index TermsÐImage restoration, super resolution, dynamic estimation, kalman filter, adaptive filters, recursive least squares (RLS),

least mean squares (LMS), steepest descent (SD).

æ

1 INTRODUCTION

IN an earlier work, [1], we have introduced the problem of
reconstructing an image sequence of improved resolution

from a blurred, under-sampled and noisy measured
sequence. Our approach to this problem can be described
as the combination of ideas from two related problems:
Super-resolution reconstruction of a single image (see [2],
[3], [4], [5], [6], and [7]) and the restoration of an image
sequence from blurred and noisy data (see e.g., [8], [9]).

In [1], we have presented two types of algorithms, both
computationally feasible (assuming that the information
matrix in the R-SD algorithm is sparse). These algorithms
have been extensively tested on computer generated data
and a sample results of these experiments have been
presented. Following the work in [1], we have carried out
thorough performance analysis of these algorithms which
we wish to present here. This analysis includes two parts.
The first part corresponds to the convergence properties of
the proposed algorithms and the second part relates to the
computational complexity of the R-SD algorithm.

We start our presentation with a brief description of the
problem and the model used. Consider a sequence of
images fY �t�g, each image is of M �M pixels, as our
measured data. We wish to generate a sequence fX�t�g of
images of higher resolution, each image of L� L �L > M�
pixels and of improved quality. For convenience of
notation, all images will be presented as vectors, ordered
column-wise lexicographically. Namely, we have Y �t� 2

RRM2

and X�t� 2 RRL2

. At each time instant t we assume that
the two images are related via the following equation:

Y �t� � DH�t�X�t� �N�t�; �1:1�
which means that X�t� is blurred, decimated (namely,
down sampled) and contaminated by additive noise,
giving Y �t�. H�t� is the blur matrix which may be space
and time variant, D the decimation matrix assumed
constant, and N�t� is a zero mean Gaussian noise with
Wÿ1�t� � EfN�t�NT �t�g. Furthermore, we assume that the
sequence fX�t�g satisfies the following equation:

X�t� � G�t�X�tÿ 1� � V �t�: �1:2�
The matrix G�t� stands for the geometric warp between the
images X�t� and X�tÿ 1�, and V �t� is the system noise.
Assuming the typical optical flow model, most pixels in the
image X�t� originate from pixels in the image X�tÿ 1�.
Therefore, for each such pixel the corresponding row in the
matrix G�t� contains only one nonzero element at a position
which reflects the address of the source pixel in the
previous image and this entry equals one (assuming no
change in gray level in the ideal images). The above
description of G�t� corresponds to a nearest-neighbor
interpolation, other methods of interpolating can be used
as well, resulting with a specific structure row stochastic
matrix G�t�. The vector V �t� contains all the new pixels
which do not originate from the previous image, namely, it
represents the innovation sequence. For the sake of our
analysis here, we assume this vector to be a zero mean
Gaussian process with Qÿ1�t� � EfV �t�V T �t�g.

With (1.1) and (1.2), the problem we posed can be viewed
as a state estimation problem and the most natural tool to
consider is the Kalman filter. For the linear model we have
assumed, the Kalman filter will provide the optimal
solution in the Mean Square Error sense ([10], [11], [12],
[13], [14], [15]). However, because of the large dimensions
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involvedÐ L2 � L2Ðthe computation and storage required
to use the Kalman filter makes its use in our case
impractical. Hence, our goal is to develop algorithms which
approximate the Kalman filter as far as performance, but
are significantly less demanding computation wise.

It is important to note that throughout this paper we
assume that the matrices D, H�t�, W�t�, G�t�, and Q�t�,
which define the state-space system, are known. Determin-
ing D is directly dictated by the resolution increase rate. The
matrix W�t� is typically assumed to be �ÿ2

N I, which stands
for assuming that N�t� is a homogeneous white noise.
Determining H�t� and �N can be based on a knowledge of
the camera characteristics, or some estimation prestage of
them. As to the matrix G�t�, this matrix can be obtained by a
motion estimation algorithm. However, this estimation
algorithm must be reliable, giving subpixel accuracy, if we
are to obtain improved resolution results [1], [7]. The matrix
Q�t� can be created as a subresult of the motion estimation
stage, by detecting the spatio-temporal zones with innova-
tion, and assigning entries in Q�t� appropriately. However,
as we shall see in the next section, our algorithms propose a
way to totally avoid dealing with this matrix.

When needed, (1.1) may include a regularization expres-
sion which represents prior knowledge on X�t� embedded
in it. Typically, for restoration and reconstruction applica-
tions (see [1], [2], [3], [4], [5], [6], [7], [8], and [9]) the prior
knowledge corresponds to some type of smoothness
property the image X�t� has. A commonly used format,
using the Laplacian operator denoted by S is presented by
the equation:

0 � SX�t� � U�t�; �1:3�
which simply means that applying the Laplacian on the
image X�t� should give zeros up to some additive noise,
U�t�, which we assume again, to be zero mean Gaussian
with Rÿ1�t� � EfU�t�UT �t�g. Then, (1.1) is replaced by:

Y �t�
0

� �
� DH�t�

S

� �
X�t� � N�t�

U�t�
� �

�1:4�

or more compactly by:

Y A�t� � HA�t�X�t� �NA�t�
with

Wÿ1
A �t� � E NA�t�NA�t�T

n o
� E N�t�

U�t�
� �

N�t�
U�t�
� �T( )

� Wÿ1�t� 0
0 Rÿ1�t�

� �
: �1:5�

The matrix R�t� is typically chosen such that R�t� � �I. This
way, the parameter � controls the spatial smoothness of the
resulting images. The higher the value of � is , the smoother
the output is.

This paper is organized as follows: In the next section we
present the Kalman filter reconstruction equations, and then
derive the R-SD and the R-LMS algorithms from these
equations, as approximations. Section 3 deals with the
convergence analysis of the two proposed algorithms,
adopting a theoretic point of view. Computational complex-
ity issues are discussed in Section 4 with an in depth

analysis in Appendix B. Section 5 presents simulation
results and Section 6 concludes this paper.

2 DYNAMIC ESTIMATION ALGORITHMS

2.1 Approximated Kalman Filter

We first present the original Kalman filter equations, and
then turn to present the approximated methods. It is well-
known that the state-vector in the above model can be

considered as a Gaussian random process and, hence, it is
fully described by its mean vector and covariance matrix.
Kalman filter proposes two steps of propagating these

descriptors in time - prediction and update steps [10], [11],
[12]. Assuming that the mean-covariance pair are known for
time �tÿ 1� denoted by hX̂�tÿ 1�; P̂ �tÿ 1�i, the prediction

step applies equation (1.2) to predict the mean-covariance
pair for time t. The prediction equations which produce the
pair h ~X�t�; ~P �t�i are:

h ~X�t�; ~P �t�i � hG�t�X̂�tÿ 1�;G�t�P̂ �tÿ 1�GT �t� �Qÿ1�t�i:
�2:1�

The update step applies the measurement (1.5) in order to
propagate the mean-covariance pair to get hX̂�t�; P̂ �t�i. The
update step equations are:

hX̂�t�; P̂ �t�i � 
P̂ �t�h ~Pÿ1�t� ~X�t� �HT
A�t�WA�t�Y A�t�

i
;h

~Pÿ1�t� �HT
A�t�WA�t�HA�t�

iÿ1�
:

�2:2�
A convenient alternative to the propagation of the mean-

covariance pair is the use of the information pair [11], [12].
The information pair is defined as:

Prediction :
D

~Z�t�; ~L�t�
E
�4
D

~P
ÿ1�t� ~X�t�; ~P

ÿ1�t�
E

Update :
D
Ẑ�t�; L̂�t�

E
�4
D
P̂ÿ1�t�X̂�t�; P̂ÿ1�t�

E
:
�2:3�

Since there is a one-to-one correspondence between these
pairs and the pairs in (2.1) and (2.2), the information pair

can serve as an alternative for the propagation of the
Kalman filter in time. When propagating the information
pair in time, the prediction equations become:D

~Z�t�; ~L�t�
E
�
D

~L�t�G�t�L̂ÿ1�tÿ 1�Ẑ�tÿ 1�;h
G�t�L̂ÿ1�tÿ 1�GT �t� �Qÿ1�t�

iÿ1E
:
�2:4�

and the update equations become:D
Ẑ�t�; L̂�t�

E
�
D

~Z�t�HT
A�t�WA�t�Y A�t�; ~L�t�

�HT
A�t�WAHA�t�

E �2:5�

and as can be seen, there is a duality between the two

representations. For the mean-covariance pair, the predic-
tion step is simple, while the update step is complicated,
whereas for the information pair the reverse is true.

In our attempt to simplify the Kalman filter we use the
information pair approach. We shall replace the term Qÿ1�t�
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(which is nonsingular) with an approximation term of the
form:

��t�G�t�P̂ �tÿ 1�GT �t� � ��t�G�t�L̂ÿ1�tÿ 1�GT �t�;
where ��t� is some positive scalar. One possibility is to
choose this scalar so that:

Qÿ1�t� � ��t�G�t�P̂ �tÿ 1�GT �t�; �2:6�
which is surely possible only if we assume that the matrices
G�t� and P̂ �tÿ 1� are nonsingular for all t. Clearly, the
above approach means that, by using a bigger auto-
correlation matrix, we assume a stronger system's noise
V �t�. Such an approach is known as adding pseudo-noise to
the system's equation ([11], [12]) and is typically proposed
for the treatment of model inaccuracies [11], [12]. The
additional noise causes the Kalman filter to rely more on the
measurements, rather than on the internal behavior of the
assumed model. Different methods for the choice of ��t�
can be suggested, such as searching for ��t� which
minimizes the estimation error. Such choice of ��t� is
surely better from the estimation performance point of
view.

Using this approximation, the prediction equations of the
information version Kalman filter become:D

~Z�t�; ~L�t�
E
�
D

~L�t�G�t�L̂ÿ1�tÿ 1�Ẑ�tÿ 1�;

;
h
G�t�L̂ÿ1�tÿ 1�GT �t�

� ��t�G�t�L̂ÿ1�tÿ 1�GT �t�
iÿ1E

�

�
D 1

1� ��t�G
ÿT �t�Ẑ�tÿ 1�;

1

1� ��t�G
ÿT �t�L̂�tÿ 1�Gÿ1�t�

E
�

�
D 1

1� ��t�F
T �t�Ẑ�tÿ 1�;

1

1� ��t�F
T �t�L̂�tÿ 1�F �t�

E
;

�2:7�
where we have denoted F �t� � Gÿ1�t� (or its pseudo-
inverse if G�t� is singular). This is the backward motion
matrix representing the motion operator from the current
image X�t� to the previous one X�tÿ 1�. Therefore, this
matrix has the same properties as the matrix G�t�Ðit is row
stochastic matrix, it can represent any interpolation scheme,
and so forth. We also denote ��t� � �1� ��t��ÿ1. Using these
notations, and the relations shown in (2.5), the entire
Information Kalman filter propagation equations simplify
to:

Ẑ�t� � ��t�FT �t�Ẑ�tÿ 1� �HT
A�t�WA�t�Y A�t�

L̂�t� � ��t�FT �t�L̂�tÿ 1�F �t� �HT
A�t�WA�t�HA�t�

�2:8�

and quite clearly, these recursive equations are much
simpler to implement, compared to the previous ones.

An alternative approach would be to approximate the
measurement noise auto-correlation matrix resulting in a
similar simplification of the equations for the mean-

covariance propagation. However, we feel that such

approach is inferior to the one proposed here for two

important reasons:

1. Typically, the measurements noise is known to be
Gaussian additive white and homogeneous. On the
other hand, the systems noise is not known and its
auto-correlation matrix is a rough approximation to
begin with. Thus, among the two, our approximation
is bound to cause less damage.

2. As was said before, the alternative approach would
have resulted in mean-covariance propagation equa-
tions. Our experiments indicate that, whereas the
Kalman filter Information matrix is very sparse, the
covariance matrix is generally more dense. There-
fore, the alternative approach might still result in
very heavy computational requirements.

Another more intuitive approach, which yields these two

recursive equations, is to totally omit the system's noise by

assuming Qÿ1�t� � 0. In this case, by putting the system's

equation into the measurement equation, the two state-

space equations can be combined into an infinitely long

sequence of equations of the form:

Y A�tÿ k� � HA�tÿ k�X�tÿ k� �NA�tÿ k�
� HA�tÿ k�F �tÿ k� 1�F �tÿ k� 2�
� � �F �tÿ 1�F �t�X�t�

� HA�tÿ k�
Yk
j�1

F �tÿ k� j�X�t� �NA�tÿ k�

�2:9�
for k � 0; 1; 2; � � � t. We can now define a Weighted Least

Squares (WLS) problem, where we search for the image

X�t� which minimizes the function:

"2�t� �
X1
k�0

"Ykÿ1

j�0

��tÿ j�
#
�






Y A�tÿ k� ÿHA�tÿ k�
Yk
j�1

F �tÿ k� j�X�t�







2

WA�tÿk�:
�2:10�

We give exponentially decaying weight to the error terms in

the above squared error function in accordance with our

wish to give smaller weight to distant measurements.

Therefore, the exponential decaying weight operates as a

forgetting mechanism, which controls the balance between

allowing for changes in time while forcing smoothness.

Taking the derivative of (2.10) and equating to zero, we get

that the optimal estimated image should satisfy:

L̂�t�X̂�t� � Ẑ�t�
where : Ẑ�t� � ��t�FT �t�Ẑ�tÿ 1� �HT

A�t�WA�t�Y A�t�
L̂�t� � ��t�FT �t�L̂�tÿ 1�F �t� �HA

T �t�WA�t�HA�t�
�2:11�

and clearly, the above equations are identical to the ones

obtained by the approximated Kalman filter.
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To summarize this subsection, we have generated an
approximation of the Kalman filter which basically involves
solving a set of linear equations at each time instant. We
name this algorithm, as presented in (2.11), the Pseudo-RLS
algorithm. The reason for this name (see [1]) is the fact that
its recursive equations resemble the RLS algorithm [15]. In
the RLS algorithm, however, the inversion of L̂�t� is derived
recursively using the matrix inversion lemma [15]. In our
case, such approach is impossible because of the dimen-
sions of the matrices involved and therefore, the name
Pseudo-RLS.

2.2 The R-SD Algorithm

As we have seen above, the estimation problem is reduced
to solving a very large set of linear equations (2.11). One
immediate approach is, therefore, to apply some iterative
algorithm, such as the Steepest-Decent, Conjugate-Gradient,
Gauss-Seidel or others [13], [14], which solves these linear
equations using only matrix-vector multiplications. Of
course, to get the exact solution one would need to apply
infinite number of these iterations. However, since the
propagation of L̂�t� and Ẑ�t� is independent of the
estimation X̂�t�, any error caused by limiting ourselves to
a finite number of iterations at �tÿ 1� would not propagate
to time t. Hence, we expect that, using a finite number of
iterations would not cause divergence.

The first algorithm we propose consists of applying R
iterations of the Steepest Descent (SD) algorithm at each
time t. Hence, we name this algorithm R-SD. To complete
the description of the algorithm we need to determine the
initial value for the SD part at each t. A natural choice for
the initialization is the vector X̂0�t� � G�t�X̂R�tÿ 1�, where
X̂R�tÿ 1� is the result after the previous R iterations. This
choice of initialization comes from the prediction step in the
Kalman filter (2.1). The R-SD algorithm is then:

Initialization : X̂R�0� � EfX�0� L̂�0� � P̂ÿ1�0�
�
h
EfX�0�XT �0�

iÿ1

Ẑ�0� � L̂�0�X̂R�0�
for t � 1 : Ẑ�t� � ��t�FT �t�Ẑ�tÿ 1� �HT

A�t�WA�t�Y R�t�
L̂�t� � ��t�FT �t�L̂�tÿ 1�F �t�

�HT
A�t�WA�t�HA�t�

X̂0�t� � G�t�X̂R�tÿ 1�
X̂k�t� �

h
I ÿ �L̂�t�

i
X̂kÿ1�t�

� �Ẑ�t� 1 � k � R:
�2:12�

Therefore, in order to apply the R-SD algorithm, we have to

propagate first the approximated information pair

hẐ�t�; L̂�t�i in time, then use these terms in the recursive

update equation of the estimated output vector X̂R�t� (the

output of the above procedure after R iterations). Note that,

compared to the Kalman filter estimator, the R-SD

algorithm consist of two different layers of approximations.

The first layer is the one presented in the previous

subsection, namely, replacing the system's noise auto-
correlation matrix. The other layer of approximation is the
truncated application of the iterative algorithm, which surely
would not give the exact solution per each temporal point.

The parameter � in the above algorithm should be
chosen so as to guarantee the Steepest Decent convergence
([13], [14]). Theoretically, � should be determined by the
largest eigenvalues of the matrix L̂�t�. However, this value
is complicated to obtain, and there are simpler ways to
choose a reasonable �. One safe approach is to use of the
Normalized Steepest Decent (NSD) ([13], [14]), where the
value of � changes at each iteration as follows:

�k�t� � ET
k �t�Ek�t�

ET
k �t�L̂�t�Ek�t�

where Ek�t� � Ẑ�t� ÿ L̂�t�X̂kÿ1�t�

and X̂k�t� � X̂kÿ1�t� � �k�t�Ek�t�:
�2:13�

2.3 The R-LMS Algorithm

Taking the R-SD algorithm of the previous subsection
and further approximating the information pair
hẐ�t�; L̂�t�i by the instantaneous values in (2.8),
HT
A�t�WA�t�Y A�t�;HT

A�t�WA�t�HA�t�, respectively, we get
an algorithm which resembles the LMS algorithm, and thus
the name R-LMS algorithm. After some algebra we get:

Initialization : X̂R�0� � EfX�0�g
for t � 1 : X̂0�t� � G�t�X̂R�tÿ 1�

X̂k�t� � X̂kÿ1�t� � �HT
A�t�WA�t�h

Y �t� ÿHA�t�X̂kÿ1�t�
i

1 � k � R:
�2:14�

Clearly, the R-LMS algorithm is simpler than the R-SD
algorithm, both in the computational and the memory
requirements. We note that the R-LMS algorithm can also
be obtained from the R-SD algorithm by assigning ��t� � 0.
Presumably, such value for ��t� means no temporal
memory, and thus no temporal smoothness. Indeed, this
is the case if infinitely many iterations are performed per
each time point (R!1). However, since R is finite and
relatively small, temporal smoothness is not discarded,
although it comes from different origin.

Here again, the step size � should be chosen to guarantee
the convergence of the LMS (see, for example, [13], [14],
[15]). Here too, a possible choice is the normalized LMS
resulting in:

�k�t� � ET
k �t�Ek�t�

ET
k �t�HT

A�t�WA�t�HA�t�Ek�t�
where Ek�t� � HT

A�t�WA�t�
ÿ
Y A�t� ÿHA�t�X̂kÿ1�t�

�
and X̂k�t� � X̂kÿ1�t� � �k�t�Ek�t�:

�2:15�

3 CONVERGENCE PROPERTIES oF THE PROPOSED

ALGORITHMS

In the previous section, we have presented again the two
algorithms presented in [1], R-SD and R-LMS, for the
recursive reconstruction of a super-resolution image se-
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quence. In the discussion here, we emphasized the relation-
ship of these algorithms, through the Pseudo-RLS, to the
Kalman filter. This discussion provides the stepping stone
for our analysis of these algorithms. In the sequel we use the
Pseudo-RLS as an intermediate basis for performance
comparison with the Kalman filter. Before we start our
analysis let us recall the underlying model assumption for
X�t�, the required super-resolution image. Rewriting (1.2)
and (1.5) we have:

X�t� � G�t�X�tÿ 1� � V �t� V �t� � Nf0; Qÿ1�t�g
Y A�t� � HA�t�X�t� �NA�t� NA�t� � Nf0; Wÿ1

A �t�g:
�3:1�

3.1 The Pseudo-RLS Algorithm Analysis

We have introduced the Pseudo-RLS algorithm as a first
approximation of the Kalman filter. Its estimate is the
solution of the equation:

L̂�t�X̂PÿRLS�t� � Ẑ�t� �3:2�
where L̂�t� and Ẑ�t� satisfy the recursive updating formula:

L̂�t� � ��t�FT �t�L̂�tÿ 1�F �t� �HT
A�t�WA�t�HA�t� �3:3�

Ẑ�t� � ��t�FT �t�Ẑ�tÿ 1� �HT
A�t�WA�t�Y A�t� �3:4�

and 0 < ��t� < 1. We first establish a relationship between
the estimates generated by the Pseudo-RLS and the Kalman
filter.

Theorem 3.1.1. The Pseudo-RLS algorithm for the model in (3.1)
is in fact the Kalman filter when the model assumption is
replaced by:

X1�t� � G�t�X1�tÿ 1� � V �t�
V 1�t� � N

n
0; Qÿ1�t� � ��t�G�t�L̂ÿ1�tÿ 1�GT �t�

o
Y A�t� � HA�t�X1�t� �NA�t� NA�t� � N

n
0;Wÿ1

A �t�
o
�3:5�

where:

��t� � 1ÿ ��t�
��t� �3:6�

Proof. The proof follows directly from our discussion in
Section 2, where the Pseudo-RLS algorithm has been
derived. There is a bootstrap behavior in the above
model since the information matrix L̂�tÿ 1�, which is
computed by the Kalman filter equations, serves for the
definition of the model for time t. Thus, we actually have
here a model which depends on the previous Kalman
filter results. However, this bootstrap contains no
noncasual operations, and therefore the above model
contains no self contradictions. tu

The above Theorem's significance can be seen in the
following result:

Theorem 3.1.2. The Pseudo-RLS algorithm guarantees an
unbiased estimate of X�t� and if we choose ��t� such that:

��t� � 1

1�



Qÿ1�t�





1
�



L̂�tÿ 1�





1

�3:7�

we are guaranteed to have:

�PÿRLS�t� � E
nh
X̂PÿRLS�t� ÿX�t�

i
h
X̂PÿRLS�t� ÿX�t�

iTo
� L̂ÿ1�t�:

�3:8�

Namely, the Pseudo-RLS estimation error covariance matrix is

bounded by the matrix L̂ÿ1�t�.
Proof. The fact that the estimate is unbiased follows directly

from Theorem 3.1.1 and the Kalman filter properties.
Based on the Kalman filter equations [10], [11], [12] we
have:

X̂PÿRLS�t� � X̂1�t� �
h
I ÿK�t�HA�t�

i
G�t�X̂1�tÿ 1� �K�t�Y A�t�;

�3:9�

where K�t� is defined as the Kalman filter gain matrix
[10], [11], [12], [13], [14], [15]. For �PÿRLS�t�we have from
(3.1), Theorem (3.1.1) and (3.9):

�PÿRLS�t� �
�
I ÿK�t�HA�t�

�
�
G�t��PÿRLS�tÿ 1�GT �t� �Qÿ1�t�

�
�
�
I ÿK�t�HA�t�

�T
�K�t�WA�t�KT �t�:

�3:10�
Applying the Kalman filter equations for the approxi-
mated model, (3.5), gives the following relation:

L̂
ÿ1�t� �

�
I ÿK�t�HA�t�

��
G�t�L̂ÿ1�tÿ 1�GT �t�

� ��t�G�t�L̂ÿ1�tÿ 1�GT �t�
�
�
�
I ÿK�t�HA�t�

�T
�K�t�WA�t�KT �t�:

�3:11�
By subtracting (3.10) from (3.11) we get:

L̂ÿ1�t� ÿ �PÿRLS�t� �
�
I ÿK�t�HA�t�

�
h
G�t�

�
L̂ÿ1�tÿ 1� ÿ �PÿRLS�tÿ 1�

�
GT �t�

i
�

�
�
I ÿK�t�HA�t�

�T
�
�
I ÿK�t�HA�t�

�
�

�
h
��t�G�t�L̂ÿ1�tÿ 1�GT �t� ÿQÿ1�t�

i�
I ÿK�t�HA�t�

�T
:

�3:12�
Choosing ��t� according to (3.7) satisfies the following
inequality:

��t�G�t�L̂ÿ1�tÿ 1�GT �t� � Qÿ1�t� �3:13�
since we require:

��t� � 1ÿ ��t�
��t� �




Gÿ1�t�



2

1
�



L̂�tÿ 1�





1

�



Qÿ1�t�





1
�



L̂�tÿ 1�





1
�



Qÿ1�t�





1
:

�3:14�
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Clearly, from equations (3.12) and (3.13) we get that if

L̂ÿ1�0� ÿ �PÿRLS�0� � 0, then:

L̂ÿ1�t� ÿ �PÿRLS�t� � 0 8t � 0: �3:15�
But the above requirement, L̂ÿ1�0� ÿ ��0� � 0, is readily

satisfied by the initialization applied to the Pseudo-RLS

algorithm, and thus the theorem is proven. tu
We recognize that the Pseudo-RLS dose not provide a

practical solution if directly applied since it requires the

inversion of L̂�t� which is an impractical task. The purpose

of the R-SD and the R-LMS algorithms is to supply an

estimate of X̂PÿRLS�t�. The following lemma presents an

important property of the sequence fX̂PÿRLS�t�gt>0±

bounded variation of the sequence. This property will be

used in the analysis of the R-SD and the R-LMS estimation

algorithms.

Lemma 3.1.1. The sequence fX̂PÿRLS�t�gt>0 satisfies the

following property:

�D �� sup
t>1

E



X̂PÿRLS�t� ÿG�t�X̂PÿRLS�tÿ 1�




n o
<1:

�3:16�

Proof. The proof is given in Appendix A. tu

In this subsection, we have shown that the Pseudo-RLS

algorithm can actually be viewed as a Kalman filter for a

modified model, with bounded estimation error, and

unbiased estimation. However, the Pseudo-RLS algorithm

is still far too computationally complex to be implemented.

The R-SD and the R-LMS algorithms are practical approx-

imations of the Pseudo-RLS. In the following subsections

we will investigate their properties.

3.2 The R-SD Algorithm Analysis

TheR-SDequationsupdatingtheestimateintimearegivenby:

X̂0�t� � G�t�X̂R�tÿ 1�
Xj�t� � X̂jÿ1�t� � �

h
Ẑ�t� ÿ L̂�t�X̂jÿ1�t�

i
for 1 � j � R:

�3:17�
Combining these equations we get a single equation which

relates the R-th result for time �tÿ 1� to the R-th result for

time t:

X̂R�t� �
h
I ÿ �L̂�t�

iM
G�t�X̂R�tÿ 1� � �

XRÿ1

k�0

h
I ÿ �L̂�t�

ik
Ẑ�t�

�
h
I ÿ �L̂�t�

iRh
G�t�X̂R�tÿ 1� ÿ X̂PÿRLS�t�

i
� X̂PÿRLS�t�;

�3:18�
where we have used equation (3.2), and the formula for a

sum of geometric sequences [10].

Theorem 3.2.1. Consider the R-SD algorithm as given in

equation (3.18) with arbitrary initial conditions X̂R�0�; Ẑ�0�
and L̂�0� � 0. Let:

0 < � <
1

�max
where �max � sup

t>0
max

1�k�N2

n
�kfL̂�t�g

o� �
: �3:19�

Then, 90 < " < 1 such that:

�D�t��4E



X̂R�t� ÿ X̂PÿRLS�t�




n o
� �D � g�1ÿ "�R

1ÿ g�1ÿ "�R � �1ÿ "�
Rt � gt � �D�0� 8t > 0;

�3:20�

where g � supt>0 kG�t�k2 <1.

Proof. Since L̂�t� is positive definite (because of the

regularization term), the spectral radius of the matrix

M�t� �
h
I ÿ �L̂�t�

iR
is:

kM�t�k2 �



hI ÿ �L̂�t�iR




2

�



I ÿ �L̂�t�


R

2
�



I ÿ �U�t���t�UT �t�




R
2

�



U�t�hI ÿ ���t�

i
UT �t�




R
2
�



I ÿ ���t�




R
2
:

�3:21�
The obtained matrix I ÿ ���t� is diagonal with 1ÿ
��k�t� on the main diagonal. The choice of � as given in

(3.19) guarantees that j�fM�t�gj < 1, and thus there

exists 0 < " < 1 such that:


M�t�



2
� �1ÿ "�R 8t > 0: �3:22�

In order to guarantee that such choice of � always exists

we must show the following two things:

�max � sup
t>0

(
max

1�k�N2

n
�kfL̂�t�g

o)
<1 ;

�min � inf
t>0

(
min

1�k�N2

n
�kfL̂�t�g

o)
> 0:

�3:23�

The minimum eigenvalue is indeed greater than zero

since L̂�t� is positive definite for all t. The maximum

eigenvalue can be bounded by:

�max < sup
t�0

trfL̂�t�g �

sup
t�0

X1
k�0

�ktr
n
HT �tÿ k�W�tÿ k�H�tÿ k� � �STR�t�S

o
�
"

trfHT �tÿk�W�tÿk�H�tÿk�g�T1

trf�STR�t�Sg�T2

X1
k�0

�k�T1 � T2� � T1 � T2

1ÿ � <1

:

�3:24�
Using (3.18) we get:

X̂R�t� ÿ X̂PÿRLS�t� �
h
I ÿ �L̂�t�

iR
�

G�t�
h
X̂R�tÿ 1� ÿ X̂PÿRLS�tÿ 1�

i
ÿ
h
X̂PÿRLS�t� ÿG�t�X̂PÿRLS�tÿ 1�

io
:

�3:25�
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Applying Euclidean norm and expectation to the above

equality, using the triangle inequality, and inserting the

result of Lemma 3.1.1 we get:

�D�t� � �1ÿ "�R
n
g � �D�tÿ 1� ��D

o
�3:26�

and by applying the above inequality recursively we get

the inequality in (3.20), which completes this theorem's

proof. tu
From the above theorem it is evident that the slower

X̂PÿRLS�t� is, the better the R-SD tracking capabilities are.

Increasing R clearly improves the R-SD tracking perfor-

mance, any desired accuracy can be reached with large

enough R.

3.3 The R-LMS Algorithm Analysis

The R-LMS equations are given in (2.14). Using the notation:

l̂�t� � HT
A�t�WA�t�HA�t� and ẑ�t� � HT

AWA�t�Y A�t�
�3:27�

and, in order to distinguish from the estimates gererated by

the R-SD, we use x̂ instead of X̂ in (2.14). Then we have for

the R-LMS:

x̂0�t� � G�t�x̂R�tÿ 1�
and for 1 � j � R
x̂j�t� � I ÿ �l̂�t�

� �
x̂jÿ1�t� � �ẑ�t�

�3:28�

In order to analyze the properties of the R-LMS we define

the sequence �Intra through ẑ�t� � l̂�t��Intra�t�. Then, from

(3.28) we get:

x̂R�t� �
h
I ÿ �l̂�t�

iR
G�t�x̂R�tÿ 1� � �

XRÿ1

k�0

h
I ÿ �l̂�t�

ik
ẑ�t�

�
h
I ÿ �l̂�t�

iRh
G�t�x̂R�tÿ 1� ÿ �̂

Intra
�t�
i
� �̂

Intra
�t�:
�3:29�

This equation is similar to the one given for the R-SD

algorithm with l̂�t� replacing L̂�t�; ẑ�t�, replacing Ẑ�t�, and

�̂
Intra

replacing X̂PÿRLS�t�. Note that the sequence

f�̂
Intra
�t�gt�1 is actually the result of an intra-frame

approach for the reconstruction task, totally disregarding

the temporal smoothness property (which explains the

name chosen for these vectors). As such, showing that the

R-LMS algorithm converges to this sequence is not a

satisfactory result. Furthermore, we can see from (3.29) that

for R!1 we get x̂R�t� ! �̂
Intra
�t�. Thus, in contrast to the

R-SD algorithm, increasing the number of iterations per

time point does not necessarily improve the estimation

performance. Actually, since the R-LMS can be obtained

from the R-SD algorithm using ��t� � 0 (this way removing

the temporal smoothness factor), using small R values is the

only mechanism to re-achieve the temporal memory.

Theorem 3.3.1. Consider R-LMS algorithm as given in equation

(3.27) with arbitrary initial condition x̂R�0�. Let:

0 < � <
2

�max
where �max � sup

t>0

(
max

1�l�N2

n
�kfl̂�t�g

o)
: �3:30�

Then, there exists o < " < 1 and sufficiently large R such that

�1ÿ "�Rg < 1 and then:

�f�t��4E
n


x̂R�t� ÿ X̂PÿRLS�t�




o
� �1ÿ "�Rt � gt � �f�0� �

h
�1ÿ "�Rÿ1C1 � C2

i
1ÿ �1ÿ "�Rg �D 8t > 0

;

�3:31�
where g � supt>0 kG�t�k2 <1, and C1; C2 are two finite

positive constants.

Proof. Using equations (3.2)±(3.4) and (3.27) we get that for

the first iteration:

f̂
1
�t��4x̂1�t� ÿ X̂PÿRLS�t� � G�t�x̂R�tÿ 1� ÿ X̂PÿRLS�t�
� �

h
Ẑ�t� ÿ L̂�t�G�t�x̂R�tÿ 1�

i
ÿ ��t��FT �t�

h
Ẑ�tÿ 1� ÿ L̂�tÿ 1�F �t�G�t�x̂R�tÿ 1�

i
�
h
I ÿ �L̂�t�

ih
G�t�f̂

R
�tÿ 1� ÿ 4̂PÿRLS�t�

i
� ��t��FT �t�L̂�tÿ 1�F �t�G�t�f̂

R
�tÿ 1�

�
h
I ÿ �l̂�t�

i
G�t�f̂

R
�tÿ 1� ÿ

h
I ÿ �L̂�t�

i
4̂PÿRLS�t�;

�3:32�
where we have used the relation G�t� � Fÿ1�t�
(assuming that G�t� is nonsingular) and the defini-

t ion 4̂PÿRLS�t��4 X̂PÿRLS�t� ÿG�t�X̂PÿRLS�tÿ 1�. For

the 2 � k � R other iterations:

f̂
k
�t� �4 x̂k�t� ÿ X̂PÿRLS�t� � x̂kÿ1�t� ÿ X̂PÿRLS�t�
� �

h
Ẑ�t� ÿ L̂�t�x̂kÿ1�t�

i
ÿ ��t��FT �t�

h
Ẑ�tÿ 1� ÿ L̂�tÿ 1�F �t�x̂kÿ1�t�

i
f̂
kÿ1
�t� ÿ �L̂�t�f̂

kÿ1
�t� ÿ ��t��FT �t�L̂�tÿ 1�F �t�h

ÿ4̂PÿRLS�t� ÿ f̂kÿ1
�t�
i
�
h
I ÿ �l̂�t�

i
f̂
kÿ1
�t�

� �
h
L̂�t� ÿ l̂�t�

i
4̂PÿRLS�t�:

�3:33�

Chaining these R equations together we get:

f̂
R
�t� �

h
I ÿ �l̂�t�

iR
G�t�f̂

R
�tÿ 1� ÿ

h
I ÿ �l̂�t�

iRÿ1

h
I ÿ �L̂�t�

i
4̂PÿRLS�t� �

h
I ÿ

h
I ÿ �l̂�t�

iRÿ1i
h
l̂ÿ1�t�L̂�t� ÿ I

i
4̂PÿRLS�t� �

h
I ÿ �l̂�t�

iR
G�t�f̂

R
�tÿ 1� ÿ

h
I ÿ �l̂�t�

iRÿ1

h
l̂ÿ1�t�L̂�t� ÿ �L̂�t�

i
4̂PÿRLS�t� �

h
l̂ÿ1�t�L̂�t� ÿ I

i
4̂PÿRLS�t�:

�3:34�
Choosing � according to (3.30) guaranties that there

exists 0 < " < 1 such that kI ÿ �l̂�t�k < 1ÿ " 8t. Apply-
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ing Euclidean norm and expectation to the above
equality we get:

�f�t� �4 E
(


f̂

R
�t�



) � �1ÿ "�R � g � �f�tÿ 1�

�
h
�1ÿ "�Rÿ1C1 � C2

i
�D;

�3:35�

where we have used the bounds:


�l̂ÿ1�t� ÿ �I
�
L̂�t�




 � 


l̂ÿ1�t� ÿ �I



 � 


L̂�t�




� C1




I ÿ l̂ÿ1�t�L̂�t�





� 1�



l̂ÿ1




 � 


L̂�t�


 � C2:

Assume that R is sufficiently large so that �1ÿ "�Rg < 1.
Applying the above inequality recursively we get:

�f�t� ��1ÿ "�Rt � gt � �f�0� �
Xtÿ1

k�0

�1ÿ "�Rk

� gk
h
�1ÿ "�Rÿ1C1 � C2

i
�D

��1ÿ "�Rt � gt � �f�0�

� 1ÿ �1ÿ "�Rt � gt
1ÿ �1ÿ "�Rg

h
�1ÿ "�Rÿ1C1 � C2

i
�D

��1ÿ "�Rt � gt � �f�0� �
h
�1ÿ "�Rÿ1C1 � C2

i
1ÿ �1ÿ "�Rg �D;

which is exactly the statement of the theorem. tu
There is a major difference between the R-LMS result

and the one obtained for the R-SD algorithm. In the bound
obtained for the R-LMS algorithm, increasing R does not
result in the estimation error converging to zero. Rather, we
have shown in the above theorem that the R-LMS algorithm
yields bounded estimation error, which resembles the
results of the theoretic LMS [15]. A drawback in the
obtained bound is that it does not reflect the already
known fact that it is recommended not to perform many
iterations in the R-LMS, since this way we get the intra-
frame result without temporal smoothness.

Remark. Note that the �k�t� suggested for the R-SD in (2.13)
(and similarly, for the R-LMS in (2.15) satisfies the
conditions in Theorem 3.2.1 (Theorem 3.3.1).

4 COMPUTATIONAL COMPLEXITY OF THE

PROPOSED ALGORITHMS

The computational complexity of the R-SD and the R-LMS
algorithms is already described in details in [1]. One
important problem in this context, however, that was not
addressed in [1] will be presented here. The R-SD algorithm
propagates the information pair in time. In order to assure
that the required computations and memory of this
algorithm are practical, we need to show that the informa-
tion matrix remain sparse in time. Otherwise, we get that a
very large matrix (of size L2 � L2) becomes dense, thus
requiring intolerable amount of memory and computations.
The entire analysis which proves the sparseness property of

the matrix L̂�t� is given in Appendix B. Here, we give a
short intuitive discussion on the obtained result. As shown
in (3.3), the information matrix is propagated through the
following recursive equation:

L̂�t� � ��t�FT �t�L̂�tÿ 1�F �t� �HT
A�t�WA�t�HA�t�:

Let us assume that L̂�tÿ 1� is sparse with a specific form: it
is filled with nonzero entries in a central band around its
main diagonal and additional nonzero entries are very
sparsely spread outside this band. Fig. 1 presents such a
structure.

Multiplying by F �t� from both sides, FT �t�L̂�tÿ 1�F �t�,
it is shown that the overall number of nonzero entries in the
resulting matrix reduces (see Appendix B). The central band
now contains holes (zero entries), and the remaining matrix
region remains sparse. The multiplication by ��t� does not
affect the number of nonzero entries. The addition of the
matrix HT

A�t�WAHA�t� refills the central band. This way we
see that the first stage (multiplying FT �t�L̂�tÿ 1�F �t�)
removes nonzero entries, and the second stage (adding
HT
A�t�WA�t�HA�t�) regains them. At the steady state, we get

that the density of the matrix L̂�t� fluctuate around a
bounded very low value, which assures the sparseness of
this matrix.

Two parameters govern the steady-state density bound

of the matrix L̂�t�. The first parameter is the width of the

central nonzero band of the matrix HT
A�t�WAHA�t�. The

wider this band is, the denser the matrix L̂�t� becomes. The

second parameter is the maximal displacement by the warp

matrix F �t�. Clearly, if F �t� � I, the density of L̂�t� is the
same as the one of the matrix HT

A�t�WAHA�t�, and this case
stands for the minimal possible density. The farther F �t�
spreads pixels from their original location (i.e., having large
displacements), the denser the matrix L̂�t� becomes. More
details about this behavior is presented in Appendix B.
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Fig. 1. The sparseness structure of the information matrix.



5 SIMULATIONS AND ANALYSIS

In this section, we present two simulation experiments, Part

I presents a comparison between the exact Kalman filter

and it's various proposed approximations. Part II presents

two image based examples, through which we demonstrate

the feasibility of the proposed approach for super-resolu-

tion image sequence reconstruction.

5.1 Part IÐThe R-SD and the R-LMS vs. the Kalman
Filter

In order to be able to compare the proposed algorithms with

the exact Kalman filter, we have to use relatively low

dimensional reconstruction problem. The test we present

was done on a state vector containing 100 elements. State

space equations were applied, with the following matrices:

. G�t�ÐOne dimensional global shift by 1 sample to
the left.
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Fig. 2. The R-SD results for R=1,2,3, and 4.

Fig. 3. The R-LMS results for R=1,2,3, and 4.
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Fig. 4. Comparison between the various estimation schemes.

Fig. 5. The first sequence results.
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Fig. 6. The second sequence results.

Fig. 7. The MSE for the R-SD and the R-LMSÐresults of the first sequence.



. HA�t�Ð1D Linear space invariant blur with the
kernel [0.2, 0.6, 0.2].

. Qÿ1�t�ÐDiagonal matrix with random diagonal
entries in the range [0.5-5].

. Wÿ1
A �t�ÐDiagonal matrix with random diagonal

entries in the range [0.1-1].
. P̂ �0�ÐA random positive definite matrix with

values in the range [0-5].
. X̂�t�ÐA random Gaussian vector with the above

covariance matrix (+127).

With the matrices as defined above, 20 Monte-Carlo

applications of the linear systems were used. For each such

application, the Kalman filter, the Pseudo-RLS algorithm

(with constant forgetting factor � 0:95), the R-SD algorithm

(with R � 1; 2; 3; 4), and the R-LMS algorithm (for

R � 1; 2; 3; 4) were tested. The following graphs present

averages of the Mean-Squared Errors between the obtained

estimations and the true state-vectors for 100 temporal

points. Fig. 2 presents the R-SD results, Fig. 3 presents the

R-LMS results, and Fig. 4 shows the comparison between all

the discussed algorithms.
Several properties can be observed in the obtained

results:

1. Raising the value of R in the R-SD and the R-LMS
seems to improve the convergence in the initial part,
but, on the other hand, causes a degradation in the
steady state performance. Bearing in mind that these
tests were applied on time-invariant linear system
(all the above matrices are fixed in time), we can say
that raising the value of R improves tracking
performance.

2. As expected, the Kalman filter gives the best possible
performance. The Pseudo-RLS is the next best
method. The worst method is the R-LMS (R=1).

However, for all the approximated methods (P-RLS,
R-SD & R-LMS) the performance is quite close to the
ideal Kalman filter results.

5.2 Part IIÐThe Image Sequence Reconstruction
Problem

The two tests presented in this part are based on two
synthetic sequences, each containing 100 images of size
�50� 50� pixels. These sequences serve as the ideal images.
The two measured image sequences were generated from
these ideal sequences, by blurring each image using �3� 3�
uniform kernel, decimation using 2:1 decimation ration on
each axis, and adding zero mean Gaussian white noise with
� � 5 (the dynamic range of the gray level in the images is
0-255). Thus the measured sequences contain 100 images of
size �25� 25� pixels each. These dimensions were chosen in
order to shorten the simulations run-time and to overcome
the memory limitations posed by MATLAB.

The R-SD and the R-LMS algorithms were applied using
five iterations per each time point. In all cases, the
initialization image at t � 0 was chosen to be a bilinear
interpolated version of the first measured image. The
applied regularization in all the tests was the Laplacian
operator, using relative weight � � 0:02. In the reconstruc-
tion process, the true motion, blur and decimation operators
were assumed known.

In Fig. 5, the results of the first test are given. In order to
illustrate the temporal axis, the first, the 25th, the 50th, the
75th, and the 100th images of each sequence are given. The
motion in this sequence consist of global zoom in and out
and global translation motion. The given sequences are A:
The ideal sequence; B: The measured sequence; C: Bilinear
interpolation of the measurement sequence; D: The R-LMS
results without regularization; E: The R-LMS results with
regularization; and F: The R-SD results with regularization.
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Fig. 8. The MSE for the R-SD and the R-LMSÐresults of the second sequence.



Similar to this figure, Fig. 6 presents the results for the

second sequence. The motion in this sequence consist of

global constant rotation while zooming in and out. Fig. 7

and Fig. 8 gives the MSE for these sequences, obtained from

the R-SD and the R-LMS (with and without regularization)

algorithms.
Peak-SNR values can be directly evaluated from the last

two graphs by the relation PSNR � 10 log10
2552

MSE . For

completeness, the mean MSE, together with the mean

PSNR values for t � 51ÿ 100 is given in Table 1 for the two

sequences.
From these results we can conclude the following:

1. In both examples, using any of the two proposed
reconstruction methods, there is a clear improve-
ment both in the resolution quality and in the
suppression of noise and blur degradation effects.

2. Regularization improves the performance in both
examples.

6 SUMMARY aND CONCLUSIONS

In [1] we have presented two novel algorithms for image

sequence reconstruction from down-sampled, blurred, and

noisy measurementsÐthe R-SD and the R-LMS. In this

paper we analyze the performance of these algorithms. The

presented analysis includes theoretic and simulation based

results, demonstrating the strength of these dynamic

estimation algorithms. A connection between the exact

Kalman filter and the forgetting factor in the RLS algorithm

is found and used. This way we relate the Kalman filter and

the proposed algorithm's performances. A special and

unique part of this paper is devoted to the question of the

R-SD complexity (memory and computations). We have

shown that the propagated (in time) information matrix

remains sparse, with very low population rate. This result,

which was obtained using probabilistic considerations,

ensures that the R-SD is indeed a practical algorithm.
We should point out that the application of the proposed

algorithms assumes exact knowledge of the motion between

images and the blur operators. This is also the assumption

underlying the analysis we perform. In practice these have

to be estimated from the given data before or during the

application of our algorithms. It is quite clear that these, the

motion estimates in particular, strongly affect the perfor-

mance of our algorithms and the quality of the resulting

images. Further work, in an attempt to quantify these

effects, combining analytical efforts with experiments in

applying these algorithms to real data, is in progress.
As last point we mention that the obtained algorithms

require the determination of several parameters such as

�Ðthe forgetting factor, �Ðthe SD step size, and �Ðthe

smoothness strength. Currently, the method to choose these

parameters' values is by trial and error. Further work is

currently underway in an attempt to develop more precise

recommendations for these parameters.

APPENDIX A

The Temporal Change of f ^XPÿRLS�t�gt>0

Lemma A.1. The sequence fX̂PÿRLS�t�gt>0 satisfies the follow-
ing property for all t > 1:

�D �4 sup
t>1

E



X̂opt�t� ÿG�t�X̂opt�tÿ 1�




n o
<1: �A:1�

Proof. Let us first bound the spectral norm of the following
auto-correlation matrix:

���t� �4 E
�h
X̂opt�t� ÿG�t�X̂opt�tÿ 1�

i
h
X̂opt�t� ÿG�t�X̂opt�tÿ 1�

iT�
;

�A:2�

using the relations (3.9) and (3.1):

X̂PÿRLS�t� �
h
I ÿK�t�HA�t�

i
G�t�X̂PÿRLS�tÿ 1�

�K�t�Y A�t� �A:3�

Y A�t� � HA�t�X�t� �NA�t�
� HA�t�G�t�X�tÿ 1� �HA�t�V �t� �NA�t�: �A:4�

Combining these relations we get:

X̂PÿRLS�t� ÿG�t�X̂PÿRLS�tÿ 1�
� K�t�

h
HA�t�G�t�

h
X�tÿ 1� ÿ X̂PÿRLS�tÿ 1�

i
�NA�t�

�HA�t�V �t�
i
:

�A:5�
Thus, the matrix ���t� can be represented as:

���t� �K�t�HA�t�
h
G�t���tÿ 1�GT �t� �Qÿ1�t�

i
HT
A�t�KT �t� �K�t�Wÿ1

A �t�KT �t�;
�A:6�
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TABLE 1
Mean MSE and PSNR for the Two Sequences



where we have defined

��tÿ 1� �4

E

(h
X̂PÿRLS�tÿ 1� ÿX�tÿ 1�

ih
X̂PÿRLS�tÿ 1� ÿX�tÿ 1�

iT)
:

Taking spectral norm on both sides of the (A.6) we get:


���t�



 � 


K�t�HA�t�




2 


G�t�


2

�



��t�




� 


Qÿ1�t�



� �

�



K�t�Wÿ1

A �t�KT �t�



:

�A:7�
From the Kalman filter equations we have that

I ÿK�t�HA�t� � P̂ �t� ~Pÿ1�t�, where P̂ �t� is the Kalman

estimation error covariance matrix and ~P �t� is the

Kalman prediction error covariance matrix. Since

P̂ �t� � ~P �t�, we get that:

0 � I ÿK�t�HA�t� � I )



K�t�HA�t�





�



I ÿ P̂ �t� ~Pÿ1�t�




 � 1�



P̂ �t� ~Pÿ1�t�




 � 2:
�A:8�

The matrix ��tÿ 1� is the Pseudo-RLS estimation error

covariance matrix. Based on the result of Theorem 3.1.2

w e h a v e t h a t ��t� � L̂ÿ1�t� <1. T h e n o r m

kK�t�WA�t�KT �t�k is bounded since:


K�t�Wÿ1
A �t�KT �t�




 � tr
n
K�t�Wÿ1

A �t�KT �t�
o

� tr
n
KT �t�K�t�Wÿ1

A �t�
o

� N



KT �t�K�t�Wÿ1

A �t�





� N



KT �t�K�t�




 � 


Wÿ1
A �t�




:
�A:9�

The norm of KT �t�K�t� is bounded by:


KT �t�K�t�



 � 


�1� ��t�

�2
P̂ �tÿ 1�HT

A�t�h�
1� ��t�

�
HA�t�P̂ �tÿ 1�HT

A�t� �Wÿ1
A �t�

iÿ2

�
h�

1� ��t�
�
HA�t�P̂ �tÿ 1�HT

A�t� �WT
A �t�

iÿ1

HA�t�P̂ �tÿ 1�k

�
�

1� ��t�
�2

N2



HT

A�t�HA�t�





�



P̂ �tÿ 1�




2

�



Wÿ1

A �t�



 <1:

�A:10�
Inserting all the above results into (A.7) and using the

facts kG�t�k; kHA�t�k; kWÿ1
A �t�k; kQÿ1�t�k <1 we get

that k���t�k � C <1. To complete the proof we observe

that:

E

(


X̂opt�t� ÿ X̂opt�tÿ 1�



)

� E
( ���������������������������������������������������������������������������������������������������h

X̂opt�t� ÿ X̂opt�tÿ 1�
iT h

X̂opt�t� ÿ X̂opt�tÿ 1�
ir o

�
�������������������������������������������������������������������������������������������������������������
E

(h
X̂opt�t� ÿ X̂opt�tÿ 1�

iTh
X̂opt�t� ÿ X̂opt�tÿ 1�

iovuut
�

���������������������
trf���t�g

p
�

���������������������
Nk���t�k

p
<1:

�A:11�

tu

APPENDIX BÐTHE SPARSENESS OF THE

INFORMATION MATRIX L̂�t�
Definition B.1. A Nearest Neighbor Warp (NNW) Central

Band Limited Sparse (CBLS) matrix of width p is defined as an

�N �N� matrix F which satisfies:

1. 8 1 � i; j � N , and jiÿ jj > p, F�i;j� � 0.
2. 81 � i � N there exists a unique value iÿ p � j�i� �

i� p such that F�i;j�i�� � 1.
3. 81 � i � N Probfj�i�g � �1� 2p�ÿ1 for

iÿ p � j�i� � i� p;
and zero otherwise (uniform PDF), ignoring bound-

aries effects.
4. 81 � i1 < i2 � N

Probfj�i1�; j�i2�g � fj�i1�gProbfj�i2�g
(independence).

This definition implies that F has a specific row-

stochastic form.

Definition B.2. A Central Band Limited Sparse (CBLS) positive

definite �N �N � matrix M which satisfies:

1. 81 � i; j � N , and jiÿ jj > q, M�i;j� � 0
2. 81 � i; j � N , and jiÿ jj � q, M�i;j� 6� 0

is defined as a Full Positive Definite (FPD) CBLS matrix of

width q.

Definition B.3. For a given matrix A 2 IRN�M , NNZ�A�
denotes the number of its nonzero entries. The density of A,

d�A�, is defined as:

d�A� � NNZ�A�
NM

:

Clearly, dfAg � fATg and dfA�Bg � dfAg � dfBg.

The matrix sequence fL̂�t�g we are concerned with is

generated via the following equation:

L̂�t� � ��t�FT �t�L̂�tÿ 1�F �t� �M�t�; �B:1�
where fF �t�g and fM�t�g are given sequences of NNW

CBLS and FPD CBLS matrices, respectively. We intend to

show that, with a sparse initial matrix, the whole

sequence remains sparse. It is clear that every L̂�t� has
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a center band of width 2q � 1 of nonzero entries, so we

will concentrate on the remaining part of these matrices.

To simplify the analysis, we will assume, in the transition

from time �tÿ 1� to t according to (B.1), that the nonzero

entries of L̂�tÿ 1� outside the center band are uniformly

distributed. It should be noted that this assumption results

in a more conservative bound on the density at time t and,

hence, at the steady state stage as well.

Theorem B.1. Consider two matrix sequences: fF �t�gNNW

CBLS matrices of width p and fM�t�g FPD CBLS matrices of

width q. Let the sequence fL̂�t�g be generated via (B.1) with

some initial matrix L̂�0�. Then, the density of the matrices

L̂�t� as t!1 is bounded by:

d
n
L̂�t�

o���
t!1
� 2q � 1

N
� 4p

N
: �B:2�

Proof. We investigate first how the density of L̂�t� is related

to that of L̂�tÿ 1� in (B.1). For that purpose, we consider

the relationship L1 � FTLF �M, where M is an FPSD

CBLS matrix of width q, and F is NNW CBLS matrix of

width p. For L, we have L�k; `� 6� 0 for jkÿ `j � q. Then,

with dfLg, the density of L, we assume:

Prob
n
L�k; `�0; jkÿ `j > q

o
�
N2 � dfLg ÿ

h
N�2q � 1� ÿ q�q � 1�

i
N2 ÿ

h
N�2q � 1� ÿ q�q � 1�

i
� P0:

�B:3�

Or, with N � q we can write:

dfLg � P0 � �1ÿ P0� 2q � 1

N
: �B:4�

By Definition B.1, the matrix F can be written as:

F �
XN
i�1

EiE
T
j�i�; �B:5�

where Ei is the ith column of the Nth order identity

matrix, and j�i� is an integer random variable with

uniform probability in the range �iÿ p; i� p�. Through-

out the analysis in the sequel we assume that a sum of

values is zero only if all the values are zero. With this, clearly:

L1�k; `� 6� 0 8jkÿ `j � q: �B:6�
Hence, we concentrate on L1�k; `� for 8jkÿ `j > q. Let:

A �
n
�k; `�; 1 � k; ` � N jjkÿ `j � qg

�A �
n
�k; `�; 1 � k; ` � N jjkÿ `j > qg:

�B:7�

Then, with N � q we can write:

E
h
dfL1g

i
� N

2 ÿP�k;`�2 �A Q�k; `�
N2

; �B:8�

where Q�k; l� � fL1�k; `� � 0g. For �k; `� 2 �A:

L1�k; `� � ET
k L1E`

� Et
k

XN
i�1

Ej�i�ET
i

 ! XN
m�1

XN
r�1

L�m; r�EmE
T
r

 !
XN
s�1

EsE
T
j�s�

 !
E`

�
XN
i�1

XN
m�1

XN
r�1

XN
s�1

L�m; r�
�
ET
k Ej�i�

��
ET
i Em

�
�
ET
r Es

��
ET
j�s�E`

�
:

Since ET
i Em only if i � m and ET

r Es � 1 only if r � s, we

get:

L1�k; `� �
XN
i�1

XN
s�1

L�i; s�
�
ET
k Ej�i�

��
ET
j�s�E`

�
:

Now, clearly, L1�k; `� � 0 if L�i; s��ET
k Ej�i���ET

j�s�E`� �
0 for all 1 � i; s � N . Defining:

ELAD AND FEUER: SUPER-RESOLUTION RECONSTRUCTION OF IMAGE SEQUENCES 831

Fig. 9. The non-ª1º multiplied probabilities in equation (B.8).



R�k;`��i; s� � Prob L�i; s�
�
ET
k Ej�i�

��
ET
j�s�E`

�
� 0

n o
;

we have Q�k; `� �QN
i�1

QN
s�1 R�k;`��i; s�. From (B.5):

R�k;`��i; s� � Prob
n
L�i; s� � 0 or k 6� j�i� or `�s�

o
� Prob

n
L�i; s� � 0

o
� Prob

n
k 6� j�i�

o
� Prob

n
` 6� j�s�

o
ÿ Prob

n
L�i; s� � 0 and k 6� j�i�

o
ÿ Prob

n
L�i; s� � 0 and ` 6� j�s�

o
ÿ Prob

n
k 6� j�i� and ` 6� j�s�

o
� Prob

n
L�i; s� � 0 and k�i� and ` 6� j�s�

o
:

Ignoring boundaries effects, we have:

Prob
n
k 6� j�i�

o
�

1 jkÿ ij > p

2p
2p�1 jkÿ ij � p:

8<:
Since, for �i; s� 2 A;L�i; s� 6� 0, for �i; s� 2 A we have:

R�k;`��i; s� �
1ÿ 1

�2p�1�2 jkÿ ij � p and j`ÿ sj � p

1 jkÿ ij > p or j`ÿ sj > p:

8<: �B:9�

Similarly, for �i; s� 2 �A:

R�`;`��i; s� �
1ÿ P0

�2p�1�2 jkÿ ij � p and j`ÿ sj � p

1 jkÿ ij > p or j`ÿ sj > p:

8<: �B:10�

Then, from all the above we get:

Q�k; `� �
YN
i�1

YN
s�1

R�`;`��i; s� �

1ÿ P0

�2p�1�2
� ��2p�1�2

jkÿ `j > p� q

1ÿ P0

�2p�1�2
� ��2p�1�2ÿf

� 1ÿ 1
�2p�1�2

� �f
p� q � jkÿ `j > q;

8>>><>>>:
�B:11�

where f � �2p� q ÿ jkÿ `j � 1��2p� q ÿ jkÿ `j � 2�=2.

Observing (B.9) and (B.10), we note that most of these

terms are ª1º and there are exactly �2p� 1�2 exceptions.

For jkÿ `j > p� q, all these exceptions fall in region

�i; s� 2 �A, which explains the upper term in (B.11). If

q < jkÿ `j � p� q, some different probabilities are taken

from region �i; s� 2 A, as shown in Fig. 9.
The above result conforms with our expectation that,

near the central band, the probability to get zero entry in
L1 is smaller. Returning to (B.8), we get:

E
h
dfL1g

i
� N2 ÿP�k;`�2 �A Q�k; `�

N2

�
N2 ÿ

h
N2 ÿN�2q � 4p� 1�

i
1ÿP0

�2p1�2
� ��2p�1�2

N2

ÿ
2N 1ÿ P0

�2p�1�2
h i�2p�1�2

�P2p
k�1

�2p�1�2ÿ1

�2p�1�2ÿP0

h ik�k�1�
2

N2
:

Denoting:

��p; P0� �
X2p
k�1

�2p� 1�2 ÿ 1

�2p� 1�2 ÿ P0

" #k�k�1�
2

and

"�p; P0� � 1ÿ P0

�2p� 1�2
" #�2p�1�2

� 1ÿ P0;

we get:

E
h
dfL1g

i
�
N ÿ

h
N ÿ �2q � 1�

i
"�p; P0�

N

�
h
4pÿ 2��p; P0��"�p; P0�

N

� E
h
dfLg

i
�
h
N ÿ �2q � 1�

ih
1ÿ P0 ÿ "�p; P0�

i
N

�
�4pÿ 2��p; P0�

i
��p; P0�

N
:

In steady state, we get that the density is constant which

means that P0 satisfies the following equation:h
N ÿ �2q � 1�

ih
"�p; P0� ÿ 1� P0

i
� 2
h
2pÿ ��p; P0�

i
"�p; P0�:

By using (B.4):
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Fig. 10. The actual and the bound steady-state densities of 200� 200
matrices L̂�t� for various values of p and q.
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Fig. 11. The density as a function of time for full and empty initialization matrices.

Fig. 12. Empirical results for the probabilities to get a nonzero entry as a function of the position in the matrix L̂�t�.



h
N ÿ �2Q� 1�

i
�1ÿ P0� �

N
h
1ÿ dfLg

i
)
h
N ÿ �2q � 1�

i
"�p; P0� ÿN

h
1ÿ dfL1g

i
�

2
h
2pÿ ��p; P0�

i
"�p; P0�;

which in turn gives:

dfL1g �
N ÿ "�p; P0�

h
N ÿ �2q � 1�

i
� 2"�p; P0�

h
2pÿ ��p; P0�

i
N

"
�
��p;P0�>0

N ÿ "�p; P0�
h
N ÿ �2q � 1�

i
� 4��p; P0�p

N

"
�
"�p;P0�1ÿP0

N ÿ �1ÿ P0�
h
N ÿ �2q � 1�

i
� 4�1ÿ P0�p

N

"
�
P0�1

N ÿ
h
N ÿ �2q � 1�

i
� 4p

N
� 2q � 1

N
� 4p

N
;

�B:12�
which is the statement of this theorem. tu
Simulations carried out show that indeed the obtained

expression is a tight upper-bound on the actual resulting
density of L̂�t�. The actual values are very low, close to the
density of the matrix M, thus ensuring that L̂�t� is indeed
very sparse. Fig. 10 shows the values of the actual steady
state densities for 200� 200 matrices L̂�t� for various values
of p and q (in the range 1 to 8). On the same axes, the value
of the bound are given. As can be shown, the approxima-
tion of fL̂�t�g as a linear function of both q and p is very
good and the approximation gives a very good guess of the
actual values.

Fig. 11 shows dfL̂�t�g as a function of time for two
initializations, empty and full matrices L̂�0�. This 200� 200
matrix corresponds to p � 2 and q � 3. The value of the
bound is also given on the same axesÐ�7� 8�=200 � 0:075.

Fig. 12 presents an empirical map of the probabilities of
getting a nonzero value at each position for a 100� 100
matrix. This probabilities map was obtained for p � 3 and
q � 4 by creating 1,000 random generations of L̂�50� and
averaging the probabilities. As can be seen, our assumption
that the density is exponentially decaying as a function of
the diagonal index is valid. Hence, our use of the uniform
distribution leads indeed to an upper bound in steady state.
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