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ABSTRACT

We present Brahms, an algorithm for sampling random nodes in
large dynamic system prone to malicious behavior. Brahmest
small membership views at each node, and yet overcomes Byzan
tine attacks by a linear portion of the system. Brahms is aseg

of two components. The first one is a resilient gossip-basewh-m
bership protocol. The second one uses a novel memory-efficie
approach for uniform sampling from a possibly biased streias
that traverse the node. We evaluate Brahms using rigor@igsis,
backed by simulations, which show that our theoretical rhodp-
tures the protocol’s essentials. We study two represeetattacks,
and show that with high probability, an attacker cannot terea
partition between correct nodes. We further prove that eace’s
sample converges to a uniform one over time. To our knowledge
no such properties were proven for gossip protocols in tise pa
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1. INTRODUCTION

We consider the problem of sampling a random node (or peer) in
a large dynamic system subject to adversarial (Byzantitiagls.
Random node sampling is important for many scalable dynapric
plications, including neighbor selection in constructamgd main-
taining overlay networksl, 22, 25, 27], selection of communica-
tion partners in gossip-based protocdds 10, 13], data sampling,
and choosing locations for data caching, e.g., in unstradtpeer-
to-peer networksZ4).

Typically, in such applications, each node maintains a setre
dom node ids that is asymptotically smaller than the system s
This set is called #ocal view In a dynamic system, where the set

'Department of Electrical Engineering, The Tech-
nion — Israel |Institute of Technology. Email:
{ebortni k@echuni x, gnax@ echuni x, idi sh@e,

shral ex@ echuni x} . technion.ac.il.

2Department of Computer Science, The Technion — Israeltlnsti
of Technology. Emailgabi k@s. t echnion. ac.il.

Permission to make digital or hard copies of all or part o thiork for

personal or classroom use is granted without fee providaticbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listgyies prior specific
permission and/or a fee.

PODC'08,August 18-21, 2008, Toronto, Ontario, Canada.

Copyright 2008 ACM 978-1-59593-989-0/08/08 ...$5.00.

Maxim Gurevich*

Idit Keidar*
Alexander Shraer*

of active nodes changes over time (this is caltbedrn), the local
views must continuously evolve to reflect these changesingdd
new active nodes and removing ones that are no longer a&ive.
using small local views, the maintenance overhead is kepllsm
In the absence of malicious behavior, small local views caefo
fectively maintained with gossip-based membership paitofi,
13, 14, 19, 31], which were proven to have a low probability for
partitions, including under churd].

Nevertheless, adversarial attacks present a major cgalléar
small local views. Previous Byzantine-tolerant gossifgquols ei-
ther considered static settings where the full membershiipown
to all [11, 23, 29, or maintained (almost) full local views}] 20,
where faulty nodes cannot push correct ones out of the view. |
contrast, small local views are susceptible to poisonirtg emtries
(node ids) originating from faulty nodes; this is becausesystem
is dynamic, and therefore nodes inherently must accept dearid
store them in place of old ones in their local views. It is engare
challenging to providéndependent uniform sampléssuch a set-
ting. Even without Byzantine failures, gossip-based meastip
only ensures that eventually theeragerepresentation of nodes in
local views is uniform 1, 14, 19|, and not thaevery nodeobtains
an independent uniform random sample. Faulty nodes maynptte
to skew the system-wide distribution, as well as the indisidocal
view of a given node.

In this paper, we address these challenges. We present Brahm
(Section 3, a gossip-based membership service that stores a sub-
linear number of ids (e.g®(/n) in a system of sizex) at each
node, and providesach nodevith membership samples that con-
verge to uniform ones over time. The main ideas behind Brahms
are (1) to use gossip-based membership with some extrasdsfen
to make it viable (in the sense that local views are not saeiy-
posed of faulty ids) in an adversarial setting; (2) to re¢ognhat
such a solution is bound to produce biased views due to at{aek
precisely quantify the extent of this bias mathematical@nd (3)
to correct this bias at each node.

To achieve the latter, we introdu&ampler a component that
obtains uniform samples out of a data stream in which elesnent
recur with an unknown bias, using min-wise independent pém
tions [8]. We prove Gection j that Sampler obtains independent
uniform samples from the biased stream of gossiped nodeBigls.
using suchhistory samplesf the gossiped ids to update part of the
local view, Brahms achieveself-healingfrom partitions that may
occur with gossip-based membership. In particular, ndustshiave
been active for sufficiently long (we quantify how long) cahbe
isolated from the rest of the system. The use of history saspl
is an example oamplification whereby even a small healthy sam-
ple of the past can boost the resilience of a constantly ewgplv
view. We note that only a small portion of the view is updatéthw



history samples, e.gL0%. Therefore, the protocol can still deal
effectively with churn.

One of the important contributions of this paper is our mathe
matical analysis§ection §, which provides insights to the extent
of damage that an attacker can cause and the effectivengas- of
ious mechanisms for dealing with them. Extensive simufatiof
Brahms with up t04000 nodes validate the few simplifying as-
sumptions made in the analysis. We consider two possiblés goa
for an attacker. First, we study attacks that attempt to mepd the
representation of faulty ids in local views at any given tinwe
show that as long as faulty nodes comprise less gmﬁthe sys-
tem, even without using history samples, the portion oftfaidks in
local views is bounded by a constant smaller than one. (Rl
the over-representation of faulty ids is later fixed by Sampthe
upper bound on faulty ids in local views ensures Sampler bad g
ids to work with). If the adversary gains control of addidnodes
after uniform samples have already been obtained, themirahn
resistanyratio of faulty nodes.

Second, we consider an attacker that aims to partition the ne
work. The easiest way to do so is by isolating one node from the
rest. Clearly, once a node has obtained uniform samplesriéato
nodes, it can no longer be isolated. We therefore study aclkatt
launched on a new node that joins the system when its samgles a
still empty, and when it does not yet appear in views or sasnple
other nodes. We further assume that sutargetedattack on the
new node occurs in tandem with an attack on the entire system,
described above. The key to proving that Brahms prevenispwy.
an attacked node’s isolation is in comparing how long it sala
two competing processes to complete: on the one hand, walprov
a lower bound on the expected time to poison the entire vieteof
attacked node, assuming there are no history samples @trathe
other hand, we provide an upper bound on how fast history sam-
ples are expected to converge, under the same attack. \\drenev
the former exceeds the latter, the attacked node is expazteet
come immune to isolation before it is isolated. We prove thiét
appropriate parameter settings, this is indeed the case.

Finally, we simulate the complete syste8egtion 7, and mea-
sure Brahms’s resilience to the combination of both attacbsr
results show that, indeed, Brahms prevents the isolatiattatked
nodes, its views never partition, and the membership sangole-
verge to perfectly random ones over time.

Related Work. We are not familiar with prior work dealing with
random node sampling in a Byzantine setting. Previous Byzan
tolerant membership services maintained full local vie2@, {]
rather than partial samples. Previous work on gossip-bpagél
views [1, 13, 14, 19, 31], and on near-uniform node sampling using
random walks 15, 22, 26, 5] or DHT overlays P1] was limited to
benign settings.

One application of Brahms is Byzantine-tolerant overlan-co
struction. Brahms'’s sampling allows each node to connett wi
some random correct nodes, thus constructing an overlayichw
the sub-graph of correct nodes is connected. Several receks,
e.g., B0, 9, 3], have focused explicitly on securing overlays, mostly
structured ones, attempting to ensure that all correct s1oday
communicate with each other using the overlay, i.e., togaethe
eclipse attac30], where routing tables of correct nodes are grad-
ually poisoned with links to adversarial nodes. These wbikse
a different focus than ours, since their goal is to const(siztic-
tured) overlay networks, whereas we present a general sampl
technique, one application of which is building adversagHient
unstructured overlays.

2. MODEL, GOAL, AND CHALLENGES

Model. We consider a system of nodes, each identified by a unique
id. The way of choosing node ids is non-constrained, e.g.dae
not assume a certification authori®]. The system is subject to
churn, i.e., nodes can join and leave it dynamically. Thessazhn
communicate through a fully connected network with rekdbiks.

A node can determine the source of every message, and cannot i
tercept messages addressed to other nodes (the standantHem-
ticated" Byzantine model?]). For simplicity of the further analy-
sis, we assume a synchronous model with a discrete gloheK,clo
zero processing times, and message latencies of a singlaitiin

Design goal. We pursue maintaining at each node a small set of
node ids, which converges to a stable uniform membersduipple
after the churn ceases.

Gossip-based protocols (e.gl])[are a well-known mechanism
for membership information dissemination in the preseric@arn.
These protocols maintain at each node a small subset ofeactiv
node ids, calledriew, which facilitates communication between
nodes. The gossiping nodes propagate information throwgh t
main primitives,push— unsolicited sending the node’s id to some
other node, angbull — request-reply retrieval of the other node’s
view. Part of the received information is used to update tbws.
This way, the knowledge about newborn nodes spreads thitbegh
system, and the information about defunct nodes disappears

Computing a uniform sample at all nodes requires the overlay
induced by the union of their views to remain perpetually-con
nected (otherwise, two nodes in different connected comipisn
have zero probability to learn about each other). Allavera. ¢1]
have demonstrated a benign gossip protocol for which theatzgd
time until a network partition is exponential in the squaoéshe
view size and the partition size, under reasonable assangptEx-
tensive empirical studiesl, 18] validated that gossip maintains
connectivity in practice.

However, traditional gossip is not resilient to maliciouse wof
communication primitives. For example, an adversary carosé
to over-represent the faulty ids in samples of some corredes.
Note that our model rules out massive Sybil attacks, whitdwal
the faulty nodes to use multiple id47]. We illustrate two kinds
of behavior, both leading to rapid poisoning of views at allrect
nodes.

Push flooding. The adversary can flood the correct nodes with
pushes of faulty ids. A solely push-based gossip is clearlgera-
ble to this attackKigure Za)). Moreover, push flooding cannot be
resisted unless the sending rate of Byzantine nodes israomed.
Hence, we assume a mechanism that makes it costly for nodes to
send designated (push) messages, which weicaied messages.
This mechanism can be implemented in different ways, eogn-c
putational challenges like Merkle's puzzle&g], virtual currency,
etc. Note that employing limited messages is necessaryobsuf-
ficient: while they prevent the adversary from flooding alirect
nodes in parallel, the latter can still target them one by one

Skewed pull responses. The faulty nodes can return only faulty
ids in response to pull requests. Since pulls from corredeso
return faulty ids as well as correct ids, this behavior lemdex-
ponential decay in the representation of correct nodes. r&lyu
pull-based dissemination fails to handle this attdeig(re Zb)).

The described scenarios demonstrate that an adversaryi<an e
ploit traditional gossip to bias the distribution of ids hetviews of
correct nodes. In the long run, it can disintegrate the ermver-
lay, thus precluding uniform sampling completely. Brahrdepts
a two-layer approach to this problem. As a first step, we guara



Figure 1: Malicious attacks on traditional gossip protocok. (a) Push attack. (b) Pull attack.

tee, w.h.p., that the attacker cannot isolate correct naldasis, the
maximum damage to their views is bounded. As a second step, we
correct the incurred bias through local uniform sampling.

3. BRAHMS

Brahms has two components. The losaimplingcomponent
maintains aample listS — a tuple of uniform samples from the set
of ids that traverse the nod&éction 3.]. The gossipcomponent
is a distributed protocol that spreads locally known idasrthe
network Section 3.2, and maintains a dynamigew). Each node
has some initial (e.g., received from some bootstrap server or
peer node)) andS may contain duplicates, and some entrie§in
may be non-defined (denoted).

3.1 Sampling

Sampler is a building block for uniform sampling of unique el
ements from a data stream. The input stream may be biaseéd, tha
is, some values may appear in it more than others. Sampleptscc
one element at a time as input, produces one output, andssiore
single element at any time. The output is a uniform randoniceho
of one of the unique inputs witnessed thus far.

Sampler usemin-wise independemgermutations§]. A family
of permutationg{ over arangél ... |U[] is min-wise independent
if for any setX C [1...|U]] and anyz € X, if h is chosen at
random from?, thenPr(min{h(X)} = h(z)) = %;. Thatis,
all the elements of any fixed s& have an equal chance to have
the minimum image undér. Pseudo-random functions (e.dL6])
are considered an excellent practical approximation of-wise
independent permutations, provided t[it is large, e.g.2%.

Sampler Figure Za)) selects a random min-wise independent
function i upon initialization, and applies it to all input values
(next () function). The input with the smallest image value en-
countered thus far becomes the output returned by &l e()
function. The property of uniform sampling from the set ofque
observed ids follows directly from the definition of a minseiin-
dependent permutation family.

Brahms maintains a tuple @k sampled elements in a vector
of /> Sampler blocksKigure Zb)), which select hashes indepen-
dently. The same id stream is input to all Samplers. Sampled i
are periodically probed (e.g., using pings), and a Sampéitiolds
an inactive node is invalidated (re-initialized).

3.2 Gossip

Brahms's view is maintained by a gossip protodabre 3. We
denote list concatenation ly By slight abuse of notation, we de-
note both the vector of samplers and their outputs (the saligp)
by S. Brahms executes in (unsynchronized) rounds. It uses two
means for propagation: (Push— sending the node’s id to some
other node, and (2)ull — retrieving the view from another node.
These operations serve two different purposes: pushesgueed
to reinforce knowledge about nodes that are under-repiesen
other nodes’ views (e.g., newborn nodes), whereas puliseszded
to spread existing knowledge within the netwoli§. [A combina-
tion of pulls and pushes is required because the representait
ids propagated solely by pulls decays over time, whereasetire-
sentation of push-propagated ids increases.

Brahms uses parametess > 0, 5 > 0 and~y > 0 that sat-
isfy « + 3+~ = 1. In a single round, a correct node issugs
push requests an@¢; pull requests to destinations randomly se-

lected from its view (possibly with repetitions). At the eofdeach
round,V andS are updated with fresh ids. While all received ids
are streamed t§ (Figure 2 Line 37), re-computind’ requires ex-
tra care, to protect against poisoning of the views withtfaids.
Brahms offers a set of techniques sto mitigate this problem.

Limited pushes. Since pushes arrive unsolicited, an adversary
with an unlimited capacity could swamp the system with puesh r
quests. Then, correct ids would be propagated mainly throug
pulls, and their representation would decay exponent[dllyThe
protocol employs limited push messages, hence the fracti@ulty
pushes is constrained.

Attack detection and blocking. While using limited pushes pre-
vents a simultaneous attack on all correct nodes, it previte
solace against an adversary that floods a specific node. Brahm
protects against thitargeted attacky blocking the update op.
Namely, if more than the expected, pushes are received, it does
not update). Although this policy slows down progress, its ex-
pected impact in the absence of attacks is bounded (nodes\rec
pute V in most rounds). Thanks to limited pushes, some nodes
make progress even under an attack (Line 35).

Controlling the contribution of pushes vs pulls. As most correct
nodes do not suffer from targeted attacks (due to limitedhesis

their views are threatened by pulls from neighbors more than
adversarial pushes. This is because whereas all pushescfiem
rect nodes are correct, a pull from a random correct node iy ¢
tribute some faulty ids. Hence, the contribution of pushebulls

to V must be balanced: pushes must be constrained to protect the
targeted nodes, while pulls must be constrained to prabectest.
Brahms update¥® with randomly chosem/; pushed ids ang/;
pulled ids (Line 36).

History samples. The attack detection and blocking technique
can slowdown a targeted attack, but not prevent it complehéte
that if the adversary succeeds to increase its represamiata vic-
tim’s view through targeted pushes, it subsequently catiesic-
tim to pull more data from faulty nodes. As the attacked nede’
view deteriorates, it sends fewer pushes to correct nodesirgy
its system-wide representation to decrease. It then resdéawer
correct pushes, opening the door for more faulty pushBsahms
overcomes such attacks using a self-healing mechanisnrebjhe
a portion €) of V reflects thehistory, i.e., previously observed ids
(Line 36). A direct use of history does not help since thestattay
also be biased. Therefore, we use a feedback amobtain unbi-
ased history samples. Once some correct id becomes thkeattac
node’s permanent sample (or the node’s id becomes a permanen
sample of some other correct node), the threat of isolasi@timi-
nated.Figure 4dillustrates the view re-computation procedure.
Brahms’s parameters entail a tradeoff between performamce
a benign setting and resilience against Byzantine attdeis.ex-
ample,y must not be too large since the algorithm needs to deal
with churn; on the other hand, it must not be too small to make t
feedback effective. We showBéction § thaty = 0.1 is enough
for protectingV from partitions. The choice df; and/ is crucial
for guaranteeing that a targeted attack can be containedthumt

This avalanche process can be started, e.g., by oppoitatiist
sending the target a slightly higher number of pushes thpaczd.
Since correct pushes are random, a round in which suffigiéa
correct pushes arrive, such that Brahms does not detectaank at
happens soon w.h.p.



: function Sampler.init()

h < randomPRF(); ¢ «— L

: function Sampler.next(elem)

if g=_L1 Vv h(elem < h(g) then
q «— elem

: function Sampler.sample()

return ¢

N gRw MR

Id stream

init() next()

¥y ¥ ¥
‘ Sampler ‘ Sampler ‘ ‘ Sampler ‘ ‘ Sampler ‘
sample()
A,
Validator ‘ Validator ‘ Validator ‘ Validator ‘

I

Figure 2: Uniform sampling from an id stream in Brahms. (a) Sampler’s pseudo-code. (b) Sampling and validation ot ids.

Vpush — Vpull — @
forall 1 <7< af; do
{Limited push
send_lim (“push_request®) to rand(V, 1)
forall 1 <i < ¢, do
send (“pull_request) to rand(V, 1)
wait(1)
for all received (“push_request“) from id do
Vpush, — Vpush o {Zd}
for all received (“pull_request*) from id do
send (“pull_reply“,V) to id
for all received (“pull_reply“, V') from id do
if | sent the request, and this is the first refiign
Vpull — Vpull o V’
if ([Vpusn| < als A Vopusn 0 A Vpuu # 0) then
V « rand(Vpush, al1) o rand(Vpuir, 3¢1) o rand(S, v41)

1: V :tupleftq1] of Ia 19: {Gossip
2: S :tuplefl2] of Sampler 20: while true do
3: Initialization (Vo): 2L
4. Y —, 22:
5: forall 1 <i</{ydo 23;
6 S[i].init() 24:
7:  updateSample (V) 25!

. o 26:
8: {Stale sample invalidatign )
9: periodically do 21
10: forall 1 <i</{ydo 28:
11: if probe(S[i].sample()) fails then 29:
12: S[i].init() 30:
13: {Auxiliary function$ 3L
14: function updateSample(V) 32:
15 forall id e V,1 <i < (> do 33:
16: S[i].next(id) 34:
17: function rand(V,n) 35:
18:  return n random choices frony g?

updateSample(Vyush © Vpull)

Figure 3: The pseudo-code of Brahms.

Pushed ids

Pulled ids

Y A
View [ ali | Bl [yh] [ I, | sample

History samples

Figure 4: View re-computation in Brahms.

attacked node’s sample stabilizes. For examfilel. = O(¥/n)
suffice to protect even nodes that are attacked immediafein u
joining the systemSection 6.2.

4. DEFINITIONS AND ATTACK MODELS

We study the asymptotical properties of a system nbdes with
unique ids, after a poirify at which the churn ceases. The subset
of correct nodes is denotét The faulty nodes comprise less than
some fractionf < 1 of n. We assume that the system-wide fraction
of limited pushes that all faulty nodes can jointly send iriregle
time unit is at mosp, for somep < 1.

We denote the view and the sample list at nadat timet by
Vu(t) andS., (t), respectively. We define theverlay graph\V (¢),
induced by the union o¥ andS at all correct nodes, which cap-
tures their knowledge about each other at time

N (@) & {e, 1w, v)lv e Vu@®) | JSu() nCY}.

ueC

We also define’(t), a subgraph of\'(¢) induced byV of correct

nodes (edges induced Byare omitted):

V(1) £ 1{C, [ J{(w,v)lv € Vu(t) N C}H}.

u€eC

For a nodey, the number of its incoming edges in a graph is called
its in-degree and the number of outgoing edges is calledoift-
degree For example the in-degree of noden V() is the number

of instances of: in views of correct nodes, and its out-degree is the
number of correct ids in its view. Thaegreeof v is the sum of its
in-degree and out-degree.

Brahms's resilience depends on the distribution of in-degiand
out-degrees inV(t). We assume a necessary condition for initial
connectivity, namely, that the view of every joining cotreode
contains some correct ids (the ratio of faulty ids in the viswot
necessarily bounded bf). We further assume that before the at-
tack starts, the in-degrees and out-degrees of all cormeg#snare
(roughly) equal. This property is a close approximationeziity,
since a benign gossip process preservel.it [

We assume the worst-case behavior of Byzantine nodes, i.e.,
pushing faulty ids to correct nodes and always return fadkyto
pulls. Faulty nodes always respond to probe requests, id avo
validation. We consider two representative ByzantinecktaThe
first attack, calledalanced maximizes the system-wide represen-
tation of faulty ids by distributing the faulty pushes eweamong
the correct nodes. The second attack, cabegeted focuses an in-
creased portion of faulty pushes on a small subset of canaatgs,
in order to isolate them from the overlagection 6analyzes the
dynamics of both attacks, and demonstrates that Brahmsmev
the overlay’s partitioning, with the right choice of paraers.

5. ANALYSIS - SAMPLING



In this section we analyze the propertiesSaf of a correct node
u. Lets = S,[i] be a sampler block for some correcend some
i. Recall thats employs a min-wise independent permutatioh,
chosen independently at random. Letdét) be the output of at
time t. We define thgerfectid corresponding ta, s*, to be the id
with the minimal value of.h among all ids (we neglect collisions
for the sake of the definition). Note thst can be either a correct
or a faulty id. InSection 5.1we show that the subset of correct ids
in S,, eventually converges to a uniform random sample fébrm
Section 5.2ve analyze how fast a node obtains at least one correct
perfect sample, as needed for self-healir®gection 5.3discusses
scalability, namely, how to choose view sizes that ensumnatant
convergence time, independent of system size.

5.1 Eventual Convergence to Uniform Sample

Consider samples of nodew. If s* is correct,s samples cor-
rect ids uniformly at random. Obviously, ferto be able to sample
some correct node, the id ofv has to reach. To guarantee such
a reachability between all the correct nodes, we requireties-
lay graph/\/ (¢) to remainweakly connectedfter 7p. That is, the
undirected graph, obtained fron(¢) by replacing all of its di-
rected edges with undirected ones, is connected foralt,. If s*
is faulty, it may remain “silent”, thus preventing its id frobeing
known to correct nodes. The following theorem shows thaheac
correct id has roughly the same probability to be samplesl. by

THEOREM 5.1. If N/(¢) remains weakly connected for each
Ty, for somel; > Ty, then, for allv € C, ande > 0, there exists
T. > T such that for allt > T.

1

~ < Pr(s(t) = v) < L

T (=S

Proof idea. The key to the theorem is to show that whenever

+e.

N (t) remains weakly connected, the id of each correct node even-

tually reaches every other correct node with probabilityl kiis is
because the id has a non-zero probability to traverse a patrt
ery correct node in the system. Thus, each sampler will exadgt
settle on its perfect id, provided that its perfect id is eotr There-
fore,Pr(s(t) = s¥|s" € C) -+~ 1. Since the probability for
s* to be faulty is at mosy, Pr(s(t) = s*) approaches the range
[1-f, 1] The theorem follows smcﬁv € C,Pr(s(t) = v|s* €
C) = &1 < @ p» and since we assume that whenis faulty,
0<Pr(s(t) =vls" ¢C) < 755 f)n

The next lemma discusses the convergence rate of samples.

LEMMA 5.2. If no invalidations happen, for each correct node
u, the expected fraction of samplers that output their perfec
grows linearly with the fraction of unique ids observedby

PROOF Let D(¢) be the set of ids observed hyuntil time ¢.
Then, for each sampler, Pr(s* € D(t)) = 2%l Since for
eachs such thats* € D(t), s(t') = s* for ¢’ > t, the lemma
follows. [

5.2 Convergence to First Perfect Sample

We show a lower bound on the probability th&t containsat
least ongperfect id of an active correct node, as a function of the ids
it observes and system parameters. This provides an uppadbo
on the time it takesS,, to ensure self-healing and prevers isola-
tion. We assume that joins the system at tim&;, with an empty
sample. Let\(¢) be the number of correct ids observeddbfrom
time T} to t. Our analysis depends on the number of unique ids ob-
served byu, rather than directly ork. Obviously, one can expect

[

o
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o
o
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100 200 300
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400 500

Figure 5: Growth of the probability to observe at least one co
rect perfect sample (Perfect Sample Probability - PSP) witlthe
stream size, for1000 nodes,f = 0.2, and p = 0.4.

the observed stream to include many repetitions, as it isalistic
to expect our gossip protocol to produce independent unifan-
dom samples (cf.19]). Indeed, achieving this property is the goal
of sampler. In order to capture the bias/An we define astream
deficiency factar0 < p < 1, so that a stream of length(¢)
produced by our gossip mechanism is roughly equivalentthfer
purposes of sampler, to a stream of length(¢) in which correct
ids are independent and distributed uniformly at randomis T
akin to the clustering coefficient of gossip-based over[ags We
empirically measureg to be about.4 with our gossip protocol
(seeSection 6.2

We define theperfect sample probability’ S P, (¢) as the prob-
ability thatS,, (¢) contains at least one correct perfect id. The con-
vergence rate oP .S P is captured by the following:

LEMMA 5.3. Letu be a random correct node. Then, for>
_pA®)
To, PSP, (t) > 1—((1 = fle” 11 + f)*2,

Proof idea. A sampler outputs a correct perfect id if (1) its perfect
id is correct, and (2) this id is observed by the sampler irstream.
PSP is the probability that at least one 6f samplers outputs a
correct perfect id.

Figure 5illustrates the dependence BfSP on the stream size
A(t) and on¢s. When the sample size ) = 4:/n, and the
portion of unique ids in the stream js= 0.4, a perfect sample
is obtained, with probability close tb, after 300 ids traverse the
node.

5.3 Scalability

From Lemma 5.3we see thatP.SP depends on\ and /2. To
get a higherPSP, we can increase either one. While increas-
ing A is achieved by increasing, and consequently the network
traffic, increasing/> has only a memory cost. We now study the
asymptotic behavior aP S P, (t) as the number of the nodes, in-
creases. When a node hassamplers§2(¢2) of them have correct

s* w.h.p. Therefore, wh.pPSP,(t) > Q(1 — (e~ (t))‘v’z) =

Q1 —e” pA(ﬁ)Zz) For a constant, A(t) = Q(¢3) since there
are Q(¢1) puIIs obtaining$2(¢,) ids each. ThusPSP,(t) >

Q1 —e %) For scalability, it is important that for a given
PSP,(t)will be bounded by a constant independent of the system
size. This condition is satisfied whe® - £o = Q(n), e.g., when

ly =41 = Q(n), orty = Q(Y/n) andly = Q(Yn). To reduce
network traffic at the cost of a higher memory consumptiore on
can set; = Q(logn) andly = Q(

log’né n)



Correct node u Random correct node Semantics

number/fraction number/fraction
ZTu(t)/Zu(t) x(t)/Z(t) faulty ids in the view
Yu(t)/Tu(t) instances among the

views of correct nodes

g [GER () gP () /57 ()

PRI () [ER (1) et (1) [ ()
"““( Vgt gPM ()5 (t)
O A O I OV O

faulty ids pushed to node
correct ids pulled by node
faulty ids pulled by node

Table 1: Definition of common random variables.

6. ANALYSIS —OVERLAY CONNECTIVITY

We prove that Brahms, with appropriate parameter settings)-
tains overlay connectivity despite malicious behaviorr @ethod-
ology is mathematical analysis, which, like previous stgd],
makes some simplifying assumptions. The theoretical tesuk
validated through extensive simulations.

We first bound the damage that can be caused withémgle
round (a similar approach was taken, e.g.,28]]. In the full ver-
sion of this paper{], we prove that in any single roundbalanced
attack, which spreads faulty pushes evenly among corretgsio
maximizes the expected system-wide fraction of faulty ilg,),
among all strategies. I8ection 6.1 we prove that if this attack
persists, the ratio of faulty ids in the system eventualipsizes at
a fixed point. We study the convergence process, and shoviothat
certain parameter choices, this fixed point is strictly $enghan 1.

Alternatively, an adversary can try to partition the netv@ather
than increase its representation) by targeting a subsetdgfswith
more pushes than in a balanced attack. Without prior inftona
about the overlay’s topology, attacking a single node cambst
damaging, since the sets of edges adjacent to single naelkiscdy
to be the sparsest cuts in the overl&@ection 6.2shows that had
Brahms not used history samples, correct nodes could hare be
isolated in this manner. However, Brahms sustains sardeted
attacks, even if they start immediately upon a node’s joihemv
it is not represented in other views and has no history. Tlye ke
property is that Brahms's gossip prevents isolation lormugh for
history samples to become effective.

Notation. We study time-varying random variables, listedable 1
A local variable at a specific correct nodeis subscripted by,.
When used without subscript, a variable corresponds to @oran
correct node. Correct (resp., faulty) ids propagated tinqaushes
and pulls are denotegl(green) (resp (red)).

Simulation setup. We validate our assumptions using simulations
with n = 1000 nodes or more. Each data point is averaged over
100 runs. For simplicity, we assumpe= f. A different subset of
faulty nodes push their ids to a given correct node in eachdpu
using a round-robin schedule.

6.1 Balanced Attack

In the analysis of a balanced attack we ignore blocking siisce
only effect is to slow the convergence rate. Simulations\stiat
this assumption has little effect on the results. Since arzad
attack does not distinguish between correct nodes, we asthaiit
preserves the in-degrees and out-degrees of all correesrexual
over time:

AssuMPTION 6.1. For all w € C and allt > Ty: zu(t) =
z(t), andy. (t) = €1 — zu(t).

correct ids pushed to node

Z(t) and the system’s convergence to it. Since the focus is on

asymptotic behavior, we assume> T.

LEMMA 6.1. Fort > To, if p # 0 or z(t) # 1, the expected
system-wide fraction of faulty ids evolves as
E@t+1) =omngasm)
+B(E(t) + (1 — 2(1))Z(t))
+7f.

PROOF Consider the re-computation ®f at a correct node
at timet. The weights of pushes, pulls, and history samples in the
recomputed view are;, 5 and~, respectively. Since the random
selection process preserves the distribution of faultyindeach
data source, the probability of a push- (resp., pull)-o&ged entry
being faulty is equal to the probability of receiving a fauttush
(resp., pulling a faulty id).

Figure ga) illustrates the analysis 8P"" (¢). Each correct node
wastes an expected fractiar(¢) of its pushes because they are
sent to faulty nodes. The rest are sent with an equal prebabil
ity over each outgoing edge M(¢). Since out-degrees and in-
degrees are equal among all correct nodes, each correcumade
ceives the same expected number of correct pughigg"*" () =
(1—Z(t))aly. The variablgR"" (¢) is binomially distributed, with
the number of trials equal to the total number of pushes anating
nodes with an outgoing edge to Since this number is large, the
number of received correct pushes is approximately equahgm
all correct nodes, i.eg?™" (t) ~ (1 — &(t))ats, for all w.

The total number of correct pushesiié, |C|, which is1 — p out
of all pushes, hence the total number of faulty pushe%% IC|.

Therefore,u receives exactly2"" () —a(l faulty pushes,
i.e., their fraction among all received pushes is:

0 _
ﬁaél + (1 — i(t))ozél N

p
p+(1—p)1—2(t)

Hence, the expected ratio of push-originated faulty id®’inis
«

() =

pf(lfpﬁlfi(t))'_ . . .
Figure &b) depicts the evolution of pull-originated faulty ids.

Since all correct nodes have an equal out-degree, a coreet n
is pulled with probabilityl — z(¢), while a faulty node is pulled
with probability z(¢). A pulled id is faulty with probabilityz(¢)
if it comes from a correct node, and otherwise, it is alwaystja
Hence, the expected fraction of pull-originated faultyig$(z (¢)+
(1 = &(1))i(t)).

Finally, sincet > Ty, the history sample is perfect (the ratio of
faulty ids initis f). Hence, its expected contributiomig, and the
claim follows. [

We now show that the system converges to a stable state. A
valuez is called afixed pointof Z(¢) if E(Z(¢t + 1)) = Z(t) = Z.
Substituting this into the equation frobemma 6.1 we get:

LEMMA 6.2. Fora, 3,7, p, f € [0, 1], every real root) < & <
1 of the following cubic equation is a fixed pointa&(t), except for
therootz = 1forp=0:

B(1 —p)z® +
(2Bp—33—p+ 13> +
(yfp—~f+28-1) +
(ap+~f) = 0.

If v = 0 (no history samples); = 1 is always a root. We call it
atrivial fixed point. This is easily explainable, since if the views
of all the correct nodes are totally poisoned, then neitlds mor

We show the existence of a parameter-dependent fixed point of pushes help. In the full version of this pap&t,[we show that if
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Figure 6: Fixed point analysis illustration.
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Figure 7: System-wide fraction of faulty ids in local views,under a balanced attack: (a) Fixed points (b) Convergence prcess.

~v = 0, there can exist at most one nontrivial fixed pdint & < 1.

p+1/4p—3p? for

For example, iftx = 8 = 1 andy = 0, thenz = 2ip)
0 < p < 3. In contrast, if the fraction of faulty pushes exceeds
the only fixed point is 1, causing isolation of all correct aed

If v > 0, there exists a single nontrivial fixed point for all This
highlights the importance of history sampldsigure {a) depicts
the analysis results, perfectly matched by simulations.

We conclude the analysis by proving convergence to a néetriv
fixed point (the complete proof appears W)[

LEMMA 6.3. If there exists a fixed point < 1 of z(t), and
Z(To) < 1, thenZ(t) converges ta:.

Proof idea. We show that for alt, the sequence af(t) is trapped
betweent and another sequencg(t), that converges td. Hillam’s
theorem 7] is then used to prove sequence convergence.

Since the balanced attack does not distinguish betweeratorr
nodes, the same result holds oy (t), for each correct node.
Figure 1b) depicts the convergence to the nontrivial fixed point
from various initial values of:(¢). The analytical and simulation
results are similar. The latter's convergence is slighlibyver be-
cause the analysis ignores blocking.

6.2 Targeted Attack

We study a targeted attack on a single correct nedevhich
starts uponu’s join atTp. We prove that is not isolated from the
overlay by showing a lower bound on the expected time to isola
tion, which exceeds an upper bound on the time to a perfestaior
sample (a sufficient condition for non-isolatid®ection 3.

Lower bound on expected isolation time. As we seek a lower

stated in f]). First, we analyze a simplified protocol that does not
employ history samples (i.ey, = 0), so thatS does not correct
V’s bias. Next, we assume an unrealistic adaptive adversaty t
observes the exact number of correct pushes, tg?"*"(¢), and
complements them with¢; — g2*"(¢) faulty pushes — the most
that can be accepted without blocking. The adversary maeii
its global representation through a balanced attack onoatect
nodesv # u, thus minimizing the fraction of correct ids that
pulls from correct nodes. Finally, we assume thas not repre-
sented in the system initially, and it derives its initiaéwi from a
random set of correct nodes, where the ratio of faulty id¢ the
fixed point Section 6.).

Clearly, the time to isolation in/(¢) is a lower bound on that
in A'(t). We study the dynamics of the number of correct ids in
w's out-degree iNV(t), {1 — z.(t), andu’s in-degreey,, (¢). We
show in [7] that for any two specific values af, (t) andy.(t), the
expected out-degree and in-degree valugstat are

6 - Bt +1)) 0 — zu(t)
( E(yu(t +1)) )AmX( e )

) ( Bl-3) o« )
2X2 — _ ~ .
arrmaa Al-2)

Note that the coefficient matrix does not depend:ft) andy., (),

and the sum of entries in each row is smaller than 1. This espli
that once the in-degree and the out-degree are close, tiieylbo
cay exponentially. (Initially, this does not hold becauss not rep-
resented, i.ey. (7o) = 0.) Hence, the expected time to isolation is
logarithmic with/;. Note that this process does not depend on the

where

bound, we make a number of worst-case assumptions (formally number of nodes, since blocking bounds the potential attack
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u independently of the system-wide budget of faulty pushesd H
blocking not been employed, the top right coefficient woudarén
been0 instead of«,, because the adversary would have completely
hijacked the push-originated entries\ip. The decay factor would
have been much larger, leading to almost immediate isolatio
Figure 9a) depicts the dynamics ofs expected degree (the sum
of u's in- and out-degrees) until it becomes smaller than 1. Simu
lation results closely follow our analysis. The temporamgvgth in
u’s degree at = 1 occurs because becomes represented in the
system after the first round. For example, the average tinmoto
lation for ¢, = 2¢/n is 10 rounds.Figure 9b) depicts the same re-
sults in log-scale, emphasizing the exponential decaysofiegree
and the logarithmic dependency betwéerand time to isolation.

Upper bound on expected time to perfect correct sample.For
given values of the non-unique stream si¢) and the deficiency
factor p (Section 9, Lemma 5.3boundsPSP,(t). The expected
number of correct ids observed hytill the end of roundT is
A(t) = 00 T HEGR™" (1) + E(g8™(1))); the expected val-
ues ofg™s"(¢) and g2 (¢) are by-products of the analysis if
for v = 0. Figure 8(a)depicts the deficiency factgr measured
by our simulations, which behaves similarly for all valuds/o:

p > 0.4 for all t. Figure 8(b) depicts the progress of the upper
bound ofLemma 5.3with time, with A(¢) computed as explained
above andp = 0.4. The corresponding simulation results show,
for each timet, the fraction of runs in which at least one correct
id in S,, is perfect. Forrs > 40, the PSP becomes close to 1 in a

few rounds, much faster than isolation happéfigire 4b)). For

{1 = 20, it stabilizes at0.5. The growth stops because we run
the protocol without history samples, thudecomes isolated, and

the id stream ceases. A higher PSP can be achieved by indepen-
dently increasing», e.g., if {2 is 40, then the PSP grows 1.8
(Figure 5. Note that perfect samples only provide an upper bound
on self-healing time, a§, contains imperfect correct ids, and

also becomes sampled by other correct nodes, w.h.p. These fa
tors coupled with history samples ¢~ 0) completely prevent/'s
isolation, as shown iection 7

7. PUTTING IT ALL TOGETHER

In previous sections we analyzed each of Brahms’s mechanism
separately. We now simulate the entire systéfigure 10depicts
the degree of node in NV (t) under a targeted attack. Nodere-
mains connected to the overlay, thanks to history samples-(
0.1). The actual degree afin N (¢) is higher than the lower bound
shown inSection 6.2 due to the pessimistic assumptions made in
the analysis (no history samples, no imperfect correctatts).

We now demonstrate the convergenceSdh the correct nodes.
We simulate systems with up to = 4000 nodes;¢; and/; are
set t02 ¢/n. To measure the quality of sampfeunder a balanced
attack, we depict the fraction of ids éthat are indeed the perfect
sample over timeKigure 11(a). Note that this criterion is conser-
vative, since missing a perfect sample does not automigtieaid
to a biased choice. More th&0% of perfect samples are achieved
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