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v. CONCLUDING -ARKS 

In  this  note  we  have  presented  two  algorithms for discrete  time  adaptive 
control  which  utilize  prior  information  about  the  plant,  including  some 
known  poles  and zeros. If  the  plant is completely  unknown.  the  algorithms 
are identical  to  those  proposed by Goodwin el al. in [7] .  However, the 
algorithms  presented here  have better  transient  performance  and  faster 
convergence rite when the system is partially  known.  In  future  work we 

show the added  robustness  margins  obtainable  from  our  scheme. 
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A Parametrization for Model Reference Adaptive Pole 
Placement 

A. FEUER 

Abstract-A new parametrization for a  linear  system is presented.  This 
parametrization is the basis for two approaches to design an adaptive 
controller for pole  placement. One  approach is based on parameter 
estimation and requires  sufficient  excitation,  while the  other,  the model 
reference adaptive pole  placement,  uses  a  reference  model and  an 
augmented error. It is shown that  the two  distinct approaches result in 
identical error terms. 

I. INTRODUCTION 

A major  limitation  of  direct  adaptive  control is the limited  numer  of 
control  problems to which it can be applied. The source  of  the  problem is 
in  what is often referred to in the literature as  the “parametrization 
problem.” In  effect, it is the problem of presenting  the  plant  model 
through the controller  parameters so that  these  parameters  can  be  directly 
estimated. So far, only the model  matching  control has a  complete 
solution.  Namely, an adaptive  algorithm  (MRAC)  resulting  in  global 
stability and  error convergence \+ithout requiring  sufficient  excitation. 
But  this  solution  requires some very  restrictive  assumptions  which  limit its 
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application.  In some recent  results  (see [ 11, [2], [4], and [X]) a 
parametrization  was  presented  and  studied for the  pole  placement 
problem. However,  the convergence  of the resulting  controller is 
dependent  on  sufficient  excitation  in  the  input  and the use  of  the  “block 
invariant”  concept for the  controller  parameters. This requires  that  the 
controller  parameter  be  updated  only  every  predecided  number  of 
samples-for further information  the  reader is referred to the  above 
references. 

In  this  note  we  present  a new parametrization  for the pole placement 
problem.  This parametrization  generalizes  the  result  presented  in [l] and 
can be presented  in  a  form  compatible  with the parameter  estimation  form 
presented  in 121. Together  with  sufficiently  exciting  input  and the “block 
invariant”  concept.  convergence  is guaranteed.  However,  the  same 
parametrization can be  used,  together  with  a reference model, as a  basis 
for  what  we  referred to as model  reference  adaptive  pole  placement 
(MRAPP). This approach  has  the  potential of providing  a  controller 
which  does  not  require  sufficient  excitation or  the restrictive  assumptions 
of the MRAC. It should  be  pointed  out  that  the two approaches  described 
in this note-one as a  parameter  estimation  problem  and  the  second the 
MRAPP with  augmented  error-result  in  fact  in  identical error  terms to 
drive  the corresponding  adaptation  algorithms. 

II. THE BASIC PARAMETRIZATION 

Consider  a  discrete-time  single-input  single-output  system  modeled  by 
a strictly proper transfer function 

where 

and 

n 

r(z)  = riz“-’ (2.2) 
*= I  

“ 
p ( z )  = 2” + piz”-’. (2.3) 

,=1 

Using  only the assumption  that n is known, it is possible to  describe  the 
relationship  between  system  input u(t) and  output y(t) through an n- 
dimensional  canonical  system 

X , ( t +  l )=A,x,(t)+b,u(t)-befx,(t)  
(2.4) 

Y ( t ) = c o x p ( t )  - C X , ( O  

where (Ao, bo. co) is any  n-dimensional  canonical  system  preselected so 
that A. is strictly stable  and f and c are row  vectors  of unknown 
parameters.  The above  follows  directly from the  following  lemma  which 
is  a  variation  on  results  appearing  in [5] and [ 6 ] .  

Lemma 2. I: There exist  row  vectors f and c such  that 

( ~ g - ~ ) [ Z ~ - ( A o - b a f ) I - ’ b o = 7 , ( ~ ) .  (2.5) 

Proof: Since (Ao, bo) is a  reachable  pair there exists  a  row vectorf 
such  that 

char.po1. (Ao-  b&=p 

and  the  vector 

~ ( z ) [ Z Z - ( A O - ~ O ~ ) I - ’ ~ O  

spans the n - 1 order polynomial  subspace. 
Hence, there exists a  row  vector E such  that 

p(z)F[Zz-(A,-  b&l-’bo=r(z) 

then  choosing c = co - e completes the  proof. 0 
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Fig. 1. Block diagram of system's basic parameaization. 

Remark 2.1: We note  in (2.4) the  feedback and feedforward form in 
whichfand  center ( see  Fig. 1). The feedback part,  withf, determines the 
poles of the  system  while the feedforward part, with c, the  zeros. This 
observation is the basis for  the model reference adaptive  pole  placement 
(MRAPP) configuration  we introduce in the sequel. 

We would  like to use  feedback  control to place the system  poles  in some 
desired  locations  represented by the polynomial 

n 

p * ( z ) = z " + X  p7zn-i. (2.6) 
i =  I 

For simplicity, we choose A. so that 

char.po1. ( ' 4 0 )  = p * ( t )  (2.7) 

then, clearly, if we could  take the control u* = fx, + u, with u external 
command  input,  the  pole  placement  would  have  been  accomplished. 
However, we do not knowfand cannot measure x,, hence,  we attempt to 
generate an estimate of the  product fx,. To do that,  use is made of 
sensitivity  function filters  of  the form 

a: ( r+ l )=Aie : ( t )+b iu ( t )  

B)( t+  I)=A,a;(r)+b,y(r)  i =  1, 2 (2.8) 

where (Ai ,  bi) are reachable  pairs  and 

char.po1. (Ai )=q' (z )  i= 1, 2  (2.9) 

with 
n 

q ' ( z ) = z " + Z  q;z"-' (2.10) 
j =  I 

stable  polynomials. 

of results  in [5] and 161. 
Now we make  use of the following  lemma  which  again is an adaptation 

Lemma 2.2: There exist  vectors k,  , k, , I ,  , and I, so that 

fx,(t) = kla: ( t )  + kJB;(t) ( E )  (2.1 1) 

cx,(t) = I p ; ( t ) +  [fa;(t) ( E )  (2.12) 

where we write ( ) = ( ) ( E )  if  each  element  of the difference ( ) - ( ) is 
a linear combination  of  decaying  exponentials. 

Proofi Since we  assumed  that (A0 - b d ,  bo, co - c) is canonical 
and (Al, b,) is reachable, there exists  a  nonsingular  matrix Ql and  a 
vector hl so that 

QIbo=bl 

and 

where 

C ~ = ( C O - C ) Q ; ~ .  

Then for x&) = QIxp(f ) ,  (2.4) and  the  above  imply 

X l ( t +  I )=Alx l ( f )+b lu ( t )+h ly ( t ) .  

NowifE: = [al ,A18!, ,  **.,AC-'8!,]B-'andEi = [d:,,Ald;,, * - . ,  
A ;- 18:,]B-1 where B is the controllability  matrix of (AI, bl), then from 

This and (2.13) clearly  imply  that if x = E:bi + Ej,hl 
(2.8) E!,([ + 1) = AlE;(t) + h ( t )  and Et(t  + 1)  = A l E f ( t )  + ZY(t). 

X l ( 0  - X ( ! )  = (Ai)'(xl(o) -X (O) )  

or, since A I ,  is stable 

x d t ) = x ( t )  ( 3  

fx , ( t )= fQ; Ix ( t )  ( E )  and 

=fQ;'[a:, Ala:, .e., A ~ - ' B ~ ] B - ' b l  

+ f Q ; l I a ; ,  Ala:, ', A;-'8;IB-'hl ( E ) .  

Then (2.11) follows  directly for k, = FTB-Ibl and ky = FTB-Ihl 
where F is the observability  matrix  of (fQ; I ,  A ,) I .  A similar  derivation 
will result in I,, and I, to  prove (2.12). 0 

Substitution of (2.11) and (2.12) into (2.4) will  result in 

x , ( t + l ) = A d r , ( r ) + b o u ( t ) - b o k ~ ~ ~ ( t ) - b o k J a ; ( t )  

A t )  = cdr,(t) - [ :a:(t)  - [ p p )  (€1 (2.14) 

which  together  with (2.8) is a  5n-dimensional  realization  of the  transfer 
function (2.1) through the 4n parameters k, , ky , I,, ly . This parametriza- 
tion provides  a  basis for  the model  reference  adaptive  pole  placement 
scheme  described  next. 

III. MODEL REFERENCE ADAPTTVE POLE PLACEMENT 

Starting  with (2.8) and (2.14) we proceed  in two philosophically 
different  approaches  resulting,  however,  in the same error terms. The 
first,  as a  parameter  estimation  problem as was done in [l]  and 121. 

For this we define 

Z(t+ I)=Aoz(t) + bou(t) 

9(r) = c 0 z w  

H(t+1)=AoH(t)+bo[8:( t )T,  a ; ( t )T l  

p l ( t ) J = c o H ( t )  

then (2.14) implies  that x,@) = z(t) - H(t) [ f;] (E) thus 

y ( t ) = A t ) - d t ) %  (4 

or 

where 

and 

Using the delay operator notation used in [I] and [2] where Dx(t) = x(t 
- 1) and  denoting for any  polynomial a(D) = a&" + alDn-l + . . . 
+ a n  

a7(D)=ao+a,(D)+...+a,_IDn-'+ff,Dn2 (3.4) 
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we get  for (2.14)  and (2.8) combined 

where we used  (2.8)-(2.10) to write 

Equation  (3.5) can be  rewritten  in the form 

[P(D)42(o)k(o)+p~(D)q1(D)S(D) lu( f )  

+ [ rWW2(D)f i (D)  +p-*(D)q'(D)W)ly( t )  

=i*(D)41(0)q2(o)U(t)-P*(D)q1(D)q2(D)y(t) ( E )  (3.6) 

which is compatible  with  (2.11)  in [2]. Using the system  equation  in the 
form 

P(D)y(t)=F(D)u(t)  

in (3.6) will  result  in the following  polynomial  equation  for  the 
polynomials k(D),  h(D), 6(D), ~ ( 0 )  

i * (D)42(w[P(D) f (D)  + f(D)h'(D)I 

+ p * ( D ) g ( D ) [ p ( D ) s D )  + F(D)-7(D)] 

=q1(D)q2(D)[r*(D)p(D)-p*(D)i(D)]. (3.7) 

It can  readily be observed  that &D), h(D) which  satisfy 

p ( D ) f ( D )  + i(o)h(D) = ql(D)E(D) -p*(D)] (3.8) 

and 6(0), r(D) which  satisfy 

p(D)&D) + i(D)7(D) = q2(D) [P(D)  - W ) ]  (3.9) 

are also  solutions  of (3.7).  Since  we have  assumed  that f (D)  and p(D) [or 
4D-l) and p(D-')]  are relatively prime, k(0) and h(D) are unique 
solutions  of  (3.8)  and 6(D), r(D) are unique  solutions  of (3.9).  However, 
for them to  be unique  solutions  of (3.7) as well  we  must  have  that 
P(D)q2(D) and p*(D)cjl(D) are also  relatively prime. 

With the above  conditions  satisfied  the  approach  proposed  in [ l ]  and 
further  studied  in  [2] can  be adopted. The control to be used is 

u ( t ) = l i , ( t ) ' B l ( t ) + ~ ~ ( t ) ' a : ( t ) + u ( t )  (3.10) 

where &(t) and EJt) are estimates of k, and ky generated by the 
parameter  estimation  algorithm. However, in the controller,  they are not 
updated  every  sampling  period  but  only after every  finite  number  of  steps. 
This  scheme,  termed  in  [2]  "block  invariant,"  together  with  sufficient 
exciting  input u(t) ,  will  guarantee  parameter  convergence  with the desired 
pole  placement  accomplished. For detailed  discussion  and  analysis of the 
scheme, the  reader is referred to [2]. 

We would like, however, to point  out  that  in  any  parameter  estimation 
algorithm  deployed here the error term  used  will be [see (3. l)] 

a = p ( r ) r ~ ( t ) - ~ ( t ) + y ( t )  

= ro(t)'W) (6) (3.11) 

where 8(t)  is an  estimate of BO and 8(t)  = b(f) - 80. 
The second approach is based  on  providing  a  reference  model  and 

having  the  controlled  system  output  track the reference  model  output. 
Since  we are interested  in  pole  placement the reference  model  will  have 
the  desired  poles  and  a  term  reflecting  estimates  of  system zeros (see Fig. 

I 

I ' -  I z-1 

Fig. 2. The  general  configuration of model reference  adaptive pole placement 
WRAPP). 

2). Specifically, the reference  model  will  be 

x,(t+ l )=A~,( t )+boU(f)  

y~(t)=cox,(t)-I;(t)'at(t)-r;(t)'a:(t) (3.12) 

where the  sum L ( t )  T8i ( t )  + is an  estimate of the fedforward 
term cxp(t) in (2.4). 

Now, using the control  defined  in  (3.10)  together  with (2.12)  and 
(3.12),  we can readily  verify  that the tracking error 

e ( t )=u( t )  (3.13) 

satisfies 

e(t)=cox,(t)+i"(t)TBt(t)+~.(t)Ti):(t) (6) 

~, ( t+ l )=Aox , ( t )+bo(~"( t ) 'B~( t )+k , . ( f ) 'B~( t ) ) .  (3.14) 

We make now use  of the "augmented error" e(t) introduced  by 
Monopoli [T and  defined  through 

e ( t ) = e ( ~ + [ Q ( f ) ~ ,  l i , ( t ) T ~ ~ ~ ( t ) - c ~ l ( t )  (3.15) 

z l ( r + ~ ) = ~ , z l ( t ) + b ~ , ( l i , ( t ) ~ ' 8 ~ ( t ) + l i , ( t ) ~ ~ ~ ~ ( t ) )  (3.16) 

where (o'(t) is defined  in (3.2). 
From (3.2), (3.14)  and (3.16) one  readily  observes  that 

e( t )=cozl(r)-[kT,  kr]~'(t)+I;(t)' irt( t)+I;.(t) 'B:(f)  (€1 

hence,  substitution  in  (3.15)  results  in 

e(t)=[k.(r)' ,  k ~ ( t ) T ] ~ l ( t ) + l , ( t ) T a ~ ( t ) + l ; ( r ) r a ~ , ( f )  ( E ) .  (3.17) 

The above  form is the basis for many  of the model  reference  adaptive 
control (MRAC) algorithms. To complete the algorithm  description the 
parameter  adjustment  law  must be specified. One could  use  the  projection 
algorithm (as was done in [6] for  the  model  matching  problem) or a 
recursive  least squares algorithm.  At  this  point  we do not have  a  global 
stability  proof for the  approach  with  either  adjustment  law. 

Remark 3.1: By comparing  (3.1 1) to (3.17)  and  recalling  (3.3b)  and 
(3.3~)  we  clearly observe that, here,  the estimation error P ( t )  is identical 
to the  augmented error e(t) .  

Remurk 3.2: Every step of the  parametrization  described here  carries 
through  in  continuous  system  resulting  in the same  equations (3.11) or 
(3.17). 
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Nonparametric  Fitting of Multivariate  Functions 

TOMASZ GALKOWSKI AND LESZEK  RUTKOWSKI 

Abstract-A nonparametric  algorithm, based  on the multiple FejCr’s 
sum, for fitting of multivariate functions is proposed. The  mean square 
error convergence and the speed of convergence are investigated. 

I. INTRODUCTION 

This note is  concerned with nonparametric estimation of the  function R 
in the  model 

y r = R ( x , ) + Z r ,  r = l ,  n (1) 

relating the scalar output y,, the input x, (d-vector) selected by the 
experimeter, and  the independent white  measurement  noise Z,  

EZ,=O, EZf=&3<6’, r = l ,  n.  (2) 

Consider the d-dimensional space Qd = {x : 1x1 6 T } ,  x is the d- 
dimensional vector, 1x1 = may (1x11,  1x21, . . - ,  I x d l ) .  We shall use the 
complete orthonormal system defined on Qd 

In the multidimensional case the Nth FejCr’s  sum uA, of the function R 
is defined by 

~,V(x)= fikbke’kX, (3) 
‘k lgh’  

January 8, 1986. 

of Czestochowa,  Czestochowa, Poland. 

Manuscript  received  August 27. 1984;  revised  December 27, 1984.  June 27, 1985,  and 

The authors  are with the Department of Electrical Engineering, Technical  University 

IEEE  Log  Number 8607640. 

where 

Generally,  one has some  problems with the convergence of the 
multidimensional expansions. Even in  the unidimensional case, the 
condition for  uniform  convergence of different  series  are satisfied if the 
expanded functions are sufficiently smooth (see [7]). Fortunately, from 
the theory of multiple Fourier series (see, e.g., [4, Sect. 15.11]), it 
follows that the Nth FejCr’s sum uN (3) of  any continuous function R is 
uniformly convergent to R. This nice property is the reason for 
construction of the algorithm derived from multiple Fourier series. The 
algorithm presented in Section II is an extension to the multidimensional 
case of that proposed in 161. It should be  noted that the rule of selection of 
signals x, by the experimenter  is much  more convenient from  a 
computational point of view than that suggested in [SI. 

II. ALGORITHM 

Letnl/dbeanintegerandij = 1, - . - , n l I d , j  = 1 ,  -..,d.Partitionthe 
interval ( - x ,  T )  on the j th  axis into nild subsets A x j , i j .  Define the 
following Cartesian product: 

b x , ,  i ~ X ~ 2 , i ~ X “ ‘ x ~ d , i d = Q d , i ~  ... id=Qd,i. 

Let  Qd,, A Qd,, = 8 for i # 1 and U Qd,i = Qd. In the sequel we shall 
denote 11 11 the Euclidean norm and AZj,+ the length of the interval  AX^,^, 
i - 1, ... 
1 -  , nild, j = 1, . , d. 

Relation (1) can be expressed in another way 

Yi = R ( x t )  + 21 (6) 

where the outputs yi E R, and the inputs xi are selected so that xi E 
Fig. 1 presents the partition of Q d  = [ - T, 7rI2 for n = 16 and equal 

intervals Axj,+, j = 1, 2, = 1, 2, 3, 4. We propose the following 
algorithm 

a,(X)= x 6 k 6 k e l k r  (7) 
‘kl<h’ 

where 

and N depends on the number of observations n ,  i.e., N = N(n). From 
properties of the multiple Fejtr’s sum (see [4]) it follows that the 
computation of algorithm (7) can be realized by 

where 

m. CONVERGENCE 

Theorem  (Mean  Square  Error  Convergence): If 

l R ( x ) - R ( ~ ) l  < LIIx-YII 
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