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ABSTRACT
We present Brahms, an algorithm for sampling random nodes ina
large dynamic system prone to malicious behavior. Brahms stores
small membership views at each node, and yet overcomes Byzan-
tine attacks by a linear portion of the system. Brahms is composed
of two components. The first one is a resilient gossip-based mem-
bership protocol. The second one uses a novel memory-efficient
approach for uniform sampling from a possibly biased streamof ids
that traverse the node. We evaluate Brahms using rigorous analysis,
backed by simulations, which show that our theoretical model cap-
tures the protocol’s essentials. We study two representative attacks,
and show that with high probability, an attacker cannot create a
partition between correct nodes. We further prove that eachnode’s
sample converges to a uniform one over time. To our knowledge,
no such properties were proven for gossip protocols in the past.
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1. INTRODUCTION
We consider the problem of sampling a random node (or peer) in

a large dynamic system subject to adversarial (Byzantine) attacks.
Random node sampling is important for many scalable dynamicap-
plications, including neighbor selection in constructingand main-
taining overlay networks [15, 22, 25, 27], selection of communica-
tion partners in gossip-based protocols [6, 10, 13], data sampling,
and choosing locations for data caching, e.g., in unstructured peer-
to-peer networks [24].

Typically, in such applications, each node maintains a set of ran-
dom node ids that is asymptotically smaller than the system size.
This set is called alocal view. In a dynamic system, where the set
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of active nodes changes over time (this is calledchurn), the local
views must continuously evolve to reflect these changes, adding
new active nodes and removing ones that are no longer active.By
using small local views, the maintenance overhead is kept small.
In the absence of malicious behavior, small local views can be ef-
fectively maintained with gossip-based membership protocols [1,
13, 14, 19, 31], which were proven to have a low probability for
partitions, including under churn [1].

Nevertheless, adversarial attacks present a major challenge for
small local views. Previous Byzantine-tolerant gossip protocols ei-
ther considered static settings where the full membership is known
to all [11, 23, 29], or maintained (almost) full local views [4, 20],
where faulty nodes cannot push correct ones out of the view. In
contrast, small local views are susceptible to poisoning with entries
(node ids) originating from faulty nodes; this is because the system
is dynamic, and therefore nodes inherently must accept new ids and
store them in place of old ones in their local views. It is evenmore
challenging to provideindependent uniform samplesin such a set-
ting. Even without Byzantine failures, gossip-based membership
only ensures that eventually theaveragerepresentation of nodes in
local views is uniform [1, 14, 19], and not thatevery nodeobtains
an independent uniform random sample. Faulty nodes may attempt
to skew the system-wide distribution, as well as the individual local
view of a given node.

In this paper, we address these challenges. We present Brahms
(Section 3), a gossip-based membership service that stores a sub-
linear number of ids (e.g.,Θ( 3

√
n) in a system of sizen) at each

node, and provideseach nodewith membership samples that con-
verge to uniform ones over time. The main ideas behind Brahms
are (1) to use gossip-based membership with some extra defenses
to make it viable (in the sense that local views are not solelycom-
posed of faulty ids) in an adversarial setting; (2) to recognize that
such a solution is bound to produce biased views due to attacks (we
precisely quantify the extent of this bias mathematically); and (3)
to correct this bias at each node.

To achieve the latter, we introduceSampler, a component that
obtains uniform samples out of a data stream in which elements
recur with an unknown bias, using min-wise independent permuta-
tions [8]. We prove (Section 5) that Sampler obtains independent
uniform samples from the biased stream of gossiped node ids.By
using suchhistory samplesof the gossiped ids to update part of the
local view, Brahms achievesself-healingfrom partitions that may
occur with gossip-based membership. In particular, nodes that have
been active for sufficiently long (we quantify how long) cannot be
isolated from the rest of the system. The use of history samples
is an example ofamplification, whereby even a small healthy sam-
ple of the past can boost the resilience of a constantly evolving
view. We note that only a small portion of the view is updated with



history samples, e.g.,10%. Therefore, the protocol can still deal
effectively with churn.

One of the important contributions of this paper is our mathe-
matical analysis (Section 6), which provides insights to the extent
of damage that an attacker can cause and the effectiveness ofvar-
ious mechanisms for dealing with them. Extensive simulations of
Brahms with up to4000 nodes validate the few simplifying as-
sumptions made in the analysis. We consider two possible goals
for an attacker. First, we study attacks that attempt to maximize the
representation of faulty ids in local views at any given time. We
show that as long as faulty nodes comprise less than1

3
of the sys-

tem, even without using history samples, the portion of faulty ids in
local views is bounded by a constant smaller than one. (Recall that
the over-representation of faulty ids is later fixed by Sampler; the
upper bound on faulty ids in local views ensures Sampler has good
ids to work with). If the adversary gains control of additional nodes
after uniform samples have already been obtained, then Brahms can
resistanyratio of faulty nodes.

Second, we consider an attacker that aims to partition the net-
work. The easiest way to do so is by isolating one node from the
rest. Clearly, once a node has obtained uniform samples of correct
nodes, it can no longer be isolated. We therefore study an attack
launched on a new node that joins the system when its samples are
still empty, and when it does not yet appear in views or samples of
other nodes. We further assume that such atargetedattack on the
new node occurs in tandem with an attack on the entire system,as
described above. The key to proving that Brahms prevents, w.h.p.,
an attacked node’s isolation is in comparing how long it takes for
two competing processes to complete: on the one hand, we provide
a lower bound on the expected time to poison the entire view ofthe
attacked node, assuming there are no history samples at all.On the
other hand, we provide an upper bound on how fast history sam-
ples are expected to converge, under the same attack. Whenever
the former exceeds the latter, the attacked node is expectedto be-
come immune to isolation before it is isolated. We prove thatwith
appropriate parameter settings, this is indeed the case.

Finally, we simulate the complete system (Section 7), and mea-
sure Brahms’s resilience to the combination of both attacks. Our
results show that, indeed, Brahms prevents the isolation ofattacked
nodes, its views never partition, and the membership samples con-
verge to perfectly random ones over time.

Related Work. We are not familiar with prior work dealing with
random node sampling in a Byzantine setting. Previous Byzantine-
tolerant membership services maintained full local views [20, 4]
rather than partial samples. Previous work on gossip-basedpartial
views [1, 13, 14, 19, 31], and on near-uniform node sampling using
random walks [15, 22, 26, 5] or DHT overlays [21] was limited to
benign settings.

One application of Brahms is Byzantine-tolerant overlay con-
struction. Brahms’s sampling allows each node to connect with
some random correct nodes, thus constructing an overlay in which
the sub-graph of correct nodes is connected. Several recentworks,
e.g., [30, 9, 3], have focused explicitly on securing overlays, mostly
structured ones, attempting to ensure that all correct nodes may
communicate with each other using the overlay, i.e., to prevent the
eclipse attack[30], where routing tables of correct nodes are grad-
ually poisoned with links to adversarial nodes. These workshave
a different focus than ours, since their goal is to construct(struc-
tured) overlay networks, whereas we present a general sampling
technique, one application of which is building adversary-resilient
unstructured overlays.

2. MODEL, GOAL, AND CHALLENGES

Model. We consider a system of nodes, each identified by a unique
id. The way of choosing node ids is non-constrained, e.g., wedo
not assume a certification authority [20]. The system is subject to
churn, i.e., nodes can join and leave it dynamically. The nodes can
communicate through a fully connected network with reliable links.
A node can determine the source of every message, and cannot in-
tercept messages addressed to other nodes (the standard ”unauthen-
ticated“ Byzantine model [2]). For simplicity of the further analy-
sis, we assume a synchronous model with a discrete global clock,
zero processing times, and message latencies of a single time unit.

Design goal. We pursue maintaining at each node a small set of
node ids, which converges to a stable uniform membershipsample
after the churn ceases.

Gossip-based protocols (e.g., [1]) are a well-known mechanism
for membership information dissemination in the presence of churn.
These protocols maintain at each node a small subset of active
node ids, calledview, which facilitates communication between
nodes. The gossiping nodes propagate information through two
main primitives,push– unsolicited sending the node’s id to some
other node, andpull – request-reply retrieval of the other node’s
view. Part of the received information is used to update the views.
This way, the knowledge about newborn nodes spreads throughthe
system, and the information about defunct nodes disappears.

Computing a uniform sample at all nodes requires the overlay
induced by the union of their views to remain perpetually con-
nected (otherwise, two nodes in different connected components
have zero probability to learn about each other). Allavena et al. [1]
have demonstrated a benign gossip protocol for which the expected
time until a network partition is exponential in the squaresof the
view size and the partition size, under reasonable assumptions. Ex-
tensive empirical studies [13, 18] validated that gossip maintains
connectivity in practice.

However, traditional gossip is not resilient to malicious use of
communication primitives. For example, an adversary can choose
to over-represent the faulty ids in samples of some correct nodes.
Note that our model rules out massive Sybil attacks, which allow
the faulty nodes to use multiple ids [12]. We illustrate two kinds
of behavior, both leading to rapid poisoning of views at all correct
nodes.

Push flooding. The adversary can flood the correct nodes with
pushes of faulty ids. A solely push-based gossip is clearly vulnera-
ble to this attack (Figure 2(a)). Moreover, push flooding cannot be
resisted unless the sending rate of Byzantine nodes is constrained.
Hence, we assume a mechanism that makes it costly for nodes to
send designated (push) messages, which we calllimited messages.
This mechanism can be implemented in different ways, e.g., com-
putational challenges like Merkle’s puzzles [28], virtual currency,
etc. Note that employing limited messages is necessary but not suf-
ficient: while they prevent the adversary from flooding all correct
nodes in parallel, the latter can still target them one by one.

Skewed pull responses.The faulty nodes can return only faulty
ids in response to pull requests. Since pulls from correct nodes
return faulty ids as well as correct ids, this behavior leadsto ex-
ponential decay in the representation of correct nodes. A purely
pull-based dissemination fails to handle this attack (Figure 2(b)).

The described scenarios demonstrate that an adversary can ex-
ploit traditional gossip to bias the distribution of ids in the views of
correct nodes. In the long run, it can disintegrate the entire over-
lay, thus precluding uniform sampling completely. Brahms adopts
a two-layer approach to this problem. As a first step, we guaran-



Figure 1: Malicious attacks on traditional gossip protocols. (a) Push attack. (b) Pull attack.

tee, w.h.p., that the attacker cannot isolate correct nodes, that is, the
maximum damage to their views is bounded. As a second step, we
correct the incurred bias through local uniform sampling.

3. BRAHMS
Brahms has two components. The localsamplingcomponent

maintains asample listS – a tuple of uniform samples from the set
of ids that traverse the node (Section 3.1). Thegossipcomponent
is a distributed protocol that spreads locally known ids across the
network (Section 3.2), and maintains a dynamicviewV. Each node
has some initialV (e.g., received from some bootstrap server or
peer node).V andS may contain duplicates, and some entries inS
may be non-defined (denoted⊥).

3.1 Sampling
Sampler is a building block for uniform sampling of unique el-

ements from a data stream. The input stream may be biased, that
is, some values may appear in it more than others. Sampler accepts
one element at a time as input, produces one output, and stores a
single element at any time. The output is a uniform random choice
of one of the unique inputs witnessed thus far.

Sampler usesmin-wise independentpermutations [8]. A family
of permutationsH over a range[1 . . . |U |] is min-wise independent
if for any setX ⊂ [1 . . . |U |] and anyx ∈ X, if h is chosen at
random fromH, thenPr(min{h(X)} = h(x)) = 1

|X|
. That is,

all the elements of any fixed setX have an equal chance to have
the minimum image underh. Pseudo-random functions (e.g., [16])
are considered an excellent practical approximation of min-wise
independent permutations, provided that|U | is large, e.g.,2160.

Sampler (Figure 2(a)) selects a random min-wise independent
function h upon initialization, and applies it to all input values
(next() function). The input with the smallest image value en-
countered thus far becomes the output returned by thesample()
function. The property of uniform sampling from the set of unique
observed ids follows directly from the definition of a min-wise in-
dependent permutation family.

Brahms maintains a tuple ofℓ2 sampled elements in a vector
of ℓ2 Sampler blocks (Figure 2(b)), which select hashes indepen-
dently. The same id stream is input to all Samplers. Sampled ids
are periodically probed (e.g., using pings), and a Sampler that holds
an inactive node is invalidated (re-initialized).

3.2 Gossip
Brahms’s view is maintained by a gossip protocol (Figure 3). We

denote list concatenation by◦. By slight abuse of notation, we de-
note both the vector of samplers and their outputs (the sample list)
by S . Brahms executes in (unsynchronized) rounds. It uses two
means for propagation: (1)push– sending the node’s id to some
other node, and (2)pull – retrieving the view from another node.
These operations serve two different purposes: pushes are required
to reinforce knowledge about nodes that are under-represented in
other nodes’ views (e.g., newborn nodes), whereas pulls areneeded
to spread existing knowledge within the network [1]. A combina-
tion of pulls and pushes is required because the representation of
ids propagated solely by pulls decays over time, whereas therepre-
sentation of push-propagated ids increases.

Brahms uses parametersα > 0, β > 0 and γ > 0 that sat-
isfy α + β + γ = 1. In a single round, a correct node issuesαℓ1
push requests andβℓ1 pull requests to destinations randomly se-

lected from its view (possibly with repetitions). At the endof each
round,V andS are updated with fresh ids. While all received ids
are streamed toS (Figure 2, Line 37), re-computingV requires ex-
tra care, to protect against poisoning of the views with faulty ids.
Brahms offers a set of techniques sto mitigate this problem.

Limited pushes. Since pushes arrive unsolicited, an adversary
with an unlimited capacity could swamp the system with push re-
quests. Then, correct ids would be propagated mainly through
pulls, and their representation would decay exponentially[1]. The
protocol employs limited push messages, hence the fractionof faulty
pushes is constrained.

Attack detection and blocking. While using limited pushes pre-
vents a simultaneous attack on all correct nodes, it provides no
solace against an adversary that floods a specific node. Brahms
protects against thistargeted attackby blocking the update ofV.
Namely, if more than the expectedαℓ1 pushes are received, it does
not updateV. Although this policy slows down progress, its ex-
pected impact in the absence of attacks is bounded (nodes recom-
puteV in most rounds). Thanks to limited pushes, some nodes
make progress even under an attack (Line 35).

Controlling the contribution of pushes vs pulls. As most correct
nodes do not suffer from targeted attacks (due to limited pushes),
their views are threatened by pulls from neighbors more thanby
adversarial pushes. This is because whereas all pushes fromcor-
rect nodes are correct, a pull from a random correct node may con-
tribute some faulty ids. Hence, the contribution of pushes and pulls
to V must be balanced: pushes must be constrained to protect the
targeted nodes, while pulls must be constrained to protect the rest.
Brahms updatesV with randomly chosenαℓ1 pushed ids andβℓ1
pulled ids (Line 36).

History samples. The attack detection and blocking technique
can slowdown a targeted attack, but not prevent it completely. Note
that if the adversary succeeds to increase its representation in a vic-
tim’s view through targeted pushes, it subsequently causesthis vic-
tim to pull more data from faulty nodes. As the attacked node’s
view deteriorates, it sends fewer pushes to correct nodes, causing
its system-wide representation to decrease. It then receives fewer
correct pushes, opening the door for more faulty pushes1. Brahms
overcomes such attacks using a self-healing mechanism, whereby
a portion (γ) of V reflects thehistory, i.e., previously observed ids
(Line 36). A direct use of history does not help since the latter may
also be biased. Therefore, we use a feedback fromS to obtain unbi-
ased history samples. Once some correct id becomes the attacked
node’s permanent sample (or the node’s id becomes a permanent
sample of some other correct node), the threat of isolation is elimi-
nated.Figure 4illustrates the view re-computation procedure.

Brahms’s parameters entail a tradeoff between performancein
a benign setting and resilience against Byzantine attacks.For ex-
ample,γ must not be too large since the algorithm needs to deal
with churn; on the other hand, it must not be too small to make the
feedback effective. We show (Section 7) that γ = 0.1 is enough
for protectingV from partitions. The choice ofℓ1 andℓ2 is crucial
for guaranteeing that a targeted attack can be contained until the
1This avalanche process can be started, e.g., by opportunistically
sending the target a slightly higher number of pushes than expected.
Since correct pushes are random, a round in which sufficiently few
correct pushes arrive, such that Brahms does not detect an attack,
happens soon w.h.p.



1: function Sampler.init()
2: h← randomPRF(); q ← ⊥
3: function Sampler.next(elem)
4: if q = ⊥ ∨ h(elem) < h(q) then
5: q ← elem
6: function Sampler.sample()
7: return q

Sampler Sampler Sampler Sampler

Id stream

sample()

next()

Validator

init()

Validator Validator Validator

Figure 2: Uniform sampling from an id stream in Brahms. (a) Sampler’s pseudo-code. (b) Sampling and validation ofℓ2 ids.

1: V : tuple[ℓ1] of Id
2: S : tuple[ℓ2] of Sampler
3: Initialization (V0):
4: V ← V0

5: for all 1 ≤ i ≤ ℓ2 do
6: S [i].init()
7: updateSample(V0)

8: {Stale sample invalidation}
9: periodically do

10: for all 1 ≤ i ≤ ℓ2 do
11: if probe(S [i].sample()) fails then
12: S [i].init()

13: {Auxiliary functions}
14: function updateSample(V)
15: for all id ∈ V, 1 ≤ i ≤ ℓ2 do
16: S [i].next(id)

17: function rand(V, n)
18: return n random choices fromV

19: {Gossip}
20: while true do
21: Vpush ← Vpull ← ∅
22: for all 1 ≤ i ≤ αℓ1 do
23: {Limited push}
24: send_lim 〈“push_request“〉 to rand(V, 1)
25: for all 1 ≤ i ≤ βℓ1 do
26: send 〈“pull_request“〉 to rand(V, 1)

27: wait(1)

28: for all received 〈“push_request“〉 from id do
29: Vpush ← Vpush ◦ {id}
30: for all received 〈“pull_request“〉 from id do
31: send 〈“pull_reply“,V〉 to id
32: for all received 〈“pull_reply“,V ′〉 from id do
33: if I sent the request, and this is the first replythen
34: Vpull ← Vpull ◦ V ′

35: if (|Vpush| ≤ αℓ1 ∧ Vpush 6= ∅ ∧ Vpull 6= ∅) then
36: V ← rand(Vpush, αℓ1) ◦ rand(Vpull, βℓ1) ◦ rand(S , γℓ1)
37: updateSample(Vpush ◦ Vpull)

Figure 3: The pseudo-code of Brahms.

αl1 βl1 γl1 l2

Pushed ids

Pulled ids

History samples

View Sample

Figure 4: View re-computation in Brahms.

attacked node’s sample stabilizes. For example,ℓ1, ℓ2 = Θ( 3
√

n)
suffice to protect even nodes that are attacked immediately upon
joining the system (Section 6.2).

4. DEFINITIONS AND ATTACK MODELS
We study the asymptotical properties of a system ofn nodes with

unique ids, after a pointT0 at which the churn ceases. The subset
of correct nodes is denotedC. The faulty nodes comprise less than
some fractionf < 1 of n. We assume that the system-wide fraction
of limited pushes that all faulty nodes can jointly send in a single
time unit is at mostp, for somep < 1.

We denote the view and the sample list at nodeu at timet by
Vu(t) andSu(t), respectively. We define theoverlay graphN (t),
induced by the union ofV andS at all correct nodes, which cap-
tures their knowledge about each other at timet:

N (t) , {C,
⋃

u∈C

{(u, v)|v ∈ (Vu(t)
⋃

Su(t)) ∩ C}}.

We also defineV(t), a subgraph ofN (t) induced byV of correct

nodes (edges induced byS are omitted):

V(t) , {C,
⋃

u∈C

{(u, v)|v ∈ Vu(t) ∩ C}}.

For a nodeu, the number of its incoming edges in a graph is called
its in-degree, and the number of outgoing edges is called itsout-
degree. For example the in-degree of nodeu in V(t) is the number
of instances ofu in views of correct nodes, and its out-degree is the
number of correct ids in its view. Thedegreeof u is the sum of its
in-degree and out-degree.

Brahms’s resilience depends on the distribution of in-degrees and
out-degrees inV(t). We assume a necessary condition for initial
connectivity, namely, that the view of every joining correct node
contains some correct ids (the ratio of faulty ids in the viewis not
necessarily bounded byf ). We further assume that before the at-
tack starts, the in-degrees and out-degrees of all correct nodes are
(roughly) equal. This property is a close approximation of reality,
since a benign gossip process preserves it [1].

We assume the worst-case behavior of Byzantine nodes, i.e.,
pushing faulty ids to correct nodes and always return faultyids to
pulls. Faulty nodes always respond to probe requests, to avoid in-
validation. We consider two representative Byzantine attacks. The
first attack, calledbalanced, maximizes the system-wide represen-
tation of faulty ids by distributing the faulty pushes evenly among
the correct nodes. The second attack, calledtargeted, focuses an in-
creased portion of faulty pushes on a small subset of correctnodes,
in order to isolate them from the overlay.Section 6analyzes the
dynamics of both attacks, and demonstrates that Brahms prevents
the overlay’s partitioning, with the right choice of parameters.

5. ANALYSIS - SAMPLING



In this section we analyze the properties ofSu of a correct node
u. Let s = Su[i] be a sampler block for some correctu and some
i. Recall thats employs a min-wise independent permutations.h,
chosen independently at random. Let lets(t) be the output ofs at
time t. We define theperfectid corresponding tos, s∗, to be the id
with the minimal value ofs.h among all ids (we neglect collisions
for the sake of the definition). Note thats∗ can be either a correct
or a faulty id. InSection 5.1we show that the subset of correct ids
in Su eventually converges to a uniform random sample fromC. In
Section 5.2we analyze how fast a node obtains at least one correct
perfect sample, as needed for self-healing.Section 5.3discusses
scalability, namely, how to choose view sizes that ensure a constant
convergence time, independent of system size.

5.1 Eventual Convergence to Uniform Sample
Consider samplers of nodeu. If s∗ is correct,s samples cor-

rect ids uniformly at random. Obviously, fors to be able to sample
some correct nodev, the id ofv has to reachu. To guarantee such
a reachability between all the correct nodes, we require theover-
lay graphN (t) to remainweakly connectedafterT0. That is, the
undirected graph, obtained fromN (t) by replacing all of its di-
rected edges with undirected ones, is connected for allt ≥ t0. If s∗

is faulty, it may remain “silent”, thus preventing its id from being
known to correct nodes. The following theorem shows that each
correct id has roughly the same probability to be sampled bys.

THEOREM 5.1. If N (t) remains weakly connected for eacht ≥
T1, for someT1 ≥ T0, then, for allv ∈ C, andε > 0, there exists
Tε ≥ T1 such that for allt ≥ Tε

1

n
− ε ≤ Pr(s(t) = v) ≤ 1

(1− f)n
+ ε.

Proof idea. The key to the theorem is to show that whenever
N (t) remains weakly connected, the id of each correct node even-
tually reaches every other correct node with probability 1.This is
because the id has a non-zero probability to traverse a path to ev-
ery correct node in the system. Thus, each sampler will eventually
settle on its perfect id, provided that its perfect id is correct. There-
fore, Pr(s(t) = s∗|s∗ ∈ C) →t→∞ 1. Since the probability for
s∗ to be faulty is at mostf , Pr(s(t) = s∗) approaches the range
[1 − f, 1]. The theorem follows since∀v ∈ C, Pr(s(t) = v|s∗ ∈
C) = 1

|C|
≤ 1

(1−f)n
, and since we assume that whens∗ is faulty,

0 ≤ Pr(s(t) = v|s∗ /∈ C) ≤ 1
(1−f)n

.
The next lemma discusses the convergence rate of samples.

LEMMA 5.2. If no invalidations happen, for each correct node
u, the expected fraction of samplers that output their perfect id
grows linearly with the fraction of unique ids observed byu.

PROOF. Let D(t) be the set of ids observed byu until time t.
Then, for each samplers, Pr(s∗ ∈ D(t)) = |D(t)|

n
. Since for

eachs such thats∗ ∈ D(t), s(t′) = s∗ for t′ ≥ t, the lemma
follows.

5.2 Convergence to First Perfect Sample
We show a lower bound on the probability thatSu containsat

least oneperfect id of an active correct node, as a function of the ids
it observes and system parameters. This provides an upper bound
on the time it takesSu to ensure self-healing and preventu’s isola-
tion. We assume thatu joins the system at timeT0, with an empty
sample. LetΛ(t) be the number of correct ids observed byu from
timeT0 to t. Our analysis depends on the number of unique ids ob-
served byu, rather than directly onΛ. Obviously, one can expect
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Figure 5: Growth of the probability to observe at least one cor-
rect perfect sample (Perfect Sample Probability - PSP) withthe
stream size, for1000 nodes,f = 0.2, and ρ = 0.4.

the observed stream to include many repetitions, as it is unrealistic
to expect our gossip protocol to produce independent uniform ran-
dom samples (cf. [19]). Indeed, achieving this property is the goal
of sampler. In order to capture the bias inΛ, we define astream
deficiency factor, 0 ≤ ρ ≤ 1, so that a stream of lengthΛ(t)
produced by our gossip mechanism is roughly equivalent, forthe
purposes of sampler, to a stream of lengthρΛ(t) in which correct
ids are independent and distributed uniformly at random. This is
akin to the clustering coefficient of gossip-based overlays[19]. We
empirically measuredρ to be about0.4 with our gossip protocol
(seeSection 6.2).

We define theperfect sample probabilityPSPu(t) as the prob-
ability thatSu(t) contains at least one correct perfect id. The con-
vergence rate ofPSP is captured by the following:

LEMMA 5.3. Let u be a random correct node. Then, fort >

T0, PSPu(t) ≥ 1− ((1− f)e
−

ρΛ(t)
|C| + f)ℓ2 .

Proof idea. A sampler outputs a correct perfect id if (1) its perfect
id is correct, and (2) this id is observed by the sampler in thestream.
PSP is the probability that at least one ofℓ2 samplers outputs a
correct perfect id.

Figure 5illustrates the dependence ofPSP on the stream size
Λ(t) and onℓ2. When the sample size is40 = 4 3

√
n, and the

portion of unique ids in the stream isρ = 0.4, a perfect sample
is obtained, with probability close to1, after300 ids traverse the
node.

5.3 Scalability
From Lemma 5.3we see thatPSP depends onΛ and ℓ2. To

get a higherPSP , we can increase either one. While increas-
ing Λ is achieved by increasingℓ1, and consequently the network
traffic, increasingℓ2 has only a memory cost. We now study the
asymptotic behavior ofPSPu(t) as the number of the nodes,n, in-
creases. When a node hasℓ2 samplers,Ω(ℓ2) of them have correct

s∗ w.h.p. Therefore, w.h.p.,PSPu(t) ≥ Ω(1 − (e−
ρΛ(t)

n )ℓ2) =

Ω(1 − e−
ρΛ(t)ℓ2

n ). For a constantt, Λ(t) = Ω(ℓ21) since there
are Ω(ℓ1) pulls, obtainingΩ(ℓ1) ids each. Thus,PSPu(t) ≥
Ω(1 − e−

ℓ21·ℓ2
n ). For scalability, it is important that for a givent,

PSPu(t) will be bounded by a constant independent of the system
size. This condition is satisfied whenℓ21 · ℓ2 = Ω(n), e.g., when
ℓ2 = ℓ1 = Ω( 3

√
n), or ℓ1 = Ω( 4

√
n) andℓ2 = Ω( 2

√
n). To reduce

network traffic at the cost of a higher memory consumption, one
can setℓ1 = Ω(log n) andℓ2 = Ω( n

log2 n
).



Correct nodeu Random correct node Semantics

number/fraction number/fraction
xu(t)/x̃u(t) x(t)/x̃(t) faulty ids in the view
yu(t)/ỹu(t) instances among the

views of correct nodes
gpush

u (t)/g̃push
u (t) gpush(t)/g̃push(t) correct ids pushed to node

rpush
u (t)/r̃push

u (t) rpush(t)/r̃push(t) faulty ids pushed to node
gpull

u (t)/g̃pull
u (t) gpull(t)/g̃pull(t) correct ids pulled by node

rpull
u (t)/r̃pull

u (t) rpull(t)/r̃pull(t) faulty ids pulled by node

Table 1: Definition of common random variables.

6. ANALYSIS – OVERLAY CONNECTIVITY
We prove that Brahms, with appropriate parameter settings,main-

tains overlay connectivity despite malicious behavior. Our method-
ology is mathematical analysis, which, like previous studies [1],
makes some simplifying assumptions. The theoretical results are
validated through extensive simulations.

We first bound the damage that can be caused within asingle
round (a similar approach was taken, e.g., in [23]). In the full ver-
sion of this paper [7], we prove that in any single round, abalanced
attack, which spreads faulty pushes evenly among correct nodes,
maximizes the expected system-wide fraction of faulty ids,x̃(t),
among all strategies. InSection 6.1, we prove that if this attack
persists, the ratio of faulty ids in the system eventually stabilizes at
a fixed point. We study the convergence process, and show thatfor
certain parameter choices, this fixed point is strictly smaller than 1.

Alternatively, an adversary can try to partition the network (rather
than increase its representation) by targeting a subset of nodes with
more pushes than in a balanced attack. Without prior information
about the overlay’s topology, attacking a single node can bemost
damaging, since the sets of edges adjacent to single nodes are likely
to be the sparsest cuts in the overlay.Section 6.2shows that had
Brahms not used history samples, correct nodes could have been
isolated in this manner. However, Brahms sustains suchtargeted
attacks, even if they start immediately upon a node’s join, when
it is not represented in other views and has no history. The key
property is that Brahms’s gossip prevents isolation long enough for
history samples to become effective.

Notation. We study time-varying random variables, listed inTable 1.
A local variable at a specific correct nodeu is subscripted byu.
When used without subscript, a variable corresponds to a random
correct node. Correct (resp., faulty) ids propagated through pushes
and pulls are denotedg (green) (resp.,r (red)).

Simulation setup. We validate our assumptions using simulations
with n = 1000 nodes or more. Each data point is averaged over
100 runs. For simplicity, we assumep = f . A different subset of
faulty nodes push their ids to a given correct node in each round,
using a round-robin schedule.

6.1 Balanced Attack
In the analysis of a balanced attack we ignore blocking sinceits

only effect is to slow the convergence rate. Simulations show that
this assumption has little effect on the results. Since a balanced
attack does not distinguish between correct nodes, we assume that it
preserves the in-degrees and out-degrees of all correct nodes equal
over time:

ASSUMPTION 6.1. For all u ∈ C and all t ≥ T0: xu(t) =
x(t), andyu(t) = ℓ1 − xu(t).

We show the existence of a parameter-dependent fixed point of

x̃(t) and the system’s convergence to it. Since the focus is on
asymptotic behavior, we assumet≫ T0.

LEMMA 6.1. For t ≫ T0, if p 6= 0 or x̃(t) 6= 1, the expected
system-wide fraction of faulty ids evolves as

E(x̃(t + 1)) = α p

p+(1−p)(1−x̃(t))

+β(x̃(t) + (1− x̃(t))x̃(t))
+γf.

PROOF. Consider the re-computation ofV at a correct nodeu
at timet. The weights of pushes, pulls, and history samples in the
recomputed view areα, β andγ, respectively. Since the random
selection process preserves the distribution of faulty idsin each
data source, the probability of a push- (resp., pull)-originated entry
being faulty is equal to the probability of receiving a faulty push
(resp., pulling a faulty id).

Figure 6(a) illustrates the analysis ofr̃push(t). Each correct node
wastes an expected fractioñx(t) of its pushes because they are
sent to faulty nodes. The rest are sent with an equal probabil-
ity over each outgoing edge inV(t). Since out-degrees and in-
degrees are equal among all correct nodes, each correct nodeu re-
ceives the same expected number of correct pushes:E(gpush

u (t)) =
(1−x̃(t))αℓ1. The variablegpush

u (t) is binomially distributed, with
the number of trials equal to the total number of pushes amongall
nodes with an outgoing edge tou. Since this number is large, the
number of received correct pushes is approximately equal among
all correct nodes, i.e.,gpush

u (t) ≈ (1− x̃(t))αℓ1, for all u.
The total number of correct pushes isαℓ1|C|, which is1− p out

of all pushes, hence the total number of faulty pushes ispαℓ1
1−p
|C|.

Therefore,u receives exactlyrpush
u (t) = p

1−p
αℓ1 faulty pushes,

i.e., their fraction among all received pushes is:

r̃push
u (t) =

p

1−p
αℓ1

p

1−p
αℓ1 + (1− x̃(t))αℓ1

=
p

p + (1− p)(1− x̃(t))
.

Hence, the expected ratio of push-originated faulty ids inVu is
α p

p+(1−p)(1−x̃(t))
.

Figure 6(b) depicts the evolution of pull-originated faulty ids.
Since all correct nodes have an equal out-degree, a correct node
is pulled with probability1 − x̃(t), while a faulty node is pulled
with probability x̃(t). A pulled id is faulty with probabilityx̃(t)
if it comes from a correct node, and otherwise, it is always faulty.
Hence, the expected fraction of pull-originated faulty idsisβ(x̃(t)+
(1− x̃(t))x̃(t)).

Finally, sincet ≫ T0, the history sample is perfect (the ratio of
faulty ids in it isf ). Hence, its expected contribution isγf , and the
claim follows.

We now show that the system converges to a stable state. A
valuex̂ is called afixed pointof x̃(t) if E(x̃(t + 1)) = x̃(t) = x̂.
Substituting this into the equation fromLemma 6.1, we get:

LEMMA 6.2. For α, β, γ, p, f ∈ [0, 1], every real root0 ≤ x̂ ≤
1 of the following cubic equation is a fixed point ofx̃(t), except for
the rootx = 1 for p = 0 :

β(1− p)x̃3 +
(2βp− 3β − p + 1)x̃2 +
(γfp− γf + 2β − 1)x̃ +
(αp + γf) = 0.

If γ = 0 (no history samples),̂x = 1 is always a root. We call it
a trivial fixed point. This is easily explainable, since if the views
of all the correct nodes are totally poisoned, then neither pulls nor
pushes help. In the full version of this paper [7], we show that if
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Figure 6: Fixed point analysis illustration.
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Figure 7: System-wide fraction of faulty ids in local views,under a balanced attack: (a) Fixed points (b) Convergence process.

γ = 0, there can exist at most one nontrivial fixed point0 ≤ x̂ < 1.

For example, ifα = β = 1
2

andγ = 0, thenx̂ =
p+
√

4p−3p2

2(1−p)
, for

0 ≤ p ≤ 1
3
. In contrast, if the fraction of faulty pushes exceeds1

3
,

the only fixed point is 1, causing isolation of all correct nodes.
If γ > 0, there exists a single nontrivial fixed point for allp. This

highlights the importance of history samples.Figure 7(a) depicts
the analysis results, perfectly matched by simulations.

We conclude the analysis by proving convergence to a nontrivial
fixed point (the complete proof appears in [7]).

LEMMA 6.3. If there exists a fixed point̂x < 1 of x̃(t), and
x̃(T0) < 1, thenx̃(t) converges tôx.

Proof idea. We show that for allt, the sequence of̃x(t) is trapped
between̂x and another sequence,φ(t), that converges tôx. Hillam’s
theorem [17] is then used to prove sequence convergence.

Since the balanced attack does not distinguish between correct
nodes, the same result holds forx̃u(t), for each correct nodeu.
Figure 7(b) depicts the convergence to the nontrivial fixed point
from various initial values of̃x(t). The analytical and simulation
results are similar. The latter’s convergence is slightly slower be-
cause the analysis ignores blocking.

6.2 Targeted Attack
We study a targeted attack on a single correct nodeu, which

starts uponu’s join at T0. We prove thatu is not isolated from the
overlay by showing a lower bound on the expected time to isola-
tion, which exceeds an upper bound on the time to a perfect correct
sample (a sufficient condition for non-isolation,Section 5).

Lower bound on expected isolation time. As we seek a lower
bound, we make a number of worst-case assumptions (formally

stated in [7]). First, we analyze a simplified protocol that does not
employ history samples (i.e.,γ = 0), so thatS does not correct
V ’s bias. Next, we assume an unrealistic adaptive adversary that
observes the exact number of correct pushes tou, gpush

u (t), and
complements them withαℓ1 − gpush

u (t) faulty pushes – the most
that can be accepted without blocking. The adversary maximizes
its global representation through a balanced attack on all correct
nodesv 6= u, thus minimizing the fraction of correct ids thatu
pulls from correct nodes. Finally, we assume thatu is not repre-
sented in the system initially, and it derives its initial view from a
random set of correct nodes, where the ratio of faulty ids is at the
fixed point (Section 6.1).

Clearly, the time to isolation inV(t) is a lower bound on that
in N (t). We study the dynamics of the number of correct ids in
u’s out-degree inV(t), ℓ1 − xu(t), andu’s in-degree,yu(t). We
show in [7] that for any two specific values ofxu(t) andyu(t), the
expected out-degree and in-degree values att + 1 are

(

ℓ1 − E(xu(t + 1))

E(yu(t + 1))

)

= A2×2 ×
(

ℓ1 − xu(t)

yu(t)

)

,

where

A2×2 =

(

β(1− x̂) α

α 1−p

p+(1−p)(1−x̂)
β(1− x̂)

)

.

Note that the coefficient matrix does not depend onxu(t) andyu(t),
and the sum of entries in each row is smaller than 1. This implies
that once the in-degree and the out-degree are close, they both de-
cay exponentially. (Initially, this does not hold becauseu is not rep-
resented, i.e.,yu(T0) = 0.) Hence, the expected time to isolation is
logarithmic withℓ1. Note that this process does not depend on the
number of nodes, since blocking bounds the potential attacks on
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Figure 8: Dynamics within a targeted node (n = 1000, p = 0.2, α = β = 0.5 and γ = 0): (a) Fraction of unique ids in the stream
of correct ids, ρ. (b) Growth of Perfect Sample Probability (PSP) with time,ρ = 0.4. PSP becomes high quickly enough to prevent
isolation.

0 5 10 15 20
0

5

10

15

20

25

30

Time

D
eg

re
e 

of
 u

 in
 V

 

 

Simulation: l
1
=20

Theory:       l
1
=20

Simulation: l
1
=40

Theory:       l
1
=40

Simulation: l
1
=60

Theory:       l
1
=60

Isolation Threshold

(a) Normal scale (theory and simulation),n = 1000

0 5 10 15
10

−1

10
0

10
1

10
2

Time

Lo
g 

(D
eg

re
e 

of
 u

 in
 V

)

 

 

Theory:       l
1
=20

Theory:       l
1
=40

Theory:       l
1
=80

Isolation Threshold

(b) Logarithmic scale (theory only), independent ofn

Figure 9: Targeted attack without history samples: node degree dynamics.n = 1000, p = 0.2, α = β = 0.5, γ = 0. Without history
samples a targeted attack isolatesu in logarithmic time in ℓ1.

u independently of the system-wide budget of faulty pushes. Had
blocking not been employed, the top right coefficient would have
been0 instead ofα, because the adversary would have completely
hijacked the push-originated entries inVu. The decay factor would
have been much larger, leading to almost immediate isolation.

Figure 9(a) depicts the dynamics ofu’s expected degree (the sum
of u’s in- and out-degrees) until it becomes smaller than 1. Simu-
lation results closely follow our analysis. The temporary growth in
u’s degree att = 1 occurs becauseu becomes represented in the
system after the first round. For example, the average time toiso-
lation for ℓ1 = 2 3

√
n is 10 rounds.Figure 9(b) depicts the same re-

sults in log-scale, emphasizing the exponential decay ofu’s degree
and the logarithmic dependency betweenℓ1 and time to isolation.

Upper bound on expected time to perfect correct sample.For
given values of the non-unique stream sizeΛ(t) and the deficiency
factor ρ (Section 5), Lemma 5.3boundsPSPu(t). The expected
number of correct ids observed byu till the end of roundT is
Λ(t) =

∑T0+T−1
t=T0

(E(gpush
u (t)) + E(gpull

u (t))); the expected val-

ues ofgpush
u (t) andgpull

u (t) are by-products of the analysis in [7],
for γ = 0. Figure 8(a)depicts the deficiency factorρ measured
by our simulations, which behaves similarly for all values of ℓ1:
ρ ≥ 0.4 for all t. Figure 8(b) depicts the progress of the upper
bound ofLemma 5.3with time, withΛ(t) computed as explained
above andρ = 0.4. The corresponding simulation results show,
for each timet, the fraction of runs in which at least one correct
id in Su is perfect. Forℓ2 ≥ 40, the PSP becomes close to 1 in a

few rounds, much faster than isolation happens (Figure 9(b)). For
ℓ1 = 20, it stabilizes at0.5. The growth stops because we run
the protocol without history samples, thusu becomes isolated, and
the id stream ceases. A higher PSP can be achieved by indepen-
dently increasingℓ2, e.g., if ℓ2 is 40, then the PSP grows to0.8
(Figure 5). Note that perfect samples only provide an upper bound
on self-healing time, asSu contains imperfect correct ids, andu
also becomes sampled by other correct nodes, w.h.p. These fac-
tors coupled with history samples (γ > 0) completely preventu’s
isolation, as shown inSection 7.

7. PUTTING IT ALL TOGETHER
In previous sections we analyzed each of Brahms’s mechanisms

separately. We now simulate the entire system.Figure 10depicts
the degree of nodeu in N (t) under a targeted attack. Nodeu re-
mains connected to the overlay, thanks to history samples (γ =
0.1). The actual degree ofu inN (t) is higher than the lower bound
shown inSection 6.2, due to the pessimistic assumptions made in
the analysis (no history samples, no imperfect correct ids,etc.).

We now demonstrate the convergence ofS in the correct nodes.
We simulate systems with up ton = 4000 nodes;ℓ1 and ℓ2 are
set to2 3

√
n. To measure the quality of sampleS under a balanced

attack, we depict the fraction of ids inS that are indeed the perfect
sample over time (Figure 11(a)). Note that this criterion is conser-
vative, since missing a perfect sample does not automatically lead
to a biased choice. More than50% of perfect samples are achieved
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Figure 11: Balanced attack: fraction of perfect samples (a)and faulty nodes (b) in S , for f = 0.2, n = 1000, . . . , 4000, and
ℓ2 = 2 3

√
n.

within less than 15 rounds; forℓ2 = ℓ1 = 3 3
√

n, the convergence
is twice as fast.Figure 11(b)depicts the evolution of the fraction
of faulty ids inS . Initially, this fraction equalsf , and at first in-
creases, up to approximately the fixed point’s value. This isto be
expected, since the first observed samples are distributed like the
original (biased) data stream. Subsequently, as the node encoun-
ters more unique ids, the quality ofS improves, and the fraction
of faulty ids drops fast tof . The protocol exhibits almost perfect
scalability, as the convergence rate is the same forn ≥ 2000.

8. CONCLUSIONS
We presented Brahms, a Byzantine-resilient membership sam-

pling algorithm. Brahms stores small views, and yet resiststhe
failure of a linear portion of the nodes. It ensures that every node’s
sample converges to a uniform one, which was not achieved before
by gossip-based membership even in benign settings. We presented
extensive analysis and simulations explaining the impact of various
attacks on the membership, as well as the effectiveness of the dif-
ferent mechanisms Brahms employs.
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