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Performance  Analysis of the LMS Algorithm with a 
Tapped  Delay  Line  (Two-Dimensional  Case) 

SHAUL  FLORIAN 

Abstract-This paper  presents  exact  analytical  results of the LMS 
performances on correlated  data  vectors.  The  case  addressed  here  is 
of data  vectors  constructed  from  a  tapped  delay  line.  While  the  results 
are  for  the  two-dimensional case, they do provide  indications of the 
effect  this  structure of data  vectors, so common  to LMS applications, 
has  on LMS performance. They show conclusively  the  possibility of 
bias  in  weight  vector  mean  value  and its source.  There  is  also  a  clear 
increase in MSE values  over  the  case  with  uncorrelated  data  and  a 
decrease of the  convergence  region of adaptation  coefficient.  The  re- 
sults  presented  here  strongly  suggest  that  the  correlation  inherent to 
the  above-mentioned  data  vectors  could be a  factor in some  applica- 
tions. 

I. INTRODUCTION 

T HE least mean square (LMS) is one of the most com- 
monly used algorithms in adaptive signal processing. 

As a  result, many researchers have investigated its con- 
vergence and  performance  properties.  However, to date, 
the  analysis is still behind,  and  the algorithm “works” 
for  cases which are not supported by analytical  results. 

The  basic problem for which the LMS is designed can 
be described as  follows. Sequences of n-dimensional vec- 
tors (X@)) and  scalars { d ( k ) )  are measured. It is desired 
to find a weight vector W so that 

y(k)  = W‘X(k)  0 )  
is as close  to d(k) as  possible  in  the mean square  error 
(MSE) sense.  Namely,  a W that will minimize 

~ ( k )  = E{e(k)2)’ 

= E([d(k) - WTX(k)12}. (2) 

Assuming that  the measured data are  stationary,  the so- 
lution is well known and of the form 

W* = R-IP (3) 

where 

R = E{X(k)  X ( k ) T }  (4) 

and 

P = E{d(k) X ( k ) ) .  ( 5 )  
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This  optimal solution can also  be obtained recursively 
through the steepest descent (SD) algorithm, provided R 
and P are  available.  The LMS is applicable for  the more 
common situation when R and P are not available.  It  can 
be viewed as the simplest approximation of the SD algo- 
rithm and has the form 

W(k + 1) = (I - 2pX(k)  X(k)*) W(k) + 2pd(k) X(k)  

(6)  
where W(k) is a  vector of weights updated every sampling 
interval and p > 0 is a constant parameter which deter- 
mines the step size. 

To be  able to carry out  a complete analysis, resulting 
in convergence conditions for both the E{ W(k))  and  the 
MSE as well as quantitative  performance  investigation, 
the sequence ( X ( k ) )  had to  be assumed statistically in- 
dependent in time  (see, e.g., [1]-[4]). Unfortunately, in 
most applications of this algorithm this assumption does 
not hold, and then the results available  are considerably 
more limited. References [5]-[8] provide a sample of the 
existing results when the  above assumption does not hold. 
Generally, these results either depend on assuming a small 
step size p or  are in the form of bounds on  the algorithm 
performance. We  refer  the  reader to [8] for  a more de- 
tailed overview of previous results. 

In this paper, we try to isolate  one main source of de- 
pendence in the sequence { X ( k ) }  in  many applications. 
We  consider  the  case where X(k)  is constructed from a 
tapped delay line  (TDL) , namely, 

X(k)  = [x@), x(k - 1), * * * , x(k - n + l)lT (7) 

where {x(k)) is a  scalar i.i.d. sequence,  Gaussian, with 
zero mean and variance 02. We note that even with this 
independence assumption on ( x ( k ) )  we  have 

0 0 * . *  0 0 

I . .  0 0 

E{X(k)  X(k  - 1)‘) = :2 0: # 0. 

. .  
0 0 . . .  o2 

Hence,  there is a  clear correlation in { X ( k ) )  which is in- 
herent in the structure (7), and the effects of this  correla- 
tion are the subject of our  investigation. 

The analysis is still very difficult, and even  the conver- 
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gence of E( W ( k ) }  to the optimal  value W* is not guar- 
anteed,  as will be shown in  the  sequel.  However, we limit 
our discussion to  the two-dimensional case, through which 
we  introduce  an  approach  that may be applicable  to higher 
dimensions. For this case,  we  derive  the  exact equations 
governing the  behavior of the E( W ( k ) }  and  the MSE. 
From  these  equations,  we  observe  that while the transient 
behavior of E{ W(k)}  is similar to the  case when { X ( k ) }  
are  independent,  there  is  here  a possibility for bias in the 
steady state.  The  behavior of the MSE is different both in 
its transient and in its steady-state  values.  Some simula- 
tion experiments were performed to verify the  analytical 
results, and a  sample of their results is presented here. 

11. CONVERGENCE OF WEIGHT MEAN VALUES 
Recall that we are dealing with a two-dimensional case, 

namely , 

Denoting 

~ , ( k )  = ~ ( k )  - wf, i = I ,  2 (9) 
and substituting both (8) and (9) in (6 ) ,  we get 

V&k + 1) = (1 - 2px(k)2) V,(k) 

- 2px(k) x(k - 1 )  V2(k) + 2pe*(k) x(k) 

(10) 
V2(k + 1 )  = -2px(k) x(k - 1) V,(k) 

+ ( 1  - 2px(k - 1)2) V&) 

+ 2pe*(k) x(k - 1) (1 1 )  

where 

e*(k) = d(k) - x ( ~ ) ~ w * .  (12) 

Since {x@)} is i.i.d., we observe that both Vl(k)  and V2(k) 
are independent of x(@. It can also  be readily verified that 

E{" * ( k)  X @ ) }  = 0;  (13) 
hence, taking the expected value of both sides of (IO) and 
(1 1 )  will result in 

E{ Vl(k + I)} = (1 - 2pa2)   E{   Vl(k)}  (14) 

E{ V2(k + I)} = E{ V2(k)} - 2pE{x(k - 1)2  V2(k)}. 

(15) 

V,(k) = x(k - 1)2 V&); (16) 

Let us now define 

then from ( 1  1 )  we get 

v5(k + 1) = 2px(k)3 x(k - 1) ~ , ( k )  

+ ( 1  - 2px(k  - V,(k) 

+ 2pe*(k) x(k - I ) ,  (17) 
! 

or by taking the expected value on both sides,  we  have 

+ 2p  r" 0 

LE{e*(k) x(k 

where 

1 - 2pa2 0 0 

A = [; ;2 -2p  j* 
-2p.a 

This  equation will converge if all  eigenvalues of A are 
inside the unit circle.  The  eigenvalues of A are 0, 1 - 
2p.a2, 1 - 2p.a2, so the  convergence  is guaranteed if 

(20) 
This condition is identical to the condition derived when 
{X@)} are assumed independent.  However,  the steady- 
state values here will be 

y = po < 1. 2 

E{Vl(+ = 0 

E{V2(oo)) = -7 E{e*(k) x(k - I)}, (21) 

so whether E{W2(k)}  will converge to W: depends, on 
whether E{e*(k)  ~ ( k ) ~  x(k - 1)) is  equal  to  zero or not. 
In many cases, it is  equal to zero  [e.g., (d(k) ,  x (k ) )  jointly 
Gaussian], but  we will show later  a  case where it is not 
zero. 

2P 
0 

III. CONVERGENCE OF WEIGHT VARIANCES AND MSE 
As was argued in [2 ]  and [4], convergence of the mean 

does not guarantee finite variances,  and  hence, is not suf- 
ficient to  guarantee algorithm convergence.  To investi- 
gate the  behavior of weight variances,  we square both 
sides of (10) and (1  I ) ,  take expected values, and make 
use of the independence between x(k)  and V, (k ) ,  V2(k) to 
get 
E{Vl(k + l)'} = (1 - 4pa2 + 12p2.a4) E{ Vl(k)2}  

+ 4p202E{x(k - 1 ) 2  V2(k)2} 

+ 4 p E { ( 1  - 2 p m 2 >  e*"() V , (k ) }  

+ 4p E{e*(k)2 

- 8 ~ ~ E { x ( k ) ~  x(k - 1 )  e*(k) V2(k)} 

(22) 
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E{V2(k + l)’} = 4p2a2E{x(k  - 1)’ Vl(k)’> V,(k) = ~ ( k  - 1) Vl(k) 

+ E{V’(k)’} - 4 p E { x ( k  - 1)’ VZ(k)’} V,(k) = x(k - 1) V’(k) 

+ 4 p 2 E { x ( k  - 1)4 V’(k)’} 

+ 4p2E{x(k - 1)’  e*(@’} 

- 8p2E{x(k) x(k  - 1)’  e*(k) Vl(k)>  

and use (10) and (1 1) to get 

V3(k + 1) = x(k)(l - 2px(k)’> V,(k) - 2px(k)’ V,(k) 

+ 2pe*(k) x(k)’ (24) 

V4(k + 1) = -2px(k)’ V3(k) + ~ ( k )  (1 - 2px(k - 1)’) 
+ 4pE{(1 - 2/4k - 1)’) - V2(k) + 2pe*(k) x(k) x(k - 1). (25) 

Now, squaring (17), (24), and (25), taking the expected * x(k - 1) e*@) V2(k)3. (23) 

Comparing this to similar  developments in [2] or [4],  we 
note a considerable complication due  to  the correlations 

values,  and using the  independence of x&), we  get, to- 
gether with (22) and (23), 

present here. To proceed, we define U(k + 1) = FU(k) + 4p2g + 4 p b ( k )  - 8p2c(k )  (26) 

where 

and 

F = a’(1 - 12p.a’ + 60p2a4) I 

g =  

b(k)  = 

c(k) = 

[k)’}, E{ V5(k 
4 p 2 a 2  1 

-4P 

- 4 p ’  1 
12P204 1 

I 

-12p.$ 1 

>’>I’ 

4P ’ 

4p2a2 

12p2a4 

0 

0 

‘ E ( X ( ~ ) ~  e*(k) VI@)} + E { x ( ~ ) ~  x(k  - 1) e* (k)  V2(k)} 

E{x(k)  x(k - 1)’ e*(k) Vl(k)> + E { x ( k  - 1)3 e*&) V2(k)) 

E { x ( ~ ) ~  e*@) V l ( k ) )  + E { x ( ~ ) ~  x(k - 1) e* (k) V2(k)} 

E{x(Q3 x(k - 1)’ e*@) V , (k ) }  + E{x(k)’ x(k  - 1)3 e*(k) V2(k)> 

.E{.x(~)~ x(k - 1)’ e*@) VI@)} + E{x(k)4 x(k - 1)3 e*@) V2(k)] 
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Assuming that g, b(k), and c(k) are  bounded,  the 
boundedness of U(k) will depend on the  eigenvalues of F; 
they must dl be inside the unit circle  to  guarantee  stabil- 
ity. 

The  characteristic  equation of F is 

det (a1 - F )  = a[a4 - 2(1 - 4y + 12y2) a3 

+ (1 - 4y)(1 - 47 + 24y2)a2 

+ 192y4(1 - 12y2) 01 

- 64y4(l - 24y2 + 144y4)1 = 0 

where y = pa . 
Using root locus2 methods (with y as  a  parameter),  the 

condition for  all roots to be inside the unit circle was found 
td be 

2 

o < < 0.20i16. (31) 

IV. STEADY-STATE MSE FOR Two SPECIAL CASES 

Case I: An Estimation Problem 
Let 

d(M = a&) + a2x(k - 1) + rzW (34) 

where a l ,   a2  are fixed scalars  and { n ( k ) }  is  an i.i.d. se- 

'One could also use Jury's  stability  test to get the same  result. 

quence with zero mean and variance of, independent of 
(x@)} [recall  that we assume x@) to  be  Gaussian (0, 0 2 ) ] .  

With  the  above, clearly 

w* = E;] 
and 

e*(k) = n(k). 

This  and (1 1) imply that e*(k) and V2(k) are  independent. 
Using all  this and (28)-(30), we get 

g = o E *  2 loj 
l o 2  I 
L3a4 1 

and 

b(k) = c(k) = 0. 

Then from (33) we get 

E ( = ) )  = E* + a2U1(03) + U3(03) (36) 

U(03) = 4p2(1 - F ) - ' g .  (37) 

where from (26) 

Substituting (27),  (35), and (37) in (36) will result in 

(1 - 2y)2LT; 
€(a) == 1 - 6y + 8y2 - 4874 - 5 7 v '  (38) 

w'ni'le tor the  independent { X k )  one would get 

:(a) = . 
(1 - 2y>;a; 

1 - 4 y  . (39) 

It can be  observed that (39) approximates (38) for suf- 
ficiently small y [neglecting the y4 and y6 terms  in (38) 
will bring (382 to (39)l. 

In  Fig. 1, we  compare  the results through the  com- 
monly used measure 

M, = 
€(a) - E* 

E* ' 

often referred to as misadjustment. In  addition, we picked 
an approximation presented in [7], which for  the  case we 
deal with wili result in 

Z(03)  = (1 + 2y)oi,  (40) 

and the corresponding misadjustment is presented in Fig. 
1. We  observe  that  all  three  are  close  for  small y. The 
approximation (40) becomes quite  poor  for  large y. The 
comparison of (38) and (39) clearly indicates  that  the  in- 
herent dependence of X(k)  in (7) results, for a fixed y, in 
4Etle:riorated skeady-slate performance  (larger MSE in 
steady state). 
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and 

E{ Vdk)} 

~ ( k )  = 2$ 6a2E{V5(k)} 

[{V6(k)8 6fJ2 E{  V6(k) } ] 
where we made use of the independence between x ( k )  and 
Vl(k), V2(k) and x(k - l), V5(k) is defined in (16) and 

V6(k) = x(k - Vz(k). (47) _ _ _ _ _ _ _ _ _ -  - - - - - - - - ‘  

-.I-J.-J 
-.w .02 .OI .ffi .OB . I O  . I 2  , I 4  .I6 .18 .20 .̂ 2 .)4 .1G To find the  steady-state MSE, we use (33) ,  and because 

r =  p a 2  of  (45), (36) also applies  here.  However,  to find U(m), 
we need to find E{V5(m)} and E{V6(m)} .  From (19), it 

Fig. 1. Comparison of misadjustment for Case 1. can easily be verified that 

E { V & q }  = 0. (48) 
Case 2: d(kj = x(kj’  x(k - 1) 

This  case is constructed only for  the purpose of dem- 

Here 

For V6(k), we use (1  1) and (42) to get 

onstrating a bias in the convergence of the  mean. V6(k + 1) = - 2 p . ~ ( k ) ~  V,(k) + ~ ( k ) ~  [V,(k) - 2pV5(k)] 

+ 2p [ ~ ( k ) ~  - x ( ~ ) ~ u ’ ]  x(k - 1)’; 

(41) taking expected values on both sides and comparing to 
(18),we  observe that 

Then  Hence, from (48) we have 

E{x(k)’ e*@) x(k - l)} = 2u6 # 0 E(1/6(03)) = 12pcaS (49) 

and [see (21))  and 

b(m) = 0 

so the mean does not converge to the optimal solution. 
For  the MSE, we get [see (28)-(30)] L l  

g = 2 2  39u2 1 (44) 
Now, since from (26) and b(m) = 0 

L11704) U(m) = 4p2(Z - F ) - ’ [ g  - 2c(oo)], 
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.- 

$ 8  yo: 

Fig. 2. Comparison of misadjustment for Case 2 

we get eventually 

or 
1 - 2y + 48y2 - 102y3 + 360y4 ,- 2167’ 

1 - 67 + 8y2 - 48y4 - 5 7 6 ~ ~  
M, = 87. 

Again, for  comparison,  if  we  work  under  the  indepen- 
dence assumption,  we  get Equations (51)-(53) are presented in  Fig. 2. We  can 

- 87 observe here considerably larger differences between the 
M, = ~ 

1 - 4y’  (52) three curves  at  smaller y. 
which can be reached from (51) when, for small y, one V. SIMULATION RESULTS 
neglects all powers of y higher than 2. In our simulation experiments,  we aimed to verify and 

The approximation in [7] for this  case will be support the  analytical results and  conclusions of previous 
QS = 8y. (53) sections.  The  various  experiments  are described in the 

following table. 

~~ ~ 

Case 1 Case 2 

TDL-LMS 

d(k) = x(k) + x(k - 1) + n(k) d(k) = x(k)2  x(k - 1) 
Unc.-LMS 

X(k) = p(k)] X(k) = 
p k ) ]  

Ir,(k)J  Lr,(k)J 
x,(k),   x,(k) uncorrelated x,(k) ,   x2(k)  uncorrelated 

d(k)  = x, (k)  + x2(k) + n(k) 4 k )  = XI(k)’ x2W 
TDL-MOD2-LMS Same  as T D L - L M S  except the weights are  updated only  every 

two  samples. 
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( C ) TDL-MOD2-LMS 

Fig. 3 .  MSE behavior  for  the  three  processings in Case 1. 
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Fig. 4 

5.0 ( o 'DL-LMS 
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I .O 

- 

- .B 

- 

1, I I I I I I I I I I k  
,I. IO. P O .  31,. 4 0 .  1 . 0 .  611. 'X,. I///. lll. 11111. 

( C 1 TDL-MODZ-LMS 

MSE behavior for the  three  processings in Case 2,  p = 0.05. 

6 09 - 

Fig. 5. MSE behavior for the  three  processings in Case 2, p = 0.1. 

I (a) u a . 0 5 ,  02=1.0 

E{W2(k)? 

1.2 i 

Unc. -LMS 

TDL-LMS 

0 10 20 30 40 50 60 70 

(b) !~=0.1 , 02=1.0 

Fig. 6. E{ W,(k) )  behavior  for  the  three  processings in Case 2. 
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M.S.E E - 
50. - exact results for it in  the  literature.  For  the two-dimen- 

affect the rate of weight mean convergence, but may cause 
40. - sional case, we have shown that the  correlation  does not 

I I (maybe for pathological cases  only) bias in  the steady- 
20. - state values.  For  the  MSE,  we  have  shown  that the cor- 
15. - relation in the data results in  higher MSE in the steady 

0 .  fected. 

35. - 
90. - 
2s. - 

I 

state,  while,  again, the transient  behavior  is hardly af- 

0. IO. 20. 30. 40. 50. M. IO. 60. In conclusion, analyzing the LMS with correlated  data 

M.S.E lo* 
( a ) ‘IDL-LMS under the assumption that this correlation  does not exist, 

as was done in a number of results in the  literature, may 
give a misleadingly optimistic  performance picture that 

0: = 1.0 
Q‘ = 1.0 6. does not fit the reality. A 

3.62 - I .  - 

2. - 

M.S.E 1 
1. 

6. 

( b ) Unc.-LMS 

::r , 
0. -1- 

0. IO. 20. 90. 40. MI. 60. M. 00. 

( c ) TDL-MODZ-LMS 

Fig. 7. Verification of stability  bound  (Case 1). 

The  experiments on Case 1 showed identical weight 
mean behavior in the  TDL-LMS and the  Unc.-LMS and 
twice slower  convergence with the  TDL-MOD2-LMS. In 
Fig. 3 we present the MSE behavior for this case. We 
observe  that, as expected,  there is a difference in steady- 
state values for  the  TDL-LMS and the  Unc.-LMS, with 
the first being higher. The steady-state value for  the  TDL- 
MOD2-LMS is  equal to the  one  for  the  Unc.-LMS, but 
its convergence  is  slower. 

The  same behavior of the MSE can be observed in the 
experiments on  Case  2  for different choices of p in Figs. 
4 and 5 .  But here we can  observe  the bias in the weight 
mean as shown in  Fig. 6. However,  one should note that 
if the weight update is done every two  samples,  namely, 
in the TDL-MOD2-LMS, the bias disappears (with the 
tradeoff in slower  convergence). 

Finally,  in  Fig. 7 we  demonstrate that a  choice y = 
0.21 causes  the  TDL-LMS  to  diverge, while the  other  two 
still converge. 

VI. CONCLUSION 
In this paper,  we  have presented exact analytical results 

for  the  LMS algorithm applied to special types of corre- 
lated data vectors-constructed from a  TDL.  This is a very 
common case in practical applications, but there  are no 
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