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Superresolution Restoration of an Image
Sequence: Adaptive Filtering Approach
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Abstract—This paper presents a new method based on adaptive
filtering theory for superresolution restoration of continuous im-
age sequences. The proposed methodology suggests least squares
(LS) estimators which adapt in time, based on adaptive filters,
least mean squares (LMS) or recursive least squares (RLS).
The adaptation enables the treatment of linear space and time-
variant blurring and arbitrary motion, both of them assumed
known. The proposed new approach is shown to be of relatively
low computational requirements. Simulations demonstrating the
superresolution restoration algorithms are presented.

Index Terms—Adaptive filters, least mean squares, recursive
least squares, regularization, restoration, superresolution.

I. INTRODUCTION

SIGNAL restoration—linear deblurring and noise suppres-
sion—is widely treated in the literature for a variety of

applications [1]–[3]. Single image restoration has become
a classic chapter in image processing theory [1], with a
direct generalization to the restoration of continuous image
sequences [2], [3]. The termcontinuouscorresponds to the
basic assumption that the image sequence contains one filmed
scene. A standard video camera can be viewed as a source for
such signals. Suppressing an additive noise in a continuous
image sequence is an important preprocessing stage in many
applications such as image sequence coding and computer
vision algorithms. Deblurring such a signal is an important
tool for the enhancement of visual data before presentation to
the human viewer.

Despite its importance, this restoration problem has not been
as extensively treated as the single image counterpart problem.
We believe that this fact could partly be explained by the
amount of computations and memory required when applying
even the simplest restoration algorithm to such signals. The
existing restoration methods for image sequences [2]–[6] are
those with a basic simplicity which reduces them to having
reasonable computational and memory requirements, traded-
off by performance. The simplicity is obtained by assuming
stationarity, causality in the image plane, and locality of the
filter applied in various combinations. Among these algorithms

Manuscript received January 1, 1996; revised April 8, 1998. This work was
supported by the Israel Science Foundation founded by the Israel Academy
of Sciences and Humanities, and by the Technion V. P. R. Fund, N. Haar and
R. Zinn Research Fund. The associate editor coordinating the review of this
manuscript and approving it for publication was Dr. Jun Zhang.

M. Elad is with HP Laboratories–Israel, Technion City, Haifa 32000, Israel
(e-mail: elad@hpli.hpl.hp.com).

A. Feuer is with the Department of Electrical Engineering, Technion—Israel
Institute of Technology, Haifa 32000, Israel (e-mail: feuer@ee.technion.ac.il).

Publisher Item Identifier S 1057-7149(99)01567-5.

are the three-dimensional (3-D) local Kalman filter [4], 3-D
median filter [5] and motion-compensated simple averaging in
the time axis [2].

The richness of the concerned signal—continuous image
sequence—affords a new and unique possibility: Restoring
the signal with an improved resolution. This idea is based
on the fact that the filmed data is measured for each image in
a different position (either because of camera motion or the
motion of objects), and thus, several images can be combined
to create an enhanced resolution output image. This idea has
recently attracted attention and several algorithms have been
proposed to estimate the so-called superresolution image from
a given continuous image sequence [7]–[13]. Note that the
superresolution problem is highly connected to the restoration
issue presented earlier [13].

There are several known methods applicable to the problem
of generating a superresolution image [7]–[13]. All these
methods treat the problem of reconstructing one superres-
olution image from several warped, blurred, downsampled
and noisy versions of it. We refer to this problem as the
classicsuperresolution problem. Generally speaking, the above
methods can be divided into two major groups. The first
group—[7]–[9]—consists of the methods that must rely on
several limiting assumptions such as linear space invariant
(LSI) blur, global translational motion, white noise, and more.
The remaining methods—[10]–[13]—can principally treat the
most general case of LSV blur, nonwhite and nonhomoge-
neous additive noise, arbitrary geometric warp, and different
measured resolutions. In [13], a unified approach toward the
classic superresolution problem is proposed, which generalizes
the methods proposed in [10] and [11], and connects them to
the well-established theories of restoration and reconstruction.
This paper is based on the above unified results.

Generalizing the approach suggested in [13], we can suggest
a time and space filter operating on the given image sequence
and producing, as an output, a restoredsequence of imagesof
higher resolution. The proposed approach enables both restora-
tion from a linear blurring and noise suppression, together
with superresolution image reconstruction. This methodology
is based on the application of adaptive filtering theory in the
time axis. This idea can be applied using either the least mean
squares (LMS) or the recursive least squares (RLS) algorithms
[14], [15]. The new approach is shown to be capable of
treating any chosen output resolution, linear time- and space-
variant blur, and motion flow. This concept gives progressive
estimation of the output image sequence at a higher resolution.
Since the proposed methodology is a direct generalization of
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the classic superresolution problem, the use of regularization
is as important here as it is for the classic superresolution
problem.

Regarding the computational complexity of the proposed
restoration algorithms, we show in this paper that the LMS
and the RLS versions used in our algorithms require an order
of operations per one output image, where is the
number of required output pixels in each image. As such,
this result implies that the proposed methodology results in
computationally very efficient algorithms.

The paper is organized as follows. Section II briefly dis-
cusses the classic superresolution problem and the proposed
reconstruction algorithms as given in [13]. Section III presents
a new model for the task of restoration of a continuous image
sequence with an improved resolution, based on the restoration
method shown in [13]. This model motivates the construction
of the new methodology and its application using LMS, and
pseudo-RLS algorithms. Section IV gives a review of the com-
putational complexity of the proposed algorithms. Simulations
and analysis of the LMS and pseudo-RLS algorithms are given
in Section V. Section VI summarizes the results of this paper.

II. THE CLASSIC SUPERRESOLUTIONPROBLEM

In this section, we give a short review of the classic
superresolution problem and its solution. Further details can
be found in [13]. Given are low-resolution images of the
same scene, each containing pixels.
The images are represented as vectors, ordered column-wise
lexicographically for the convenience of matrix representation.
The desired superresolution image, contains pixels,
where typically Equality corresponds to
simple simultaneous restoration from several measurements,
producing the same output resolution. Let us assume we know
the blur function and the geometric warp function between
each measured image and arbitrary reference image. Then,
the measured images are assumed to be driven from a source
image through the following equations:

(1)

where the involved matrices and vectors are as follows.

1) represents the decimation operator (size
2) represents the space-variant blur matrix (size

3) represents the geometric warp matrix, (size

4) represents an additive random noise, with autocor-
relation matrix (size We further
assume that the noise between different measurements
is uncorrelated

The decimation, the blur, the warp and the autocorrelation
matrices are assumed known (see [13] for detailed description
of this assumption). The superresolution estimated image
can be obtained by minimizing the weighted squared error:

(2)

where the first term penalizes for the nonsmoothness
of the obtained estimation. This term is a regularization
mechanism, which algebraically regularizes the problem to
have a unique optimal solution, and physically forces the
estimation result to satisfy oura priori knowledge about
the smoothness of the ideal desired image. The matrixis
typically chosen to be the Laplacian operator, and the matrix

reflects our desire to apply locally adaptive smoothness, in
order not to smooth edges.

The weight matrix can be used to give
different weighting for different measured images or, within an
image, between different pixels, according to our confidence in
the measurements. This confidence is dictated by the additive
noise autocorrelation matrix—low variance noise translates to
higher confidence.

Minimizing with respect to is a classic least squares
(LS) formulation, yielding the following set of linear
equations:

(3)

In order to solve the above set of linear equations, we have
to invert a sparse matrix, which is practically
impossible. Iterative methods, such as the steepest descent
(SD), conjugate gradient (CG) and error relaxation methods
such as the Jacoby, the Gauss–Seidel, and the successive
overrelaxation (SOR), can be considered [16]. Using these
algorithms, the convergence to the optimal solution is assured
and is quite rapid (about 5–15 iterations are required [13]).

The above mentioned algorithms are adequate for tasks
such as satellite fusion of several images and in combining
several sources to improve targets detection and identification,
or generating an improved still picture in VCR’s. However,
when applied to a typical video scene, the production of one
superresolution output image cannot be regarded as a restora-
tion of the scene. The required output should be a sequence
of superresolution images with the same length as the source
sequence and the same geometric behavior. The proposed new
approach overcomes those limitations, presenting a time-space
variant adaptive filter which produces an enhanced output
sequence with the possibility of a superresolution feature.

III. A DAPTIVE FILTERING OF CONTINUOUS IMAGE SEQUENCE

A. The Model and Performance Criterion

Let us start with a modification of our earlier notation
to accommodate for the dependence on time. A measured
sequence of images is given where is the discrete time
index. We assume that there exists an ideal image-sequence
of a fixed higher resolution, and that is generated
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from via

(4)

where is the decimation matrix assumed here to
be constant for all the measurements. The matrix is the

space and time varying blur of theth high-resolution
image, creating theth measured low-resolution image. The
dimensions of these matrices correspond to the resolution
of the images and the resolution of the images
with the downsampling degradation effect. The vector is
the measurement error in the model at timeassumed to be
random noise.

A second equation in the assumed model is an equation
representing the correlation (or development) in time of the
ideal image sequence, given by

(5)

where is the matrix representing the geometric
warp performed on yielding and is this
model equation error, also assumed random noise. The above
equation is deliberately presented in a noncausal form because
of our aim to express an estimation of as a linear causal
combination of the measured imagesas will be shown later.

Combining (4) and (5), a new model can be suggested,
where each of the past measured images can be related
to the present image:

(6)

is an overall model error between the measured image
at and the model at time assumed random noise
with autocorrelation matrix The motivation for
this model comes from our attempt to treat the continuous
image sequence restoration problem in a framework similar
to the one adopted in the previous section. In this case, the

measured images where are
presented as generated from a unique source image in
a similar fashion to the relation given in (1). Applying the
superresolution solution proposed before at timeon the last

measured images we get the following optimality criteria:

(7)

which is similar to the criteria presented in (3) with time
indices appropriately inserted (the only difference is the lack of
the regularization term). is the estimated version of
The matrix serves as a weighting matrix assumed
symmetric and positive definite for all and The optimal
image minimizing is the solution of

(8)

which can be written as

(9)

where

(10)

and

(11)

Let us now assume a large data set, namely,
and that (with This results in an
exponentially decaying weighting of past data. Then (10) and
(11) become

(12)

and

(13)

Furthermore, by simple substitution in (5), it can be observed
that can be decomposed as follows:

(14)

where we define (Identity matrix). Equations (12)
and (13) readily imply that

(15)

B. The Pseudo-RLS Algorithm

Using the model and criterion presented in (5), (6), and
(15), we basically need to solve (9) at each time instantThe
solution of (9) is clearly given by

(16)

However, the direct inversion of raises several difficulties
which render this approach impractical in our case. The main
one is the computational burden required here. In a typical
video application the size of the matrix is (e.g.,
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Fig. 1. First sequence results.

Fig. 2. First sequence—MSE versus time.

for we will be required to invert a 10 10
matrix). This problem also makes the RLS approach (see
[14]), impractical here. Therefore, we need a computationally
efficient way to calculate at each time Since the
criterion is LS, we named, generically, any algorithm that uses

(14) to update and and then efficiently solves (9),
pseudo-RLS algorithm. Namely, the pseudo-RLS algorithm
involves two steps: The time update of the matrices and

and the computation of the updated output image
The matrix can be approximated as a sparse matrix,
using the fact that is sparse band-limited (i.e.,
concentrated on a thin band around the diagonal), and the fact
that the history matrix is weighted by which exponentially
decays its contribution at later time.

There has been a considerable effort in recent years at
solving a linear sparse set of equations (see, e.g.,
[16]–[18]). The proposed methods are divided into two major
classes—iterative and direct. As mentioned earlier, in this
work we have chosen to concentrate on the iterative methods
because of their relative simplicity, their ability to work with
various sparseness forms, their relatively acceptable perfor-
mance, and most important—their property of not requiring the
inverse matrix, which considerably reduces computer memory
requirements.

Among the iterative algorithms, the SD, the normalized SD
(NSD), the SOR, the CG, and the iterated defect correction
(IDC) can be considered as good candidates [16]–[18], which
comprise simplicity and performance.
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Fig. 3. Second sequence results.

In particular, we have used both SD and NSD to iteratively
solve (9). These are given by

(17)

where (constant) for the SD, and

(18)

for the NSD, where At each
time we perform iterations and we initialize at time
using the previous temporal point solution. Namely,

where is the pseudo-inverse of
representing the forward warp operator.

Remark: Another problem with solving (9) may arise with
being singular or with large condition number. This

may happen even if is nonsingular. To alleviate
this problem a regularization term can be added (see [13])
to the LS criterion in equation (7) which, in turn, results in
an additional term in the equation for guaranteeing its
nonsingularity. A commonly used regularization term is of
the form similar to the form used in (2) in
the previous section. Then the upgrading equation for

becomes

(19)

and is guaranteed to be nonsingular.

C. The LMS Algorithm

Further simplification can be achieved by using the type of
approximation used in the literature to get the LMS algorithm
from the SD algorithm. Namely, if we replace in (17) by

and by , we get
the LMS algorithm

(20)

where again, we use such iterations.The initial condition at
each time can be chosen in a way similar to the way it is
presented for the pseudo-RLS, namely,

Note that the above approximation results when, in (14),
Then the optimality criterion becomes the instanta-

neous squared error and the algorithm, at each time instant
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uses only present data to modify the projected image

We have commented earlier, for the pseudo-RLS algorithm,
that adding a regularization term can improve the algorithm
performance. This is applicable here as well. In that case, the
instantaneous squared error contains a second term penalizing
for norm or smoothness features according to requirements.

Initialization of the algorithm can be done by assuming
zero value image at or by choosing an interpolated
version of the first data image. New information in the
scene raises a direct extension of the initialization problem.
Such information correspond to boundaries entering the scene
or hidden objects emerging from occlusion. Since the LMS
algorithm basically performs smoothing in the time axis to
decay noise, and since no history information is given on the
new data, the output value which corresponds to the new data
must be initialized. The recommended approach in such cases
is to use the low-resolution measure data as the initial guess,
interpolated and smoothed adequately.

IV. COMPUTATIONAL COMPLEXITY

A. General

As was explained in the previous section, the estimation
of the restored superresolution sequence comes with sever
computational burden. This is a direct consequence of having
very large dimensional vectors and matrices.

The LMS algorithms are computationally simpler, compared
to the pseudo-RLS. Whereas the pseudo-RLS requires the
update of and at each temporal point, the LMS
does not update, nor stores these values. Beyond this part, the
two algorithms are similar if the same number of iterations is
applied at each temporal point.

Throughout the following computation complexity analysis,
for simplicity, only multiplications are considered. We further
assume the following.

1) The applied algorithm is the SD algorithm.
2) The measurement noise autocorrelation matrix is

3) The blur matrix represents a general spatial-
temporal dependent blur kernel of size

4) The warp matrices and are nearest neigh-
bor warp matrices. As such, each line in these matrices
contains only one nonzero entry equal to one. Thus, there
are no multiplications involved in applying the warp on
a given vector.

5) The regularization term is omitted.
6) The parameter is a predetermined constant.

B. Iterative Solution in the Pseudo-RLS Algorithm

The pseudo-RLS algorithm at timeconsists of three major
steps: 1) Warping the previous output in order to create the
initial solution—no multiplications are involved in this step;
2) Updating the pair and and 3) Performing the

iterations of the SD algorithm. The update of the pair
and requires the following steps.

Fig. 4. Second sequence—MSE versus time.

1) The multiplication require no multiplications,
since all the entries in are one. Each column of this
matrix contains nonzero entries.

2) The computation of requires less than
multiplications.

3) The multiplication requires mul-
tiplications.

4) The multiplications and
require no multiplications because of the con-

tent of
5) Multiplying the above two terms with requires

multiplications, where
is the density of the matrix defined as the
number of nonzero entries in divided by the
total number of the matrix entries.

The application of one iteration of the SD with the updated
pair and requires

1) the multiplication of which requires
multiplications;

2) the multiplication of by which
requires multiplications.

The overall number of multiplications per iterations and
per one output image is therefore

Multiplications
output image

Multiplications
output pixel

(21)

For example, for the case where ,
and with (typical value taken from
the simulations), it is required to perform approximately 650
multiplications per one output pixel. This is roughly equivalent
to the application of 8 8 blur kernel ten times.
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Fig. 5. Third sequence results.

C. The LMS Algorithm

We refer to equation (20) as the set of the operations to
be applied within the LMS algorithm. Each iteration can be
broken into several parts according to the following.

1) The term requires multiplications.
2) The term requires

more multiplications.
3) Multiplying by requires multiplications (by per-

forming it on the vector

The overall number of multiplications per iterations and
per one output image is therefore

Multiplications
output image

Multiplications
output pixel

(22)

For example, for the case where
and it is required to perform approximately 63.75
multiplications per one output pixel. This is roughly equivalent
to the application of 8 8 blur kernel, which is definitely
accepted as applicable in real time.

In the case where a two-dimensional (2-D) filter is time and
space invariant blur function, the structure of its matrix rep-

resentation is a generalized block Toeplitz [1]. This structure
can be exploited to further reduce the required computations
for the implementation of this filter. More details on such
computational savings in this case can be found in [19].

V. SIMULATION RESULTS

In this section, we present three examples, through which
we demonstrate the feasibility of the proposed approach for
superresolution image sequence restoration. In these examples
we demonstrate the performance of the LMS (with and with-
out regularization) and the pseudo-RLS (with regularization)
methods, as were presented in Section III.

The three tests are based on synthetic image sequences,
each containing 100 images of size [5050] pixels. These
sequences serve as the ideal images. The measured image
sequences were generated from the above sequences by blur-
ring each image using [3 3] uniform kernel, decimation of
ratio 2 : 1, and adding Gaussian zero mean white noise with

(the dynamic range of the gray level is 0 to 255).
Thus, the measured sequences contain 100 images of size
[25 25] pixels each. These dimensions were chosen in order
to shorten the simulations run-time and because of the memory
limitations of MATLAB.
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The pseudo-RLS algorithm was implemented using the NSD
iterative algorithm, using ten iterations per each time point. In
all cases, the initialization at was taken to be a bilinear
interpolated version of the first measured image. Initialization
of new information in the scene (i.e., boundary problem) was
taken to be zeros. The regularization in the above tests was
the Laplacian, with regularization parameter In the
restoration process, the actual blur, decimation, and motion
matrices were used. Incorporation of motion estimation into
the restoration process requires the use of motion estimation
algorithms, which are beyond the scope of this paper. This
is the reason we used synthetic sequences to begin with. The
LMS was used with only one iteration at each time

In Fig. 1, the results of the first test are presented. In order
to illustrate the temporal axis, the first, 25th, 50th, 75th, and
100th images of each sequence are given. The motion in
this sequence consist of global translation motion. The given
sequences are: A—ideal sequence; B—measured sequence;
C—bilinear interpolation of the measurements; D—LMS re-
sults; E— regularized LMS results; F—regularized pseudo-
RLS results.

Fig. 2 presents the MSE between the restored and the ideal
sequences for each method in the above test. The MSE is
presented using logarithmic time scale in order to give an
expanded view of the initialization process.

Similar to Fig. 1, Figs. 3 and 5 present the results for
the second and third sequences. The motion in the second
sequence consists of global zoom in and out and global rotation
motion. The motion in the third sequence consists of global
translational motion. Figs. 4 and 6 give the restoration MSE
for these tests.

From the figures, we can observe the following.

1) In all the proposed restoration methods in all examples
there is a clear improvement both from the resolution
quality and the suppression of the degradation effects.

2) The LMS method without regularization is slightly
weaker, compared to the regularized LMS and pseudo-
RLS methods. This is true both for the convergence rate
at the initialization period and the steady state error.

3) As expected, the pseudo-RLS method has a shorter
initialization period, compared to the LMS algorithm.

VI. SUMMARY AND CONCLUSION

A new general linear model has been presented here for
the problem of superresolution restoration of continuous im-
age sequence. This model is a generalization of the model
used by the classic superresolution problem as presented in
[13]. Based on this model and the adaptive filtering the-
ory, several algorithms have been proposed, enabling the
restoration of a superresolution image sequence from a low-
resolution space- and time-variant blurred image sequence,
assuming the existence of additive white noise and arbi-
trary motion. These algorithms are based on the RLS and
the LMS methods, allowing for the incorporation of prior
knowledge about the solution into the restoration process as
a regularization term.

The approach presented in this work was shown to be
applicable with an order of multiplications per image, in

Fig. 6. Third sequence—MSE versus time.

various forms, where is the number of pixels in one output
image. The LMS and pseudo-RLS algorithms were tested in
extensive simulations, giving encouraging results. A sample
of these results is presented here.

There are several important open issues related to the
presented algorithms:

1) the convergence properties of the LMS algorithm for
the treated problem;

2) approximation of the matrix in the pseudo-RLS
algorithm as a sparse matrix for all;

3) the need to estimate the motion and analyze the effects
of its errors on the proposed restoration quality.

These questions and others are currently under investigation.
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