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niques developed in relation to RDFT can be  used with the 
other transforms  and vice  versa. All the  transforms can  also 
be computed  with basically the same hardware. 

Recently, we have  generalized the results presented in this 
paper to DCT. It  turns  out  that DCT  is a weighted sum of 
GI( . )  and G o ( . )  after proper permutations of input  data. 
Further generalizations to  other  trigonometric transforms 
[ 1 I ]  are in progress. These results will  be published in  sub- 
sequent  papers. 
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Convergence  Analysis of LMS Filters with 
Uncorrelated  Gaussian  Data 

ARIE  FEUER AND EHUD WEINSTEIN 

Abstract-Statistical analysis of the least mean-squares (LMS) adaptive 
algorithm with uncorrelated Gaussian datais presented. Exact analytical 
expressions for  the steady-state  mean-square error (mse) and  the  per- 
formance degradation due  to weight vector  misadjustment  are derived. 
Necessary and sufficient conditions  for  the convergence of the algorithm 
to the optimal (Wiener) solution within a finite variance are derived. I t  
is found  that the adaptive  coefficient p ,  which controls  the  rate of con- 
vergence of the algorithm, must  be restricted to an interval  significantly 
smaller than the domain  commonly  stated in the literature. The  out- 
come of this paper,  therefore,  places fundamental  limitations on the mse 
performance  and rate of convergence of the LMS adaptive scheme. 
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I. INTRODUCTION 

E (LMsj 
ARLY studies  on  the convergence of the least mean-square 

algorithm concentrated on  the necessary conditions 
required for  the weight vector mean to converge to  the optimal 
(Wiener) solution (e.g., [ I ] ,  [2] j. These conditions  do  not 
however, guarantee, a finite variance for  the weight vector, 
neither  do  they guarantee  finite mean-square error (me). 
Hence, as many users of the algorithm  realized, considerably 
more stringent conditions were required to ensure convergence 
of the  algorithm. 

The need to  study  the convergence properties  of  the weight 
vector convariance matrix was identified by Horowitz and 
Senne [ 3 ] .  They derived a recursive equation characterizing 
the  transient response of the covariance matrix and  found 
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necessary  and sufficient conditions  for  the  convergence  of  this 
equation.  Unfortunately, these results are not  the  focus of 
[3] , hence  overlocked by  many  readers. 

Our purpose in this  paper is twofold. We intend to highlight 
the results in [3] by deriving them in a different way.  Then, 
carry the  study  further  by translating the convergence  condi- 
tions  into  bounds  on  the  adaptation coefficient p. In addition, 
an exact analytical expression  for the  steady-state mse and  a 
new  measure  for the rate of  convergence  of the algorithm are 
derived. 

A parallel set of results is  also obtained for the partially adap- 
tive LMS algorithm  introduced  by Griffiths [4] . The  two algo- 
rithms are then compared on  the basis of  their  convergence 
properties  and  their  steady-state mse performance. 

11. STEEPEST DESCENT (SD), LEAST MEAN-SQUARE 
(LMS), AND THE MODIFIED LEAST MEAN-SQUARE 

(MLMS) ALGORITHMS 
The  basic system  of  interest  here is illustrated in  Fig. 1,  where 

X ( k )  is the  data vector  at the k th  time  instant, W is a vector 
of constant weights, d(k) the desired (training) signal, and y ( k )  
represents its  estimate. The problem is to find W which  mini- 
mizes the mse,  namely, 

E = E{ez (k)} = ~ { ( d ( k )  ,- y(k))' 

= E{(d(k) - WTX(k))Z} 

where E{ } stands  for  the  statistical  expectation  of  the  brack- 
eted  quantity. If X ( k )  and d(k) are jointly  stationary,  then 

E = E{d2 (k)} - 2 WTr + WTR W (1 1 
where 

r = E{X(k) d(k)}  (2) 

and 

R = E{X(k)  (3 1 
Since E is a  quadratic  functional of W, it has  a  unique  minimum 
(whenever R is nonsingular)  obtained by choosing 

W* = R - l r .  (4) 

This is the well-known Wiener solution.  Substituting (4) into 
(l), the  minimum  attainable mse is given  by 

E * = E{dz (k)} - rTR -'r. (5) 

To avoid a direct inversion  of R ,  an iterative solution can  be 
used,  based  upon  a  gradient-following method. The resulting 
algorithm,  known as the steepest  descent (SD) algorithm, is 
characterized by  the  equation 

W(k t 1) =(I - 2pR)  W(k) + 2 p r  (6)  

where W(k)  is the weight  vector.of  the kth iteration  cycle  and 
p is a  constant gain which  controls  the rate of  convergence of 
the  algorithm. It has  been  shown [l] , [2]  that W(k)converges 
to W" as k -+ 00 so long as 

1 
O<p<-- (7) 

h,,X 

where h,,, denotes  the largest eigenvalue of R .  

Fig. 1. 

In  many practically interesting situations,  prior  knowledge 
of r and  R is not available. In  that case the  matrix  quantities 
appearing  in  (2)  and (3) can be replaced  by  their  instantaneous 
estimates X ( k )  d(k) and X ( k )  respectively. Ths  is a 
common  procedure in stochastic  approximation. The resulting 
equation is  given by 

W(k + 1) = ( I  - 2pX(k)X(k)T)  W(k) + 2 p d ( k ) X ( k )  

= W(k) + 2pe(k )X(k )  (8) 

This is  Widrow's well-known LMS algorithm [l] , [2] . 
In [4]  Griffiths  addresses  the  problem  where  no  reference 

signal. is available but  the  cross-correlation vector r is known. 
The  algorithm  presented  in [4] is obtained  by  simply  sub- 
stituting X(k) for  R in (6). One  obtains 

iii(k t 11 = ( I  - x ( ~ ) x ~ ( / c ) )  iii(k) t 2pr. (9 1 
The Griffiths algorithm can  be  viewed as a cross between the 

SD and LMS and will  be referred to as the modified LMS 
(MLMS) algorithm. 

In both  the LMS and MLMS, W(k)  is obtained  through  a 
stochastic  equation. It is, in general,  a  random  vector quantity. 
Its relation to  the  optimal (Wiener) solution  can  therefore  be 
measured  only  in  a  statistical sense. 

If  we assume that  the various X&), k = 0, 1 , 2, * . are statis- 
tically independent,  then W ( k )  is independent  of X ( k )  and the 
weight  vector  mean  for both  the LMS and MLMS satisfies (6). 
One,  therefore,  concludes  that  both  algorithms are asympto- 
tically unbiased (i.e., E{W(k)} -+ W" as k --t -) as long as the 
adaptation coefficient p satisfies (7). 

However,  as  was recognized  in [3] and  pointed  out in the 
introduction  section, considerably  more stringent conditions 
than  those given by (7) are required to ensure the convergence 
of the weight  vector  covariance matrix,  hence,  the resulting 
mse. This  is the subject  of the  next  section. 

111. CONVERGENCE OF THE LMS AND THE MLMS 

Before  we proceed, let us introduce  some  notation  which 
will  be  used throughout  the  remainder  of  the  paper.  Since  R 
is symmetric  there exists a  unitary  transformation U (where 
UT = U - ' )  such  that 

URUT=A=diag  [h,,hz,---h,] (10) 

hi are the eigenvalues of R .  Let 

V(k) = U(W(k) - W*) (11) 
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M(k)  = E{ VW) (1 2 )  

C(k) = E{ V(k) VT(k)} .  (13) 

and 

The above notation will be used for  the LMS scheme. Similar 
notation  with “-” will  be  used for  the MLMS. 

Using the assumption that  the various data vectors are  mutu- 
ally independent,  together with an  additional  assumption  that 
X ( k )  is zero  mean  and Gaussian, Horowitz  and Senne [ 3 ]  de- 
rived the following recursive equation satisfied by C(k): 

C ( k + l ) = C ( k ) - 2 p [ A C ( k ) t C ( k ) A ]  +8p2AC(k)A 

+ 4p2 t r  [ AC(k)] A + 4p2e*A (14) 

where tr ] stands  for  the  trace of the bracketed matrix. The 
matrix equation (14) can be decomposed into  the following 
n2 scalar equations: 

n 
Cii(k+ l )=pi iCi i (k )+4p2Ai   hpCpp(k)+4p2~*hi  

p = l  

(1 5) 

and for i P i  
Cij (k  + 1 ) = ~ i i  Cij ( k )  (1 6 )  

where Cii(k) is the (i , j)  element of C(k) and 

pjj  = 1 - 2p(h i  hi) + 8P2hihj. (17) 

Since ci(k) < Cij(k) Cij(k), the convergence of the diagonal 
elements of C(k) ensures the convergence of  the  off-diagonal 
elements. We shall, therefore,  concentrate  on (15). Concat- 
enating  the n equation  into a vector form,  one  obtains 

~ ( k  + 1) =Fa(k)  + 4p2 €*A ( 1  8 )  

where 

a ( k ) = ~ c i j ( k ) , c , , ( k )  , . . . , c n n ( k ) l T  (1 9) 

F = diag [ p l  , p 2 ,  * . . , p n ]  + 4p2 AX‘ (20) 

and 

A=[hl,h2,‘..,hnI 
T (21 1 

Following similar considerations for the MLMS scheme one 
finds (see Appendix) 

i i (k  t 1 ) = FG(k) t 4 p2 g(k) (22) 

where G(k) consists of the diagonal elements of e ( k )  and g(k) 
is defined in (A7). It can easily be observed that g(k)is bounded 
whenever p satisfies (7). Hence, the convergence of botha(k) 
and G(k) depends on  the  matrix F. Both will  converge  if and 
only if the eigenvalues of F are all within the unit circle. The 
eigenvalues of F are the  solution of the following equation in a 

det [ F -  a11 0 (23) 

where det [ ] is the  determinant of the bracketed matrix. 
Now 

det I F  - d ]  = det (diag ( p l  - a ,  p 2  - a ,  . . + , Pn - 0) 

+ 4p2 A A ~ }  

=det {diag ( p l  - a ,  pz - a, * * * , Pn - a)}. 

det 11 + 4p2 diag 
L .[L ___ 1 . . .  -1 1 AAT] 

, 2  

P l - a ’ P 2 - a  Pn - a 

where for  notational convenience we  define pi 2 pii.’ Since 
the common  denominator of the sum of terms Z;=l h;/(pi - 
a)  is ( p j  - a),  one needs only to consider the equation 

Clearly, the poles off(cr) are  the pi’s and  from (17) 

pi’l - 4phi+8p2hi” = ( 1  - 2phj)’ +4p2h,? > O .  

(26) 

Hence, the various poles off(a) are placed on  the positive  real 
axis. We further observe that 

f(a) must  therefore assume the general form illustrated in 
Fig. 2. Between each pair  of  successive poles,f(a) has a single 
zero. If we arrange the poles in an  increasing order, i.e., 0 < 
p 1   < p 2  < . . . < p n , t h e n l  

where ai’s are the zeros of f(a), hence the eigenvalues of F. 
The last inequality in (28) can  easily be explained by observing 
that f(a) never  crosses zero to  the left of p 1 ,  thus  the nth 
zero-crossiog must  occur to  the right of p n .  Hence, if we re- 
quire  that a, < 1, all the eigenvalues of Fwill be located  within 
the  unit circle. From Fig. 2 one immediately observes that 
a, < 1 if arid only if 

and 

Substitution of (17) into (29) yields the following necessary 
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a set of numerical  examples  indicate that ,E is an  extremely 
tight  lower bound  on pl. We note  in passing, that  condition 
(7) is very clearly dominated by (33). 

We further observe that 

,E>------ 1 -  1 

3 2 hi 
3  tr [R] * (34) 

j = l  

Hence  a  more  conservative  region is 

1 
O<p<- 

3  tr [R] * (35) 

Fig. 2. 

and sufficient conditions 

and 

These are the same conditions as  given in [3]. 
It is of  important practical interest  to translate conditions 

(30)  into direct bounds on  the adaptive coefficient p.  To do 
this we first observe that  the  left-hand side of  (30b) is a  strictly 
monotonically  increasing  function  of p which  has singularities 
at 1 / 2  hi, j = 1 , 2,  * * , n and is equal to zero  for p = 0. Hence, 
if  we let pi dendte  the  solutions of the  equation 

The  upper  bound in (35)  has  a  distinct practical advantage. 
tr [R] is, by  definition,  the  total average input signal power 
which  can easily be estimated from  the received signal. 

IV. STEADY -STATE PERFORMANCES OF THE LMS 
The overall efficiency  of the LMS scheme can  be measured 

by  its steady-state mse and  the  rate  of  convergence  of  the algo- 
rithm.  The mse at  the k th  iteration  cycle,  denoted by E@), 

is  given by 

E@) E {e2@)} = E  - W(k)12} 
= E { [d(k) - X ( k ) T  W* - (W(k) - W*)] ’} 
= E *  - 2E {X(k)T (W(k)  - W*) [d(k) - X(k)T W*]} 

.t E {(W(k) - W * y  X(k) X(k)T (W(k) - W*)}. 
(36) 

As the  data  vectors  at distinct times are assumed to be  un- 
correlated as well  as Gaussian, X ( k )  and N(k)  are statistically 
independent. We further observe that X ( k )  and [d(k) - 
X(k)* W*] are also mutually  uncorrelated  hence,  indepen- 

we have, very much like in (28), assuming the hi’s are ordered dent- is true since 
A1 < A 2  < * . . < h n ,  E { X ( k )  [d(k) - W*]} = r  - R W” = O .  (37) 

2 A n  2hn-1  2hl out. As X(k)  is assumed to  be zero mean,  this  term equals 

1 1 1 
0 < p 1 < - < p 2 < - < . . . ~ p n ~ - .  Hence,  in the second  term  of (36),E { X ( k ) T )  can  be  factored 

Then, it is clear that  the  condition zero  and we are left  with 

0 < p < p1 min ( p i )  e(k) = E* + tr [E {W(k) - W * )  (W(k) - W * ) T }  

is equivalent to conditions (30). E G W )  X @ )  1 

However,  following the analytical considerations  outlined  in 
Appendix B, a  tight  lower  bound on p1 is  given by 

In  general,  a  closed form expression  for p1 cannot be fotind. = E* t tr [ u ~ c ( ~ )  U U ~ A  VI 

= €* + hTa(k). (3 8) 

A  “safe”  choice  for p is therefore  any value in  the interval Assuming that I-( is chosen so that a@) convergences to a 
finite value, one  immediately  obtains 

o < p < f i .  (33) 
e(-) = E* -I- X%(-) (39) 

For  the case n = 2 (arbitrary hl and X,) and  the case A i  = 
X, j = 1 , 2, * , n, where can be calculated  analytically, it where from (18) 
can  easily  be shown that /.7 coincides  with pl. In more  compli- 
cated  situations p1 cannot be calculated  analytically,  however, a(-) = 4p2 € * ( I  - F)-’A. (40) 
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E(W)  is,  by  definition,  the  steady-state mse and E* is the  mini- 
mum  attainable  mse (when r and R are known a priori). The 
second  term in  (39),  therefore,  represents  the access  mse due 
to weight vector misadjustment . A dimension-free measure for 
the degradation in performance is defined as  (see [4], 151) 

Substituting (39) and (40) into  (41),  one  immediately  obtains 

M, = 4p2 AT(1- F ) - I A  . (42) 

The rate  of convergence of the rnse to  its  steady-state can be 
measured by  the following sum 

J = [ ~ ( k )  - E ( - ) ]  
k = O  

(43 1 

with small J indicating fast convergence rate. Denoting 

A(k) = ~ ( k )  - ~ ( m )  (44) 

we get from (39) 

~ ( k )  - ~ ( m )  = A [ ~ ( k )  - a(-)] = ATA(k). T 
(45 1 

Making  use of (18) and (40) it can  easily  be shown that 

A(k t 1) =FA@). (46) 

It follows that 

J =  AT A@)= AT ( 5 Fk)  A(o) 
m 

k = O  k = O  

= A*(Z - F)-’ A(o). (47) 

Substituting (20) and (2 1)  into (42) and (47) and some algebra’ 
one finds 

(49 ) 

One observes that M, can  be controlled  through  the choice 
of p. The smaller p is,  the smaller M ,  will be. On the  other 
hand, a small p may slow down the convergence of the algorithm 
as indicated by (49). There exists a value of p resulting in the 
fastest convergence (smallest J) and up  to this value there is a 
clear tradeoff in the choice of p between  steady-state mse and 
rate  of convergence. 

’To invert the matrix (Z - F )  we  have used  the  Bartlet  formula given by 

where r is a nonsingular matrix, u a vector, and 01 a  scalar. 

To find this  optimal p one  may try to solve the equation 

- _  aJ -0. 
aP 

Note that  the  solution  to (50) generally depends on  the initial 
value A(o), hence,  of limited practical use. For the special  case 
hi = A, i = 1 ,2 ,  * . . , n,  (49) assumes the simplified form 

Assuming that A(o) is independent of p ,  (51) is minimized by 
the choice 

Equation (52) agrees with  the result in [ 3 ] ,  which was obtained 
from different considerations. 

V. COMPARISON BETWEEN THE LMS AND MLMS 
Following the same considerations  for  the MLMS one finds 

5 
1-2 phi  

M i  (-1 
j z 1  (1 - 2pht)E* 

iZ l  1 - 2pxi  

M, = 
.-., 

(53) 

where gi(k) is defined in Appendix A [see  (A7)] . Sinceg(k) -+ 

0 as k + 00, gi (m) is  given by 

n 
gt(-) = ( Y p y  + hi (r$ / A i  (54) 

j = t  

where rp is the  ith  component  of ro = Ur. Comparison be- 
tween (48) and (53) reveals an interesting insight into  the two 
algorithms. While M ,  is completely  independent ofthe amount 
of  correlation  between  the  data and the desired signal,fi, is 
highly dependent on  the  components of r .  Thus, weak correla- 
tion  (the  information content  of  the  data is  small) will result 
in $, smaller than M,, while with high correlation & will ex- 
ceed Ms. This phenomenon can  be explained by looking at (8) 
and (9). By using r rather  than  its  instantaneous  estimate X ( k )  
d(k), the MLMS is more  “cautious” than  the LMS. This pays 
off whenever X(k)d(k) is  misleading in relation to X(k)  X ( k ) T ,  
in other words, whenever the  correlation  between X ( k )  and 
d ( k )  is weak. The conclusion from  the above discussion is that 
if one does have the choice and both d ( k )  and ra re  available, 
LMS should be preferred when the  correlation is high and 
MLMS when  it is low. 

VI. SIMULATION RESULTS 
To demonstrate and support  our analysis, extensive simula- 

tions were carried out  on  the  computer. The case we are con- 
sidering here is likely to occur in  passive sonar applications. 
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.R '9 i 

Let the  data vector  be  presented by 

(b) 

Fig. 3. 

k 

and  the reference (training) signal  be  given by 

d ( k )  = as(k) t (1 - a2)1'2 n(k). (5 6) 

s( - ), ni( a ) ,  n( 0 )  are sample  functions  from  mutually  uncorre- 
lated zero-mean  white Gaussian sequences.  The ni(k)'s have 
unit  variance; s(k) and n(k) have a variance of u2. o < a d 1 
will  be  used to  control  the correlation  between X(k)  and d(k) 
while preserving the power of d(k). 

Fig. 3  presents averages of ten  independent  runs using the 
LMS algorithm on  random  data generated  by the  computer 
for  the case (T = 1 and a = 1 .' From Fig. 3(a) it is clear that  for 
both p = 0.06 and p = 0.07 the weight  vector  mean converges 
(only the first component is presented,  but  it is typical to  the 
others).  The  conclusion  concerning Fig. 3(b) is  very different; 
while for p = 0.06 the resulting mse converges,  for p = 0.07 it 
does not. These  observations are consistent  with our analysis. 

The eigenvalues of R are hl = A, = h3 = 1,  X, = A,,, = 1 t 
40'. To ensure  convergences of  the weight  vector  mean, one 
requires  only that p < 1 /X,,, = 0.2. However, the convergence 
of  the  weight  vector  covariance,  hence,  the resulting mse, is 
guaranteed  only  when 

p < p =  
1 

3(1 t o2 t d9a4 t 2oZ t 1) (57)  

and  for u = 1, j2 =0.0610. We note  in passing that  the  exact 
bound  of p can also be calculated  here from (31) and is found 
to  be p1 = 0.0613. 

In  Fig. 4 the  tradeoff between  rate of convergence  and steady- 
state performance is illustrated.  The curves in  this figure were 
generated  recursively using (18) and (38). 

The existence of an optimal 1-1 (from  a  convergence  rate  point 
of view) is demonstrated in Fig. 5. The  curve in this figure 
corresponds to a  choice  of initial conditions  such  that [A(o)] = 
A, i = 1, 2 ,  * , n. Hence, p* 0.035 is an  optimal  choice 
only in that  neighborhood; however, the basic trend is clear. 

In Fig. 6 we compare the mse  performance of the LMS and 
MLMS using the recursive  equations  developed in .the analysis. 
With a  high  degree of correlation  between X(k) and d(k)  
(a = l ) ,  the LMS clearly outperforms  the MLMS [Fig. 6(a)], 
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while with  a  low degree of  correlation (a = 0 . 2 )  the  trend is 
reversed [Fig. 6(b)]. This  is also demonstrated in Fig. 7, where 
the curves are obtained  by averaging fifty  independent  simula- 
tion results on computer  generated  random data. 

VII. CONCLUSIONS 
Convergence analysis of the LMS adaptive  algorithm  with 

uncorrelated Gaussian data is presented. Necessary and  suffi- 
cient  conditions  under  which  the weight vector converges to 
the  optimal (Wiener) solution  within a finite variance are estab- 
lished. These conditions are then  translated into  bounds  on 
the  adaptation  coefficient p. These bounds  are  found to be 
significantly smaller than  those  required for  the weight vector 
mean to converge. Exact  analytical  expressions  for  the  steady- 
state mse and  the  performance  degradation  due to weight vec- 
tor misadjustment  are derived. 

A new measure for  the rate  of convergence of  the algorithm 
(for  comparison  purposes  mainly) is suggested. This measure 
is then used to demonstrate  the  tradeoff  between  steady-state 
mse and convergence rate. The existence  of  an  optimal p which 
maximizes  the  rate  of  convergence is also demonstrated. 

The LMS scheine is compared  with  a  more "conservative" 

i 
i 

20 4 0  60 80 I OCI 

k (b) 0(=0.2 

Fig. 6. 

algorithm  proposed by Griffiths [4]. The LMS turns  out  to be 
superior  when  the  correlation  between  the received data  and 
the  desired  (training) signal  is high and inferior when the degree 
of  correlation is low. 

APPENDIX A 
Using the  notation defined by (10) through (13), (9 )  can be 

rewritten in the  form 

f ( k  + 1) = ( I  - 2pXo(k)XoT(k))  p(k) t 2peo(k) (Al)  

where 

X o ( k )  = UX(k),  r' = Ur, W o  = UW * = A-'ro (-42) 

and 

e,(k) = ro - X o ( k ) X o T ( k )  W'. ('43) 

Note that 

E {e,(k)} = ro - AA-lrO = 0. (A41 

Following the same considerations leading to (14) (see [3] 



(3 1) in the  form m.s.e. 
u -_ - 
I .  

. 

where by direct  comparison  with  (3 1) one observes that 

n nn 

j = l  i #  j 
al  = 3 hi, a2 =4CC XiXj. (B2) 

In  this  setting l / p l  is the largest root of (Bl). A theorem 
developed  in [5] asserts that l/pl can be closely bounded 
from above by 

m.s.e. 

where 

and 

c 
i By comparing the first  and  second versions of (BI),  one  im- 

mediately  obtains 

0 20 4n 60 8U 100 

(b) d = 0 . 2  k 

Fig. 7. 
It  follows that 

for  details), one finds 

c“(k t 1) = c‘(k) - 2p[A?(k) t ?(i) A] 

t 4p2 (iAC“(k) A + tr[A?(k)] A} 

t 4p2 {roroT t roTA-lr0A t r0M(k)= A 

t Ai@&) roT t 2$(k) roA}. (A51 

From (A5), one  immediately  obtains 

2 ( k  t 1) = F&(k) t 4p2g(+) (A61 Substituting (B7) and (B8) into (B3)  one  immediately ob- 
tains  (32). 

where G(k)  consists of the  diagonal  components of t ( k )  and 
g(k)  is the vector whose i th  component is  given by 

gi(k) = (rp)2 t hi 5 (ry)2/Xi 
j =  I 
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Root Properties and Convergence  Rates of 
Median  Filters 

Abxtroct-Median filters  are  a special class of ranked  order fiiters used 
for  smoothing signals. Repeated application of the filter on a quantized 
signal of finite  length  ultimately  resdts  in a  sequence, termed a root sig- 
nal, which is invariant to additional passes of the median filter. In this 
paper, the  theory  is developed both for determining  the cardinality of 
the root signal space of  arbitrary window width  filters applied to signals 
with any  number of quantization levels and  for  counting or estimating 
the  number of passes required to produce a root for binary signals. 

I.  INTRODUCTION 

A median filter maps  a class  of input signals into  an asso- 
ciated set of root sequences.  Each  of  these root signals 

is, by definition, invariant to additional  filter passes and is the 
result of repeated filter passes on one or more  of  the  input sig- 
nals. One effective use-of median  filters  has  been  the  reduc- 
tion of  high-frequency  and  impulsive  noise in digital images 
without  the extensive  blurring  and edge destruction  associated 
with linear filters [ l ]  . Other  applications  include  the  smooth- 
ing of noisy pitch  contours  in speech signals and  data  compres- 
sion using the  root signal properties  combined  with  a  block 
truncation  coding (BTC) technique [2],  [3]. In practice,  pro- 
cessing and  delay  times,  possible  coding  schemes,  and output 
signal space characteristics can all be influenced  by both  the 
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number  of roots  and  the number  of  filter passes necessary to 
reach  a root. 

The  implementation of a median filter requires a simple  non- 
linear digital operation.  To  begin,  take  a sampled  signal  of 
length L ;  across  this signal,  slide a  window that spans 2N t 1 
points.  The  filter  output  at  each  window  position is  given the 
same position as the sample  point at  the center  of the window 
and is set equal to  the median value  of the 2N t 1 signal  sam- 
ples in the window. Start-up  and end effects are accounted  for 
by  appending N samples to  both  the beginning and  the end of 
the sequence.  The front  appended  samples are given the value 
of the first signal sample; similarly, the rear appended  samples 
receive the value of the last sample  of the signal. In Fig. 1 we 
present an example  where  median  filters of window  widths 
three, five, and seven are  applied to the same binary  sequence. 
Note  that  appended  bits are denoted  by  crosses (x) and the 
window is moved  from  left to right. The  basic idea  is to rank 
the samples in the window  and select the median value as the 
filter output. 

Gallagher and Wise [4]  obtained some  theoretical results re- 
lating signal length to  the maximum  number of filter passes re- 
quired to reach a root. Because our  current  work  extends 
these results, several of the  definitions  and  theorems  are  worth 
listing here. 

1) A constant neighborhood is at least N +  1 consecutive 
identically valued points. 

2) An edge is a monotonic region between two constant 
neighborhoods of different value. The  connecting  monotonic 
region  cannot  contain any  constant  neighborhood. 

3) A root signal is a  sequence  which is invariant to  the me- 
dian  filter. 
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