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Abstract—We consider the problem of tracking the state of
a hybrid system capable of performing a bounded number
of mode transitions in the presence of spurious, or cluttered
measurements. The system is assumed to follow, at each time,
one of a predefined dynamical models. Two types of uncertainties
make the problem challenging. The first is the data uncertainty
that follows from the fact that the true measurement of the state
is indistinguishable from the clutter measurements that do not
carry useful information. The second problem is the intrinsic
model uncertainty. Both reasons prevent the computation of the
optimal estimator. On the other hand, the mode transitions are
not Markov, thus ruling out the direct use of standard approaches
for state estimation in cluttered environment. We derive an
efficient estimation scheme for systems in cluttered environments
capable of performing a bounded number of mode transitions. At
the heart of this scheme is a transformation of the non-Markov
model set to an equivalent Markovian one and a subsequent
utilization of standard approaches matched to the new mode set.
The algorithm’s performance is evaluated via a simulation study,
and shown to outperform the standard popular approaches.

I. INTRODUCTION

Hybrid systems are characterized by a continuously varying

state vector and a discretely varying (switching) parameter

vector, that takes values in some finite set [1]. The switching

parameter vector is usually referred to as the system mode. The

hybrid system framework is frequently used in multi-sensor

fault-prone systems. Typical examples are navigation systems

using the signals of global navigation satellite systems (that are

prone to jamming and spoofing) and inertial sensors that are,

frequently, of low grade. Another typical application of the

hybrid system framework is in maneuvering target tracking,

where it is assumed that the target can maneuver, at any time,

in one of a finite set of maneuvers (modes).

Since many hybrid systems are characterized by stochastic

state and/or parameter vector, much work has been devoted to

the simultaneous estimation of both state and parameters. As

is well known, the mean squared optimal filtering algorithm

for hybrid systems requires computation resources that grow

exponentially in time [2]. Therefore, a variety of suboptimal

estimation techniques was proposed [3]–[7]. In all of these

cases, the number of mode switches permitted by the system’s

model was assumed to be unbounded, and the switching

parameter vector was assumed to obey a Markovian law.

When the number of mode switches permitted by the system

is bounded (assuming some knowledge about this bound),

the Markovian assumption no longer holds. Typical problems

featuring a bounded number of mode switches are encountered

in maneuvering target tracking, particularly during the end-

game phase of the interception scenario. Thus, [8] analyzes

a stochastic ballistic missile interception scenario where the

incoming ballistic missile executes a random bang-bang ma-

neuver consisting of a maximal maneuver in one direction,

followed by a randomly-timed single switch to a maximal

maneuver in the opposite direction. Further, in [9], optimal

differential games-based strategies are derived, showing that,

for both adversaries, these are of the bang-bang type, with pos-

sibly a single direction change if the target has non-minimum

phase dynamics. In [10], two possible target strategies are

assumed: a constant maximum maneuver, and a square wave

maneuver with a small number of direction changes.

In [11], an efficient algorithm for tracking the state of a

hybrid system capable of performing a (hard) bounded number

of mode transitions was proposed. The algorithm was shown

to outperform the state-of-the-art Interacting Multiple Model

(IMM) filter when the latter is applied in a straightforward

manner to the problem, at the expense of an increased com-

putational burden in terms of the number of primitive Kalman

filters involved. A similar problem was considered in [12],

where the the bound on the number of transitions “soft”, that

is, random, but finite with probability 1. In both cases, the

system under track was assumed to evolve in a clutter-free

environment such that the obtained measurements were noisy

observations of the state of interest.

In the present paper we consider the problem of estimating

the state of a system capable of performing a bounded number

of mode transitions in a cluttered environment. Specifically,

at each time a random number of measurements are acquired.

Among these, at most one measurement is the true observation

of the state, and the rest do not carry useful information.

However, these are indistinguishable from the true measure-

ment in the sense that all observations are unlabeled and

assumed to carry only partial (and noisy) information about



the state and the corresponding time tag. In classical scenarios,

when the mode transitions are Markov, a smart combination

of the IMM and the Probabilistic Data Association (PDA) [13]

techniques, termed IMMPDA [14] is commonly used. Since in

the bounded case (in either of its variants) the mode transitions

do not possess Markovian dynamics, a naive utilization of the

above technique is not desirable.

In [15] it is shown that both soft- and hard-bounded prob-

lems can be tackled by redefining the system’s natural mode to

an equivalent, augmented one possessing the Markov property.

The natural mode, that comprises the system matrices, is

augmented with the information on the number of transitions

the system has performed. The resulting process may be shown

to be Markov. This observation is also used in the present

work. Instead of the direct, ad-hoc, utilization of the IMMPDA

approach on the natural mode sequence, the mode set is first

augmented by accompanying the actual dynamical model with

the number of the elapsed mode transitions. The resulting

augmented Markov mode sequence is then used in the standard

IMMPDA routine matched to the augmented mode sequence.

The computational cost of the resulting algorithm, termed

Bounded IMMPDA (BIMMPDA), is higher than that of the

standard IMMPDA due to the increased number of the prim-

itive PDA modules involved in the computation, and some

possible savings are discussed in the sequel.

The remainder of the paper is organized as follows. In

Section II we provide a mathematical formulation of the

problem. In Section III we derive the proposed method and

its reduced-complexity version. Several numerical examples

are given in Section IV. Concluding remarks are made in

Section V.

II. PROBLEM FORMULATION

Consider the following state-space representation of a

stochastic dynamical system

xk+1 = Akxk + Ckwk, (1)

where {wk} is a zero-mean, unit-variance white Gaussian

process noise sequence independent of the initial state x0, that

is assumed to be Gaussian with mean x̄0 and covariance P0.

The system’s state is observed via the following linear

measurement equation

yk = Hkxk +Gkvk. (2)

We assume that the observing sensor has a known detection

probability PD such that (2) is valid only at the time steps

when the system is detected. The sequence {vk} is assumed

to be white Gaussian with zero-mean and unit-variance such

that {wk}, {vk}, and x0 are independent.

The system (1)–(2) is specified by four matrix sequences

{Ak}, {Hk}, {Ck}, and {Gk}. At each time k the set

ℳk ≜ {Ak, Hk, Ck, Gk} comprises the natural mode of

the system. Different values of the mode correspond to,

for example, different flight regimes (e.g., maneuvering/non-

maneuvering) of an aircraft, or different sensor conditions

(e.g., nominal/faulty).

We consider the case where at time k the mode ℳk may

assume one of r possible values m1, . . . ,mr. In addition,

the evolution of the sequence {ℳk} does not occur in a

deterministic manner. Suppose that the total number of mode

transitions is upper bounded by a known deterministic constant

Lmax. We define {Nk} to be a sequence of random variables

assuming the values 0, . . . , Lmax, such that Nk = ℓ if ℓ
mode transitions have occurred by time k. The considered

switching law is given in 3 (appearing at the next page),

where {pij , i, j ∈ {1, . . . , r}} are known probabilities and �ij
is Kronecker’s delta.

Equations (1)–(3) define a hybrid stochastic system, as the

continuous uncertainty associated with the state vector xk is

accompanied by a discretely-varying uncertainty associated

with the (discrete) random mode transition law.

In addition to the actual measurement defined in (2), at each

time, a number of clutter measurements are obtained. These

originate from false (or ghost) targets and do not carry any

information about the target of interest. They are, however,

indistinguishable from true detections, but are not affected by

the sensor’s detection probability. At each time, the clutter

measurements are assumed to be independent of each other,

of the clutter measurements at other times, and of the true

state and observation. The prior probability distribution of the

number of clutter measurements is known. In addition, these

measurements are uniformly distributed in space. The set of

measurements obtained at time k (that comprises some number

of clutter returns and, possibly, a single true target detection) is

denoted by Yk ≜
{

y1k, . . . , y
nk

k

}

, where nk is the total number

of measurements acquired at time k.

The goal of the paper is to obtain an efficient algorithm

for the estimation of the state xk using the available data

Yk ≜ {Y0, . . . , Yk}. Two reasons make the described problem

challenging. The first has to do with the model ambiguity,

that stems from the fact that the system mode is random.

The second has to do with the data ambiguity due to the

noninformative clutter measurements. Both reasons preclude

the computation of the minimum mean-squared error (MMSE)

filter, because this filter requires unbounded computational

resources that grow exponentially in time [15], [16]. Thus,

resorting to suboptimal approaches is inevitable. An efficient

suboptimal method is developed in the next section.

III. FILTER DERIVATION

In this section we describe the proposed method for state

estimation in hybrid systems in cluttered environment with

modes evolving according to (3). For cases where {ℳk} is a

Markov process, the problem may be solved efficiently, in a

suboptimal manner, by the IMMPDA approach [14], which is

a combination of the IMM algorithm, originally designed to

cope with model uncertainty, with the PDA filter proposed to

deal with state estimation in clutter [13]. However, as shown

in [15], the natural mode sequence {ℳk}, with transition

dynamics obeying (3), is not Markov, which precludes the

direct utilization of IMMPDA. We overcome this obstacle

by defining am augmented system mode, that possesses the



Pr {ℳk+1 = mj ∣ ℳk = mi,ℳk−1 = mi1 , . . . , Nk = ℓ,Nk−1 = ℓ1, . . .}

= Pr {ℳk+1 = mj ∣ ℳk = mi, Nk = ℓ} =

{

pij , ℓ < Lmax

�ij , ℓ = Lmax

, i, j ∈ {1, . . . , r} , k = 0, 1, . . . (3)

Markov property, thus revealing a “hidden Markovian nature”

in the hybrid system. This permits a straightforward appli-

cation of a standard IMMPDA algorithm to the equivalent

Markovian mode set. Thus, the exposition of the new method

essentially reduces to deriving the mode set transformation.

For completeness, nevertheless, we outline the principles of

the IMMPDA filtering algorithm.

A. Background on IMMPDA

Roughly speaking, the IMMPDA is obtained from a stan-

dard IMM by replacing the bank of (primitive) Kalman filters

with PDA modules. The algorithm assumes that the mode

sequence {ℳk} constitutes a Markov chain on a finite state

space {m1, . . . ,mr} with known transition probability matrix

(TPM) Pr×r = (pij). It maintains a bank of (primitive)

PDA filters, each matched to a different model in the given

model set. At step k of the algorithm, the j-th filter produces

a local estimate x̂j(k) with an associated error covariance

Pj(k), using its initial estimate x̂0
j (k − 1) and the associated

covariance P 0
j (k − 1), which are generated externally, and

the current measurement set Yk. This measurement set, that

might have been validated by a standard windowing test,

gets processed by all PDAs in the bank. In addition, each

filter produces a current value of its own (model-matched)

likelihood function Λj(k). Inherited from the standard IMM,

the key element of the IMMPDA scheme is the interaction

block that generates, using all local estimates, covariances,

and likelihoods from the previous cycle, individual initial

conditions for each of the primitive filters in the bank. For

completeness, we summarize the steps of the algorithm as

they appear in [17]. To avoid cumbersome notation, we drop

the time index from the matrices comprising the system mode

and denote by A(j), C(j), H(j), and G(j) the realizations of,

respectively, Ak, Ck, Hk, and Gk corresponding to the mj-th

value of ℳk.

a) Mixing Probabilities: For i, j = 1, . . . , r compute

�i∣j(k − 1) ≜ Pr {ℳk−1 = mi ∣ ℳk = mj ,Yk−1}

=
1

cj
pij�i(k − 1), (4)

where cj is a normalizing constant and �i(k) ≜

Pr {ℳk = mi ∣ Yk}.
b) Mixing Step: For j = 1, . . . , r compute the initial

state estimate for the filter matched to mj

x̂0
j (k − 1) =

r
∑

i=1

x̂i(k − 1)�i∣j(k − 1) (5)

and the corresponding covariance P 0
j (k − 1).

c) Predicted States and Measurements: For j = 1, . . . , r
compute the mode-matched predicted measurements and in-

novation covariances

ŷj(k ∣ k − 1) = H(j)A(j)x̂0
j (k − 1) (6)

Sj
k = H(j)(A(j)P 0

j (k − 1)AT (j)

+ C(j)CT (j))HT (j) +G(j)GT (j). (7)

d) Measurement Validation: Set a validation window

centered at the predicted measurement of the mode corre-

sponding to the largest mode-conditioned innovation covari-

ance with size determined by the latter. It is possible, however,

to introduce modifications. For example, one may consider

a single validation window similarly to the single predicted

measurement, take a union of the mode-conditioned windows,

or propose an adaptive sizing of the window.

e) Mode-Matched Filtering: For j = 1, . . . , r, using (5)

and the corresponding covariance compute the mode-matched

estimate x̂j(k) and Pj(k) as well as the likelihood Λj(k),
which is computed in a standard PDA manner

Λj(k) = p
(

y1k, . . . , y
nk

k ∣ Yk−1

)

= (V (k))−m0(nk)

+ (V (k))−m+1

nk
∑

n=1

P−1

G N (ynk ; ŷj(k ∣ k − 1), Sj
k)j(nk),

(8)

where V (k) is the volume of the validation window, nk is

the total number of the validated measurements at time k,

PG is the probability that the true measurement is inside

the validation window, N (y;�,Σ) is a Gaussian density with

mean � and covariance Σ, evaluated at y, and

j(nk) =

{

1

Nk
PDPG, j = 1, . . . , nk

1− PDPG, j = 0,
(9)

with PD being the detection probability of the sensor.

f) Mode Probability Update: For j = 1, . . . , r

�j(k) =
1

c
Λj(k)

r
∑

i=1

pij�i(k − 1), (10)

where c is a normalization factor.

g) Output Computation: The algorithm output at time k
is obtained as a fused version of the local estimates:

x̂(k) =
r

∑

j=1

x̂j(k)�j(k). (11)

The associated covariance is computed in a similar manner.

Note that the likelihood Λj(k) incorporates the contribution

of the validated measurements according to their distance



from the predicted measurement. This is the “soft validation”

window of the PDA algorithm. Namely, unlikely, distant mea-

surements contribute very little due to their small likelihood.

Hence, one may, in principle, apply the scheme without pre-

validating the measurements, allowing the “soft validation” to

effectively discard the unlikely ones.

B. Revealing the System’s Hidden Markovian Nature

The general case algorithm rests on the following lemma,

proved in [15], that allows the transformation of the mode

sequence to a Markov sequence.

Lemma 1. The joint sequence {ℳk, Nk}, with {Nk} defined

in Section II, is Markov with transition probability matrix

having the following entries

Pr {ℳk+1 = mj , Nk+1 = ℓj ∣ ℳk = mi, Nk = ℓi}

=

⎧



⎨



⎩

�ij , ℓi = Lmax

pij�ij , ℓi < Lmax, i = j

pij�ℓj ,ℓi+1, ℓi < Lmax, i ∕= j.

(12)

Equipped with Lemma 1, an efficient algorithm for the

hard-bounded case may be obtained by defining a supermode

(instead of the natural mode) sequence {ℳk, Nk}, which con-

stitutes a Markov process, and invoking a standard IMMPDA

algorithm matched to this supermode sequence equipped with

the TPM (12).

Clearly, the number of primitive PDA filters required for

the BIMMPDA is equal to the number of different values of

the supermode, namely (Lmax + 1)r. Although this number

of primitive PDAs constitutes a significant reduction relative

to the optimal filter, which requires a number of PDAs that

is exponential in Lmax, it still requires a considerable com-

putational effort. Therefore, we present a reduced-complexity

version of the algorithm in the next section.

C. Complexity Reduction

Clearly, to reduce the computational load of the algorithm

one needs to reduce the number of different values of the su-

permode {ℳk, Nk}. We can do this by applying the following

additional assumptions to the general problem formulation.

A1: The number of different dynamical models is taken to

be r = 2. The model m1 is the nominal one. In target tracking

applications it represents the typical, non-maneuvering motion

regime of a target. In FDI applications, it may represent

the fault-free condition of the sensor. The second possible

mode, m2, represents the abnormal situation, e.g., a maneu-

vering target, or a faulty sensor. It is possible to describe

various maneuver regimes using, e.g., Singer’s exponentially

correlated acceleration (ECA) model [18], [19], thus relaxing

the limitation caused by reducing the number of possible

dynamical models.

A2: The initial model is known. Without loss of generality,

it is taken to be the nominal one. Under assumptions A1

and A2, the number of mode transitions, {Nk}, constitutes

a Markov process defined over the state space {0, . . . , Lmax}
with the following TPM

⎛

⎜

⎜

⎜

⎜

⎝

p11 p12 0 ⋅ ⋅ ⋅ 0

0 p22 p21 0
...

...
. . .

. . . 0
0 ⋅ ⋅ ⋅ 0 1

⎞

⎟

⎟

⎟

⎟

⎠

. (13)

Note that, in this case, Nk uniquely determines the current

dynamical model. Hence, the supermode space defined in

Lemma 1 contains only Lmax+1 possible modes each matched

to either the nominal dynamical model m1 or the abnormal

one m2.

D. Related Problems

∙ The standard IMMPDA procedure may easily be applied

to multisensor scenarios by performing additional mea-

surement validation and filtering steps using the measure-

ments of the next sensor after the conditional filtering

step described above [17]. Applying the BIMMPDA to

multisensor problems is thus also straightforward.

∙ We note that Lemma 1 remains valid irrespective of the

actual dependence of the LHS of (3) on ℓ. Hence, a

broader class of problems may be cast into the pro-

posed framework. For example, one may consider the

case where the probability to perform a transition from,

say, mi to mj , decreases as the number of past such

transitions increases. This may be done by replacing

the probabilities pij on the RHS of (3) with pℓij for

i ∕= j, with a corresponding normalization. The only

difference would be the corresponding correction to the

TPM of (12).

∙ A related problem of state estimation with a soft bound

on the number of mode transitions has recently been

considered in [12]. In this case, the number of mode

transitions was considered random, but finite with proba-

bility 1. The solution approach was based on transforming

the mode sequence into a Markovian one and applying

a standard IMM matched to the modified mode space.

Hence, the soft-bounded case may easily be extended to

handle cluttered environments using the same reasoning

as used in the hard-bounded case.

IV. NUMERICAL STUDY

In this section we test the performance of the proposed

BIMMPDA algorithm and compare it with that of the standard

IMMPDA filter, adapted in an ad-hoc manner to the problem

at hand. We first describe the experimental setup, consisting

of the models m1 and m2, and the measurement generation

model. We then present several examples, differing in their

mode evolution mechanisms.

A. Simulation Setup

We consider the state equation (1) describing the dynam-

ics of a maneuvering target, where the state vector xk =
[pk vk ak]

T comprises the target’s position, velocity, and



acceleration. At time k, the pair {Ak, Ck} may take one of two

values, m1 =
{

A1, C1
}

or m2 =
{

A2, C2
}

. In the (nominal)

regime m1, the system obeys the dynamics of the discrete

white noise acceleration (DWNA) model [20], specified by:

A1 =

⎛

⎝

1 T 0
0 1 0
0 0 0

⎞

⎠ , C1 =

⎛

⎝

T 2/2
T
0

⎞

⎠�1, (14)

where T is the sampling period corresponding to a single time

step of the system (1), �1 is some nominal process noise

intensity. In the (abnormal) regime, m2, the corresponding

model is chosen to be the discrete Wiener process acceleration

(DWPA) model [20], specified by the following matrices:

A2 =

⎛

⎝

1 T T 2/2
0 1 T
0 0 1

⎞

⎠ , C2 =

⎛

⎝

T 2/2
T
1

⎞

⎠�2, (15)

where �2 is the abnormal process noise intensity.

The target measurements are generated according to (2)

with PD = 1, where, irrespective of the current motion

regime, Hk = [1 0 0], and Gk = �v . In addition, at each

sampling time, a number of clutter measurements is generated.

These are uniformly distributed in the surveillance region. For

simplicity, we do not set a validation window, but utilize all

the measurements from a given time resting on the “soft”

validation of the PDA. Hence, we set PG = 1 as the true

detection is always present in the current measurement set.

In all examples below we used the following parameters:

�1 = 0.3 m/s2, �2 = 2.5 m/s2, �v = 25 m, T = 5 s. These

parameters correspond to a maneuvering index � = �T 2/�v

of 0.3 for � = �1, and about 2.5 for � = �2, meaning that the

problem cannot be solved to a satisfactory level of accuracy

using a single, non-adaptive filter (see, e.g., [21]) and the use

of adaptive filters of the multiple model variety is inevitable.

In the first three examples in the sequel the average number of

clutter measurements in an interval of one standard deviation

of the measurement noise �v is kept constant at ≈ 0.25. In

the final experiment, this number varied between 0.05 and

0.3. In addition, without loss of generality, the initial state is

x0 = [0 0 0] and P0 is an all-zero matrix, and scenarios of 30
time units are considered. Each filter is initialized in a perfect

manner and the inial model is set to be the nominal one.

B. Performance Evaluation

In all cases we compare the performance of the BIMMPDA

filter and a standard IMMPDA (designed for the natural mode

sequence) adapted in an ad-hoc (yet reasonable) manner to the

problem at hand. In addition, we generate a “Genie” PDA filter

that possesses perfect information on the natural mode value at

each time. This non-realistic filter serves to provide an overall

performance bound. Note, that despite knowing the system

mode, the genie PDA is still a suboptimal algorithm, since

it implements a standard (suboptimal) PDA routine for target

tracking in clutter. Finally, we also present the performance

of a naive, non-adaptive PDA, which is matched to the model

m1 with process noise standard deviation which is taken to be

the average of �1 and �2. This naive choice aims to make a

compromise between the two motion regimes.

All the presented results are averaged over 1000 indepen-

dent Monte Carlo runs. In the first three examples we compute

the Root Mean-Squared (RMS) position and velocity errors for

all filters for those MC runs in which the target was not lost.

The target is declared lost if, before the end of the simulation

interval, the distance between the true and estimated target

positions has deviated by more than 5�v for three consecutive

times. In the last experiment we record the percentage of the

lost tracks vs. clutter density.

1) Deterministic Case: First, we consider the following

scenario, lasting 30 time units.

∙ From k = 1 to k = 5 the target moves according to m1,

∙ At k = 6 the target switches to m2 and complies with

this model for additional 5 time units,

∙ At k = 11, the target switches back to m1 and persists

at this model until the end of the scenario.

In this (deterministic) scenario, mode switches occur after

5 and 10 time units. To comply with the assumed model we

set the probabilities for a mode switch in the BIMMPDA to

p = 1

6
as well as Lmax = 2. The IMMPDA filter is designed

for the natural mode sequence. Since for Lmax > 1 this mode

sequence is not Markov, the transition probability matrix of the

IMM needs to be adjusted in some ad hoc manner. According

to our modeling, a reasonable choice would be setting the

probability for a transition from m1 to m2 and vice versa to

p = 1

6
, such that

TPMIMMPDA =

(

1− p p
p 1− p

)

. (16)

The Monte Carlo RMS position and velocity errors are

presented in Fig. 1. It is readily seen that before the second

mode transition the IMMPDA and BIMMPDA attain similar

performance. Both are inferior to the genie filter and both

outperform the naive PDA. The more interesting phenomenon,

however, occurs after the second (and last) switch, where

the BIMMPDA clearly dominates the IMMPDA, approaching

the genie filter’s performance. The superiority of the pro-

posed method at the final interval of the scenario, after the

maximum number of model switches has been exhausted, is

best understood via observing Fig. 2 that shows the mode

probabilities computed by the BIMMPDA and IMMPDA.

Notice that after the maximum number of switches, Lmax,

has been exhausted, the BIMMPDA knows precisely the model

being currently in effect. Therefore, it nullifies all probabilities

�ℓ for ℓ < Lmax and assigns �Lmax
= 1. This means

that the scheme’s state estimate is based on the true model,

which yields superior performance. The IMMPDA filter, on

the other hand, cannot but assume that the mode transitions

obey a Markovian structure, which is not true in our case.

Therefore, unless Lmax = 1, it cannot nullify any of the

modal probabilities in order to keep both models ‘alive’ (so as

to be prepared for a possible future switch). This introduces

an additional mismatched term to the output estimate, thus

increasing the estimation error.
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Fig. 1. RMS position (left) and velocity (right) estimation errors for the deterministic scenario.
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Fig. 2. Model probabilities of BIMMPDA (left) and IMMPDA (right) estimation errors for the deterministic scenario.

2) Bounded Case: In this experiment the transitions be-

tween m1 and m2 are generated according to the modeling

mechanism underlying the BIMMPDA algorithm, according

to (12), such that the system may perform exactly 2 mode

transitions with probability 1

6
for a switch between models.

Note the difference between this example and the deterministic

one, where the times of the two transition have been kept

constant in every Monte Carlo run. The TPM of the proposed

filter, as well as that of the IMMPDA filter, remain unchanged.

The corresponding RMS position and velocity errors of all

algorithms are presented in Fig. 3. Operating under nominal

conditions, the BIMMPDA algorithm attains superior perfor-

mance, approaching the genie PDA errors at the end of the

simulation interval, after all 2 transitions have been exhausted.

Similarly to the first (deterministic) example, the IMMPDA

filter operates with acceptable accuracy (relatively to BIMM-

PDA) as long as the system alternates between m1 and m2,

since these alternations resemble then Markovian transitions,

but the performance gap, relatively to BIMMPDA, increases

after the second transition is made and the system follows a

constant model (approximately after 11 time steps, which is

the mean time for performing 2 mode transitions). The poorer

performance of the IMMPDA filter is explained by the fact that

the filter is not aware of the fact that, after the hard bound on

mode transitions has been achieved, no more transitions can

occur; therefore, it maintains a mismatched primitive PDA,

keeping the overall MSE higher than BIMMPDA.

It may seem at first that the naive nonadaptive PDA

performs relatively well, outperforming, at some parts of

the interval, the more sophisticated algorithms. This is not

necessarily true since, as will be demonstrated in the sequel,

its track loss rate is significantly higher.
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Fig. 3. RMS position (left) and velocity (right) estimation errors for the bounded scenario.

Note that in the present example, since Lmax is even,

the final target dynamics is dictated by the nonmaneuvering

model. This explains the smaller steady-state errors obtained

by all filters in comparison to the following example.

3) Markovian Case: In this case, the states are generated

according to Markovian dynamics without bounding the num-

ber of transitions. All other parameters are kept unchanged.

The BIMMPDA operates under mismatched conditions, under-

or over-estimating the number of switches. However, as shown

in Fig. 4, relatively to IMMPDA, the performance degradation

is graceful and the filter does not diverge.

4) Track Loss Rate: In this final experiment we record the

percentage of the lost tracks, according to the criterion de-

scribed in the beginning of this section, versus varying clutter

density, namely the average number of clutter measurements

in an interval of length �v . We consider Markov and bounded

cases and the results are presented in Fig. 5.

As expected, the nonadaptive PDA has the highest track loss

rate, rendering it useless in tracking a maneuvering target in

clutter. The BIMMPDA has a visible advantage over IMMPDA

for the bounded case. In the Markov case, on the other hand,

the difference between the two is not significant.

V. CONCLUSION

We considered the problem of tracking the state of a

hybrid system capable of performing a bounded number of

mode transitions in the presence of spurious, or cluttered

measurements. Due to the bound on the number of transitions,

the popular IMMPDA approach cannot be invoked in a direct

manner. Similarly to several related contributions, we showed

that a simple modification of the system’s mode results in

Markov switching dynamics thus allowing the utilization of

standard approaches. We showed in simulation that the pro-

posed scheme is, indeed, preferable over a direct use of IMM-

based methods in the sense that it attains lower estimation

errors and track loss rates. Moreover, the scheme is robust

to modeling assumptions and introduces only moderate gaps

relatively to IMMPDA when applied to a Markov scenario.

ACKNOWLEDGMENT

This research was supported by the Israeli Science Foun-

dation under grant No. 1608/11 and the Technion’s L. Kraus

Research Fund.

REFERENCES

[1] E.-K. Boukas and Z.-K. Liu, Deterministic and Stochastic Time-Delay

Systems. Boston: Birkhäuser, 2002.
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