
Texture Segmentation by Multiscale Aggregation of Filter Responses and Shape
Elements

Meirav Galun Eitan Sharon∗ Ronen Basri† Achi Brandt‡

The Weizmann Inst. of Science
Dept. of Computer Science and Applied Math.

Rehovot 76100, Israel

Abstract

Texture segmentation is a difficult problem, as is appar-
ent from camouflage pictures. A Textured region can contain
texture elements of various sizes, each of which can itself
be textured. We approach this problem using a bottom-up
aggregation framework that combines structural character-
istics of texture elements with filter responses. Our process
adaptively identifies the shape of texture elements and char-
acterize them by their size, aspect ratio, orientation, bright-
ness, etc., and then uses various statistics of these proper-
ties to distinguish between different textures. At the same
time our process uses the statistics of filter responses to
characterize textures. In our process the shape measures
and the filter responses crosstalk extensively. In addition,
a top-down cleaning process is applied to avoid mixing the
statistics of neighboring segments. We tested our algorithm
on real images and demonstrate that it can accurately seg-
ment regions that contain challenging textures.

1 Introduction

Camouflage is a striking evidence that segmentation can
be hard not only for computers. Animal fur, painted care-
fully to match the color and texture of its habitat, provides
a hiding place for a predator and a safe refuge for a prey.
Computer systems often have difficulties to properly seg-
ment even simpler images. In particular these systems face
difficulties when the image includes complex textures. This

∗Current address: Division of Applied Math, Brown University.
†Research was supported in part by the European Commission Project

IST-2000-26001 VIBES and by the Israeli Ministry of Science, Grant No.
2104. The vision group at the Weizmann Inst. is supported in part by the
Moross Foundation.
‡Research was supported by grants No. 295/01 from the Israel Science

Foundation, US Air Force 5408-05-sc-0007, GIF 3982 and by the Carl
F. Gauss Minerva Center for Scientific Computation at the Weizmann In-
stitute of Science.The authors thank D. Ron for highlighting remarks and
useful discussions.

paper presents a novel approach to texture segmentation.
Our approach manages to accurately segment real images
that contain challenging textures.

We approach the problem of texture segmentation us-
ing a framework that combines structural characteristics of
texture elements with filter responses. Our process adap-
tively identifies the shape of texture elements and character-
ize them by their size, aspect ratio, orientation, brightness,
etc., and then uses various statistics of these properties to
distinguish between different textures. For these statistics,
the texture elements need not be identical, or made of uni-
form shade of gray. Instead, they may vary in shape and
size, and their spacing may be irregular. Texture elements
are identified at multiple scales, and their statistics (densi-
ties of various element properties) are used to influence the
segmentation process, including the identification of larger
texture elements, allowing for example to identify texture
elements that themselves are textured. At the same time
our process uses the statistics of filter responses to char-
acterize textures. Most importantly, these responses can
be averaged while avoiding mixing the statistics of neigh-
boring textures. The two components, the shape measures
and filter responses crosstalk extensively during the algo-
rithm. The shape of texture elements determine what filter
responses are considered relevant. At the same token filter
responses may affect the formation of texture elements.

The importance of properties such as size, aspect ratio,
orientation, brightness, and density of repeated texture ele-
ments was noted already in the classical perceptual studies
of Julesz [7] and Beck [1]. However, only few attempts
(e.g., [15]) were made to directly use these principles in
computational studies due to their limited applicability to
complex, natural textures. A popular alternative approach
has been to characterize texture by measuring their response
to filter banks [10, 16, 9]. Filter responses characterize the
frequency, size and orientation of the texture elements, but
without explicitly isolating them. (An interesting recent
variant attempts to identify the “textons” by clustering the
filter outputs [8].)

While filter banks clearly provide a useful characteriza-
tion of textures, their application poses some difficulties in
texture segmentation. In particular, filter outputs along the
boundaries of a segment can significantly differ from their
output within the segment both because they mix the statis-
tics of neighboring segments [13] and because boundary
edges (if exist) may invoke strong response in the direc-
tion of the edge [9]. This, at best, may lead to inaccurately
detecting the boundaries of segments, and in more severe
cases to either missing or hallucinating segments. Adap-
tive scale selection [9, 4] only partially solves this problem,
because some textures cannot be characterized by a single
scale, such as when a texture is composed of several el-
ements that are differently spaced, or when the elements
themselves are textured.

Our multilevel method of bottom-up weighted aggre-
gation of picture elements, which involves also some top-
down iterative feedback, is different from other approaches
to texture in the following three principles: (1) Mini-
segments at various scales are isolated, and various statis-
tics of their individual properties are collected and used to
characterize large-scale textures. (2) Mixing of statistics
between neighboring texture regions can be avoided. (3)
Texture measures characterize picture aggregates at every
scale (except for the few finest levels), playing a central
role in defining the way these aggregates are combined to
create the next-coarser-scale aggregates. These principles
are incorporated into an intensity-based segmentation pro-
cess [12, 13] allowing the detection of both textured and
non-textured regions.

2 Multiscale graph partitioning

We implement our treatment of texture using the frame-
work presented in [12, 13]. In this framework, given an
image, we construct a graph in which every pixel is a node
and neighboring pixels are connected by an edge. A weight
is associated with each edge reflecting the contrast in the
corresponding location in the image. A multiscale proce-
dure is used to find optimal partitions of the graph. Below
we describe the multiscale framework and its use for image
segmentation. Our description explicitly highlights the re-
lations of this framework to the normalized cuts algorithm,
and provides a clearer intuition of the method.

Let G = (V,W) be a weighted graph with nodesvi ∈ V
and undirected, weighted edgeswij > 0. We conveniently
treatW as a symmetric matrix with its diagonal elements
set to zero.

To evaluate segments we define a saliency measure as
follows. Every segmentS = {v1, v2, . . . , vm} ⊆ V is as-
sociated with a state vectoru = (u1, u2, . . . , uN), where

N = ‖V ‖, and

ui =
{

1 if vi ∈ S
0 if vi 6∈ S.

(1)

The saliency associated withS is defined by

Γ(S) =

∑
i>j wij(ui − uj)2∑

i>j wijuiuj
, (2)

which sums the weights along the boundaries ofS normal-
ized by the internal weights. Segments that yield small val-
ues ofΓ(S) are considered salient1. In matrix notationΓ
can be written as

Γ(S) =
uT Lu

1
2uT Wu

, (3)

whereL is the Laplacian matrix whose elements are

lij =
{ ∑

k (k 6=i) wik i = j

−wij i 6= j.
(4)

If we allow arbitrary real assignments tou the minimum for
Γ is obtained by the minimal generalized eigenvectoru of

Lu = λWu (minimal λ > 0). (5)

This equation is in fact equivalent to the normalized cuts
solution [14].

Our objective is to find the best partitions (0-1 as-
signments ofu) for this graph. We do this recur-
sively by executing the following procedure. The finest

graph (s=0) is denoted byG[0] def
= G. Given a graph

G[s−1] = (V [s−1],W [s−1]), and denote byu[s−1] =
(u[s−1]

1 , u
[s−1]
2 , . . . , u

[s−1]

N [s−1]) the state vector at levels − 1,
we first examine all single-node partitions. For those par-
titions u[s−1] contains 1 in one entry and 0 in all other
entries, andΓ is the ratio between the diagonal elements
of L[s−1] andW [s−1] (whose values are computed recur-
sively as is explained below). After accounting for the
single-node partitions we proceed to finding partitions that
in the current scale involve multiple nodes. For these par-
titions we seek to produce a smaller graph (that contains
about half of the original nodes) whose partitions can ap-
proximate these multiple-node partitions. Denote byu[s] =
(u[s]

1 , u
[s]
2 , . . . , u

[s]

N [s]) the state vector at levels, we seek a
sparse,N [s−1] ×N [s] matrixP such that

u[s−1] ≈ Pu[s]. (6)

P = P [s−1] is called the inter-scale interpolation matrix.
Assuming that suchP can be found then the saliency mea-
sureΓ can be written as

u[s−1]T Lu[s−1]

1
2u[s−1]T Wu[s−1]

≈ u[s]T PT LPu[s]

1
2u[s]T PT WPu[s]

, (7)

1To avoid division by zero we will ignore single pixel partitions.

whereL = L[s−1] andW = W [s−1]. The right hand side
of this equation determines a graph withN [s] nodes whose
weight matrix, defined byW [s] = PT W [s−1]P , includes
the edge weights in the off-diagonal elements and internal
node weights in the diagonal elements. The (generalized)
Laplacian of levels can be computed byL[s] = PT LP , as
resulting from (7), or be more cheaply approximated by a
relation toW [s] as in (4).

To build the coarse graph we should still specify how to
selectP . One popular method to produce a coarse graph
is through node contraction (e.g., [6, 17]). In this method
strongly connected pairs of nodes at levels−1 are replaced
each by a single node at levels. This, however, may lead to
premature assignments of nodes and lead to poor approx-
imations ofu[s−1]. A better way is to follow the graph
coarsening method that yields a fast multilevel solver for
the eigenvalue problem (5). Such a fast solver, called Alge-
braic Multigrid (AMG) [3, 2], yields the following proce-
dure. We begin by selecting a set of coarse representative
nodesV [s] ⊆ V [s−1] = {1, 2, . . . , N [s−1]}, so that every
node inV [s−1] \ V [s] is strongly connected toV [s]. A node
is considered strongly connected toV [s] if the sum of its
weights to nodes inV [s] is a significant proportion of its
total weights. Then, we construct the inter-scale interpola-
tion matrix,P = P [s−1], where for anyi 6∈ V [s] {pik}N [s]

k=1

are chosen to be proportional to{w[s−1]
ik }N [s]

k=1 such that∑
k pik = 1, while for i ∈ V [s], pii = 1 and pij = 0

for all j 6= i.

Assuming that the original graph is only locally con-
nected, and since every node is strongly connected toC,
there exists such asparseinterpolation matrixP . Therefore,
the weightsw[s]

kl can be computed efficiently by weighted
aggregation [12].

This coarsening procedure is repeated recursively, so in
fact we only evaluateΓ for single nodes at all levels. As a
result of this process we obtain a full pyramid representa-
tion of the image. Nodes associated with low values ofΓ
represent salient segments. The rest of the nodes can each
be thought of as representing a weighted aggregate of pixels
that may at a higher scale be part of a salient segment. The
weight pij = p

[s−1]
ij can be thought of as the probability

of a nodei ∈ V [s−1] to belong to an aggregatej ∈ V [s].
These probabilities are compounded from level to level, so
that eventually, at a high levels, almost every pixel (a node
in V [0]) belong with probability close to 1 to one and only
one aggregate inV [s], while few pixels near the boundaries
between aggregates may still remain undecided.

This multiscale partitioning procedure can be used for
image segmentation in the following way. Given an image,
we begin by constructing a 4-connected graphG = (V, W),
where every pixel is represented by a nodevi ∈ V , and
every pair of neighboring pixels are connected with an edge

with weightwij . The weight reflects the contrast between
the two pixelsi andj, e.g.,

wij = e−α|Ii−Ij |, (8)

whereIi andIj denote the intensities of the two neighbor-
ing pixels, andα is a positive constant.

If we now apply the multiscale procedure to find the
best partitions of the graph, we will obtain a full, irregular
pyramid of graphs whose salient nodes represent the salient
partitions of the graph. However, these partitions will re-
flect segments that are distinctive only by fine contrast be-
tween pixels, and so they may not be attractive perceptu-
ally. A popular approach to overcome this problem is to
determine the weight in (8) according to the responses of
filters that take into account the contrast between neighbor-
hoods of pixels. Unfortunately, this can lead to mixing of
statistics of different segments and hence over-smoothing of
weights and consequently to inaccurate partitions. To solve
this problem [13] proposed a method to combine multiscale
measuresduring the construction of the pyramid. At each
coarsening step, we first determine the next coarser graph
using the weighted aggregation procedure. This will pro-
duce a graph that is roughly equivalent to the finer level
graph. Then, we modify the weights in the new graph to
incorporate coarser measures of differences between neigh-
boring aggregates. This idea was demonstrated using in-
tensity statistics (which allows to only a limited extent the
handling of certain textures, see a comparison in Section 4)
and boundary integrity measures computed for each of the
aggregates.

3 Texture segmentation

Texture elements are identified at multiple scales, and
their statistics are used to influence the identification of
larger texture elements. The bottom-up aggregation pro-
cess adaptively identifies the shape of texture elements and
characterize them by their size, orientation, brightness and
density. In addition, filter response statistics are used to
characterize texture and affect the formation of texture el-
ements. Conversely, the shape of texture elements deter-
mines through a top-down process which of the filter re-
sponses are relevant.

We begin with the same graph as in Section 2 and per-
form an aggregation process. During the aggregation pro-
cess we accumulate statistics of the aggregates formed. At
the first few levels (typically 3-4) we use only the intensity-
related properties to determine the aggregates. From a cer-
tain level and on we use also the shape measures and the
filter responses to determine the aggregates. We compare
these multiscale regional properties of neighboring aggre-
gates and modify the weights between them according to

• Given an image define a four-connected graphG[0] = (V [0], W [0])
whereV [0] is the set of image pixels andW [0] is defined according
to (8). Calculate, for each pixel, short line-integral responses in four
directions (21).

• For s=1,2,... constructG[s] from G[s−1], as follows:

1. Select a representative set of nodesV [s], such thatV [s−1] \
V [s] is strongly connected toV [s].

2. DefineP = P [s−1] the inter-scale interpolation matrix.

3. CalculateW [s] ≈ P T W [s−1]P by weighted aggregation.

4. For each node inV [s]

(a) calculate first and second order moments (12) and solve
(13) to find length, width and orientation.

(b) calculate average intensity and multiscale variance (11).

(c) accumulate average properties of sub-nodes (10).

(d) perform a top-down process to accumulate filter re-
sponses (see section 3.3.2).

5. modify W [s] according to these regional properties (24).

Table 1. Outline of algorithm

the result of this comparison. This allows neighboring ag-
gregates of similar textures to merge at the next levels of the
aggregation process and aggregates of different textures to
stand out. Our multiscale regional properties include the av-
erage dimensions (length and width) and orientation of sub-
aggregates. Filter statistics include the average response of
fine, edge-shaped filters obtained at the sub-aggregates. An
outline of the algorithm is given in Table 1.

3.1 Accumulation of regional properties

All of the measures that we apply are in fact averages of
some properties within a region, and so they can be accu-
mulated during the aggregation process. Formally, given an
aggregatek at scales, let Q̄[r][s]

k denote a weighted average
of a certainr-scale propertya[r] = (a1, . . . , aN [r]), i.e.,

Q̄
[r][s]
k =

∑
j cjka

[r]
j∑

j cjk
, (9)

where cjk are the appropriate weights. More precisely

cjk = c
[r][s]
jk is the elementj in the thekth column of the

relevance matrix,P [r] · · ·P [s−1], i.e., the matrix product of
the interpolation matrices from fine levelr up to coarse level
s. Recall thatP [r] relates levelr with levelr+1, and so on.

Practically, the average properties are calculated very ef-
ficiently, without using the explicit relation above (9), but
by the following recursive rule: for an aggregatek at level
s, the average of anr-scale propertya[r] can be computed
directly from its sub-aggregates at levels− 1.

We define the following row vectors

Q[r][r] def
= a[r], C [r][r] def

= 1T = (1, 1, . . . , 1),

Q[r][s] def
= a[r] · P [r] · · ·P [s−1] = Q[r][s−1]P [s−1],

C [r][s] def
= 1T · P [r] · · ·P [s−1] = C [r][s−1]P [s−1].

Note thatC [r][s]
k in fact accumulates the number of sub-

aggregates of levelr that compose the aggregatek at scale
s. In particular,C [0][s]

k is the volume of the aggregatek at
scales in pixel units.

Given the interpolation matrixP [s−1] and alsoQ[r][s−1]

and C [r][s−1], the relevantQ and C for scales can be
computed immediately using the recursive relations above.
Then, equation (9) simplifies to

Q̄
[r][s]
k =

Q
[r][s]
k

C
[r][s]
k

. (10)

These recursion rules can be used to compute not just
averages, but also variances and histograms. For example,
if we seta[0] to be the intensities of pixels, then we obtain
the average intensity of an aggregate, denoted byĪ

[0][s]
k for

aggregatek at levels. If we seta[0] to be the squared in-
tensity of pixels we obtain the mean squared intensity of an
aggregate that can be used to determine its variance. We
can also compute the average variance of sub-aggregates by
starting the accumulation witha[r] set to be the variances
of aggregates of levelr. This way we can characterize an
aggregatek at scales by a multiscale variance vector

−→ν [s]
k = (ν̄[1][s]

k , ν̄
[2][s]
k , . . . , ν̄

[s][s]
k), (11)

as in [13]. Similarly, if we set the propertya[r]
j to be a vec-

tor (and hencea[r] to be a matrix) its accumulation would
produce a histogram of values.

Computing and maintaining these multiscale measure-
ment vectors is done in linear time in the number of image
pixels. Denote the number of pixels in the image byN .
Because at every level of the pyramid the number of nodes
reduces by about half, the total number of nodes in the pyra-
mid is about2N . At every levels we storeO(s) or O(s2)
measurements, but since the number of nodes decreases ex-
ponentially withs, whereas the number of measurements
grows only polynomially, the total number of measurements
is still O(N).

3.2 Shape elements

We compute for every aggregate its length, width, and
orientation. Other shape moments could be added. Then,
we use these quantities to produce shape statistics for the
aggregates. In particular, for every aggregate we compute
the average length and width of its sub-aggregates at all
finer scales. In addition, we construct an orientation his-
togram of the sub-aggregates at all finer scales. Below we

describe these statistics and how we accumulate them as we
construct the pyramid.

The dimensions and orientation of an aggregate can be
computed using the second-order principal moments of the
aggregate [5]. As explained above an efficient way to com-
pute those principal moments is from the moments of the
sub-aggregates (10). In this case the propertya[0] can be
thex or y coordinates of the image pixels, their product, or
the squared values of these coordinates. In this manner, we
obtain the second-order moments, associated with the shape
of an aggregatek at scales

x̄
[0][s]
k , ȳ

[0][s]
k , xk · y[0][s]

k , x2
k

[0][s]
, y2

k

[0][s]
. (12)

Higher order moments could similarly be accumulated. A
short notation for (12) will be used:̄x, ȳ, x · y, x2, y2.

The two principal directions are determined by the eigen-
value system

Se = ωe, (13)

whereS is the covariance matrix

S =
(

x2 − x̄2 x · y − x̄ · ȳ
x · y − x̄ · ȳ y2 − ȳ2

)
. (14)

The corresponding eigenvalues, of the eigenvectorse =
(cosθ, sinθ)T ande⊥, are the squared dimensions (length
and width) of the shape.

For any emerging aggregatek at levels the second order
moments are first calculated using (10). Then (13) is solved
to find the principal direction, the length and the width. We
denote the length of the aggregate byL

[s][s]
k , and the width

by W
[s][s]
k . The orientation of the aggregate is specified by

the angleθ between the principal direction and the positive
X-axis. To remove ambiguity we setθ so that0 ≤ θ < π.
In general,θ can be reliably estimated only for elongated
(anisotropic) texture elements, and so we will useθ only
for aggregates whose length to width ratio exceeds a certain
threshold (typically 3).

Usually, coherent texture regions are characterized by
the shape of finer texture elements and their density of ap-
pearance. An efficient way to code these properties is by
introducing multiscale measurement vectors that accumu-
late the average width and average length of all finer texture
elements that compose a coarser aggregate.

For an aggregatek of scales we denote bȳL[r][s]
k the

average length of its sub-aggregates of scaler. These av-
erages are calculated recursively using (10), witha[r] being
the vector of lengths of all the aggregates at scaler. Per-
forming this computation for allr ≤ s we obtain a vector
of average lengths,

−→
L

[s]

k = (L̄[1][s]
k , L̄

[2][s]
k , . . . , L̄

[s][s]
k). (15)

To reflect the measure of similarity between two texture
regions, represented by two aggregatesk andl at levels, a
normalized distance is defined

D(L)[s]kl =
(s−2∑

r=1

(
L̄

[r][s]
k − L̄

[r][s]
l

L̄
[r][s]
k + L̄

[r][s]
l

)2)1/2

. (16)

The normalization is due to the natural increase of the di-
mensions with scale. Similar description is suitable for the

average width
−→
W

[r][s]

k , yielding the corresponding normal-
ized distanceD(W)[s]kl

The orientation of elongated texture element provides an
important cue in texture segmentation. We find the princi-
pal orientation of elongated aggregates (whose aspect ratio
exceeds a certain threshold) using (13). We then prepare
for every aggregate a histogram depicting the distribution
of orientations of its sub-aggregates at all finer scales. Each
aggregatek at scales holds a two-dimensionals × n his-
togram, wheren is the number of direction bins. Each row
r in the histogram contains the number of elongated texture
elements of scaler in each direction bin. The histogram is
filled recursively along the aggregation process, using

H
[r,j][s]
k =

∑

i

pikH
[r,j][s−1]
i , (17)

which is exactly the calculation of the numerator in (10).
This accumulation process begins as follows. Given

an elongated aggregatei of scaler whose direction isθ,
0 ≤ θ < π, and letb be the integer,b = 0, . . . , n − 1, for
which π

n · b ≤ θ < π
n · (b + 1). Then the entryH [r,j][r]

i in
the histogram is determined by the linear anterpolation (the
adjoint of the linear interpolation):

H
[r,j][r]
i =

(b+1)·π/n−θ
π/n j = b

θ−b·π/n
π/n j = b + 1 if b < n− 1

θ+π/n−π
π/n j = 0 if b = n− 1
0 otherwise.

(18)
For each aggregatek at scales we count in each his-

togram binH [r,j][s]
k how many elongated sub-aggregates of

scaler had their principal direction associated with binj.
We define a measure of distance between two aggregatesk
andl of scales as

D(H)[s]kl =
(n−1∑

j=0

s∑
r=1

(
H

[r,j][s]
k

C
[0][s]
k

−H
[r,j][s]
l

C
[0][s]
l

)2)1/2

. (19)

In this equation each bin is normalized by the volume of the
corresponding aggregate so that the measure will reflect the
density of the finer texture elements in each direction.

3.3 Filter responses

We employ a technique that can incorporate filter re-
sponses from all scales and orientations. This method inte-
grates well with the multiscale framework and maintains the
adaptive support of measurements. Since filter responses
have very different values near the boundaries between dif-
ferent textures, an accurate way to collect filter response
statistics on texture regions is to use theinterior support of
the aggregates calculated by our bottom-up process. By a
top-down process, we can collect statistics only from inter-
nal filter responses, while neglecting outer filter responses.
As mentioned above, this can be useful for any kind of fil-
ter at any scale. However, our experience indicates that in
this context our main need is for filter responses at the finest
(pixel) level, to capture fine texture elements, such as hair
or grass, that may not be captured as aggregates due to lack
of sufficient contrast. The details of the procedure follows.

3.3.1 Fine edge filter responses

For each pixel(i, j), we calculate the line integrals in four
directions:

L1
i,j =

1
4
Ii,j−1 +

1
2
Ii,j +

1
4
Ii,j+1

L2
i,j =

1
4
Ii−1,j +

1
2
Ii,j +

1
4
Ii+1,j

L3
i,j =

1
4
Ii−1,j+1 +

1
2
Ii,j +

1
4
Ii+1,j−1

L4
i,j =

1
4
Ii−1,j−1 +

1
2
Ii,j +

1
4
Ii+1,j+1, (20)

whereIi,j denotes the intensity at pixel(i, j). We use these
integrals to obtain the absolute responses of edge filters:

F 1
i,j = |L1

i−1,j − L1
i+1,j |

F 2
i,j = |L2

i,j−1 − L2
i,j+1|

F 3
i,j = |L3

i−1,j−1 − L3
i+1,j+1|

F 4
i,j = |L4

i+1,j−1 − L4
i−1,j+1|. (21)

We can compute the average of the absolute responses at
any scales recursively using (10), witha[0] standing for one
of the propertiesF d, d = 1, . . . , 4 of all pixels. However,
this calculation will be biased by strong filter responses at
the boundaries of segments. To solve this problem we per-
form a top-down process that eliminates such undesired ef-
fect. This top-down process is explained below. As a result
of this top-down process, we obtain for an aggregatek at
any scales a filter response distribution vector denoted by

−→
F

[s]

k = (F̄ 1
k , F̄ 2

k , F̄ 3
k , F̄ 4

k)[s]. (22)

The similarity between two textured regions is defined
by the correlation coefficient

D(F)[s]kl =
Cov(−→F [s]

k ,
−→
F

[s]

l)

σ(−→F [s]

k) · σ(−→F [s]

l)
. (23)

As with shape-related measurements above, various inter-
scale histograms can be accumulated based onF̄ d

k and sim-
ilar averages obtained with larger (and perhaps wider) fil-
ter masks. Our experience (see below) has shown that even
the simple similarity measures (23) already yields much im-
proved segmentation.

3.3.2 Top-down process

Filter responses have very different values near the bound-
aries between different textures. To eliminate this effect
we perform a top-down ”cleaning” process in which we
eliminate responses from pixels whose relevance values are
small. Specifically, for each aggregatek at scales we first
find the pixels that belong tok, or in other words the support
of measurements calculated for aggregatek by the bottom-
up aggregation process. To do so we begin with the char-
acteristic state vectoru[s] which is set to1 at thek’th entry
and0 elsewhere. By repeating interpolations from scales
all the way down to scale0, using (6), we obtain for each
pixel its relevance value. A pixel whose relevance value is
below0.5 is considered outside the aggregate and its filter
response statistics will not be taken into account. Only the
pixels whose relevance values are higher than0.5 will con-
tribute to the statistics, and their responses will be averaged
with their relevance values as weights. Extension of this
top-down process to wider and longer filter masks will re-
quire to generalize the definition of outer filter responses,
e.g., if ”most” of the pixels in the filter mask demonstrate
low relevance, this filter response should be neglected in the
statistics accumulation.

This top-down process raises the linear complexity of
the algorithm by a log factor. In principle we can main-
tain linear complexity if we bound the top-down process to
go down a bounded number of levels.

3.4 Weights update induced by regional proper-
ties

Each edge weightw[s]
kl of two aggregatesk andl at level

s is calculated by using weighted aggregation. Then, to re-
flect the measure of similarity between two texture regions,
this weight is modified by multiplying it by

e−α̃D(I)
[s]
kl · e−βD(ν)

[s]
kl · e−ρ(1−|D(F)

[s]
kl
|)

·e−γ(D(L)
[s]
kl

+D(W)
[s]
kl

) · e−ωD(H)
[s]
kl , (24)

whereD(I)[s]kl andD(ν)[s]kl are defined as in [13]. The posi-
tive constants are explained in the next section.

4 Experiments

We have implemented our method and tested it on nat-
ural images. We selected a set of challenging images that
contain animals in camouflage. While humans may use
high-level information to segment such images, we ap-
proach this problem using data-driven, low-level process-
ing only. For comparison we show segmentation results ob-
tained with the algorithms described in [13] and in [9]. [13]
performs weighted aggregation that includes a limited han-
dling of texture using only brightness measures (variance
of sub-aggregates, Eq. (11)). [9] combines a filter-based
texture segmentation and intensity based segmentation in a
normalized-cuts framework. A gating mechanism is used
to overcome boundary problems. Our process in contrast
does not determine a-priori whether segmentation should be
based locally on texture or intensity contrast, but combines
these measures uniformly throughout the image.

In our implementation, we set the parameters around
α = 10, α̃ = 4, β = 0.5, γ = 3, ω = 3, ρ = 1 and
n = 4. In any of the experiments below we did not apply
the boundary integrity process suggested in [13]. Our appli-
cation takes 5 seconds to complete the bottom-up aggrega-
tion of a400× 400 image using a Xeon1.6 Ghz processor.
Together with the top-down cleaning process implemented
to the pixel level the runtime increases to 10 seconds.

Figure 1 shows a typical set of results. The table contains
(from left to right) the original images, the results obtained
with our method, results obtained using [13] and [9]. In all
pictures we show the original image along with an overlay
of the segmentation results. In all five animal examples the
animal was segmented in one piece by our method outper-
forming the other two algorithms. Notice in particular that
our method managed to accurately segment both the leop-
ard (third row) despite gradual variations in texture and the
polar bear (fifth row) despite differences in intensities. In
contrast, both [13] and [9] lead to over-fragmentation of the
images and in some cases to leakage problems. The bottom
image shows a natural composition of textures. Notice the
accurate separation of the two parts of the brick wall in our
method.

5 Conclusions

We have presented a novel method for texture segmen-
tation and demonstrated that it can achieve state-of-the-art
results when applied to challenging textures. We chose to
characterize textures by a collection of statistics that include
shape, intensity variability, and filter responses. While we
generally find this set to be adequate for a large variety of
textures, it is possible to incorporate additional statistics in
our framework. For example, we can use higher order shape
moments or variance of filter responses. One important is-

sue is how to combine the various statistics into a single
weight. We are currently exploring ways to cast this prob-
lem in a Bayesian formulation so we can learn from real
images how to optimally combine the different statistics.

It is important to note that the segmentations produced
by our approach arehierarchical, and with their associated
statistics they can be used directly for recognition and re-
trieval, because every segment in our method comes with
an identifying list of numbers describing its shape, texture,
and its sub-segments along with their own descriptors.

References

[1] J. Beck. Textural segmentation. In J. Beck, editor,Organiza-
tion and Representation in Perception. Erlbaum, Hillsdale,
N.J., 1982.

[2] A. Brandt. Algebraic multigrid theory: the symmetric case.
Appl. Math. Comput, 19:23–56, 1986.

[3] A. Brandt, S. McCormick, and J. Ruge. Algebraic multi-
grid (amg) for automatic multigrid solution with application
to geodetic computations. Inst. for Computational Studies,
POB 1852, Fort Colins, Colorado, 1982.

[4] G. Caenen, V. Ferrari, Zalesny, A., and L. Van Gool. An-
alyzing the layout of composite textures.Texture, I:15–19,
2002.

[5] R. O. Duda, P. E. Hart, and D. G. Stork.Pattern Classifica-
tion. John Wiley and Sons, New York, 2001.

[6] Y. Gdalyahu, D. Weinshall, and M. Werman. Self organi-
zation in vision: stochastic clustering for image segmenta-
tion, perceptual grouping, and image database organization.
PAMI, 23(10):1053–1074, 2001.

[7] B. Julesz. Textons, the elements of texture perception and
their interactions.Nature, 290:91–97, 1981.

[8] T. Leung and J. Malik. Representing and recognizing the
visual appearance of materials using three-dimensional tex-
tons. IJCV, 43(1):29–44, 2001.

[9] J. Malik, S. Belongie, T. K. Leung, and J. Shi. Contour and
texture analysis for image segmentation.IJCV, 43(1):7–27,
2001.

[10] J. Malik and P. Perona. Preattentive texture discrimination
with early vision mechanisms.JOSA, 7A(5):923–932, 1990.

[11] P. Perona. Deformable kernels for early vision.PAMI,
17(5):488–499, 1995.

[12] E. Sharon, A. Brandt, and R. Basri. Fast multiscale image
segmentation.CVPR, I:70–77, 2000.

[13] E. Sharon, A. Brandt, and R. Basri. Segmentation and
boundary detection using multiscale intensity measure-
ments.CVPR, I:469–476, 2001.

[14] J. Shi and J. Malik. Normalized cuts and image segmenta-
tion. PAMI, 22(8):888–905, 2000.

[15] H. Voorhees and T. Poggio. Computing texture boundaries
from images.Nature, 333:364–367, 1988.

[16] T. Weldon, W. Higgins, and D. Dunn. Efficient gabor fil-
ter design for texture segmentation.Pattern Recognition,
29:2005–2015, 1996.

[17] D. Willersinn, E. Bertin, and W. Kropatsch. Dual irregular
voronoi pyramids and segmentation. InTechnical Report.
Technical University of Vienna, March 1994.

Original images Our Results Brightness only [13] Normalized cuts [9]

Figure 1. Experimental results

