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Abstract—We revisit the problem of tracking the state of a
hybrid system capable of performing a bounded number of mode
switches. In a previous paper we have addressed a version of the
problem where we have assumed the existence of a deterministic,
known hard bound on the number of mode transitions. In
addition, it was assumed that the system can possess only two
modes, e.g., the maneuvering and non-maneuvering regimes of a
tracked target. In the present paper we relax both assumptions:
we assume a soft, stochastic bound on the number of mode
transitions, and altogether remove the restriction on the number
of modes of the system (thus, e.g., the target can have multiple
different maneuvering modes, in addition to the non-maneuvering
one). Similarly to the case where the number of transition
was deterministically hard-bounded, the existence of the bound
renders the mode switching mechanism non-Markov. Thus, the
two formulations address similar, though not identical, problems,
that cannot be solved by direct application of standard algorithms
for hybrid systems. The novel solution approach is based on
transforming the non-Markovian mode switching mechanism
to an equivalent Markovian one, at the price of augmenting
the mode definition. A standard interacting multiple model
(IMM) filter is then applied to the transformed problem in a
straightforward manner. The performance of the new method is
demonstrated via a simulation study comprising three examples,
in which the new method is compared with 1) the filter for
hard-bounded mode transitions, and 2) a standard IMM filter
directly applied to the original problem. The study shows that
even when working outside its operating envelope, the new filter
closely approximates the best filter for the scenario.

Keywords: Multiple model estimation, target tracking,

hybrid systems, fault detection and isolation.

I. INTRODUCTION

Hybrid systems are systems characterized by a continuously

varying state vector and a discretely varying (switching) pa-

rameter vector, that takes values in some finite (but arbitrarily

large) set [1]. The switching parameter vector is usually

referred to as the system mode. The hybrid system framework

is frequently used to model multi-sensor fault-prone systems.

Typical examples are navigation systems using the signals of

global navigation satellite systems (that are prone to jamming

and spoofing) and inertial sensors (accelerometers and rate

gyros) that are, frequently, of low grade. Another typical

application of the hybrid system framework is in maneuvering

target tracking, where it is assumed that the target can maneu-

ver, at any point in time, in one of a finite set of maneuvers

(modes).

Because many hybrid systems are characterized by sto-

chastic state and/or parameter vector, much work has been

devoted to the simultaneous estimation of both state and

parameters in such systems. As is well known, the optimal,

in the mean squared error (MSE) sense, filtering algorithm

for hybrid systems requires infinite computation resources [2].

Therefore, a variety of suboptimal estimation techniques was

proposed [3]–[8]. In all of these cases, the switching parameter

vector was assumed to obey a Markovian transition law, and

the system was capable of performing an infinite number of

mode transitions.

When the number of mode switches permitted by the system

is finite, with probability one, the assumption that the para-

meter vector is Markovian no longer holds. Typical problems

featuring a bounded number of mode switches are encountered

in maneuvering target tracking, particularly during the end-

game phase of the interception scenario. Thus, [9] analyzes a

stochastic ballistic missile interception scenario. Because the

(incoming) blind theatre ballistic missile cannot implement an

optimal deterministic evasion strategy, it executes a random

bang-bang maneuver consisting of a maximal maneuver in

one direction, followed by a randomly-timed single switch to

a maximal maneuver in the opposite direction. In [10], optimal

differential games-based strategies are derived, and it is shown

that for both adversaries these strategies are of the bang-bang

type, with possibly a single direction change if the target has

non-minimum phase dynamics. In [11] two possible target

strategies are assumed: a constant maximum maneuver, and

a square wave maneuver with a small number (one or two) of

direction changes. Constant target maneuvers have also been

assumed in [12], [13] and a square wave maneuver with a

small number of switches (one or two) has been assumed in

[14].

In [15] we addressed the problem of tracking the state of

a hybrid system capable of performing a bounded number

of mode switches. A known hard bound on the number of

maneuvers was assumed. It was shown that the optimal track-

ing algorithm requires the implementation of a polynomially

growing number of primitive Kalman filters, thus calling for

the implementation of some suboptimal estimation algorithm.

On the other hand, the system’s switching dynamics is not

Markov because of the a priori bounded number of model



switches, thus ruling out the use of popular estimation schemes

such as the IMM [6] or GPB [2] algorithms. An efficient

estimation scheme, that uses a number of primitive Kalman

filters that is linear in the number of possible maneuvers, was

derived. The scheme resembles the IMM algorithm in that it

uses interaction between some of the primitive filters before

every estimation cycle, thus reducing the number of such filters

required by the optimal scheme.

In the present paper we take a conceptually different ap-

proach to handle a hybrid system capable of performing a

finite number of mode transitions. Instead of assuming a

deterministically known hard bound on the number of switches

between different system modes [15], we assume herein that

the system can, at any time, perform a terminating transition,

with a known probability (we define a transition at time t1
to be terminating if the system does not switch modes for

t > t1). This formulation renders the number of possible mode

transitions, though still unbounded, finite with probability one.

Somewhat resembling the formulation of [15], the novel

formulation adopted herein differs from it in several important

aspects. First, a soft bound is imposed on the number of

mode transitions, as opposed to the hard bound assumed

in [15]. Thus, one does not need to know in advance the

exact number of possible maneuvers, but only the stochastic

law governing the switching mechanism. Second, the non-

Markov transitions between different modes may be easily

transformed into Markovian ones by augmenting the mode set

with terminating modes (i.e., modes reachable by terminating

transitions). This permits direct utilization of the IMM and

related methods. The proposed approach also circumvents two

other shortcomings of the approach utilized in [15], in that

the number of possible maneuvering modes may be arbitrarily

large, and the system can start from any initial mode. In

contradistinction, in [15] the system is allowed to have a

binary mode system (e.g., maneuvering and non-maneuvering

modes, in maneuvering target tracking applications, or faulty

and nominal operational modes, in fault tolerant estimation

applications), and the algorithm cannot naturally handle arbi-

trary mode initiation (a special heuristic approach was used

there to alleviate this problem).

The remainder of this paper is organized as follows. In

Section II we formulate the problem at hand. In Section III we

describe the augmentation of the mode set and the resulting

Markov chain, and outline the resulting algorithm. The algo-

rithm is tested in simulation and compared to a standard IMM

and to the algorithm for hard-bounded number of maneuvers

in Section IV. Concluding remarks are made in Section V.

II. PROBLEM FORMULATION

Consider the following state space representation of a sto-

chastic dynamical system:

xk+1 = Akxk + wk (1)

zk = Hkxk + vk. (2)

Here {wk} and {vk} are mutually independent, zero-mean

white Gaussian process and measurement noise sequences

with covariances {Qk} and {Rk}, respectively. These driving

processes are assumed to be independent of the initial state x0,

that is assumed to be Gaussian with mean x̄0 and covariance

P0.

The system (1)–(2) is specified by four matrix sequences

{Ak}, {Hk}, {Qk}, and {Rk}. At each time k the set

Mk , {Ak, Hk, Qk, Rk} comprises the mode of the system.

Different values of the mode correspond to, for example, dif-

ferent flight regimes (e.g., maneuvering/non-maneuvering) of

an aircraft, or different sensor conditions (e.g., nominal/faulty).

The state xk may be estimated optimally in the mean-square

sense using a standard Kalman filter [16] provided the mode

sequence evolves in time in a deterministic manner, namely,

the exact value of Mk is known for each k.

We consider the case where at time k the mode Mk may

assume one of r possible values m1, . . . , mr. In addition,

the evolution of the sequence {Mk} does not occur in

a deterministic manner. Instead, we consider the following

stochastic switching mechanism.

Let {Nk} be a Bernoulli Markov chain with the following

transition probability matrix

P =

(

p0 1 − p0

0 1

)

, (3)

and P {N0 = 0} = 1. Thus, the process {Nk} performs a

single transition from state 0 to state 1, and remains there

forever w.p. 1. Using the transition behavior of {Nk}, the

stochastic mode switching mechanism of the sequence {Mk}
is captured by the following conditional probability:

P {Mk = mj | Mk−1 = mi, Nk = α,Mk−2, Nk−1, . . .}

=

{

pij , α = 0

δij , α = 1
, i, j ∈ {1, . . . , r} , k = 1, 2, . . .

(4)

where {pij , i, j ∈ {1, . . . , r}} are known probabilities and δij

is Kronecker’s delta.

Equations (1), (2) and (4) define a hybrid stochastic system,

as the continuous uncertainty associated with the state vector

xk is accompanied by a discretely varying uncertainty asso-

ciated with the (discrete) random mode transition law. This

system is not a standard Markov-Jump Linear System (MJLS),

because the mode transition law is Markov only given Nk, as

formally stated in the following lemma.

Lemma 1. The stochastic process {Mk}
∞
k=0

described by the

transition dynamics of Eq. (4) is not Markov.

Proof: We prove the lemma by a counterexample. Let

r = 2 and assume p12 = p21 = 1. Then,

P {Mk+1 = m1 | Mk = m1,Mk−1 = m1 }

= P {Mk+1 = m1 | Mk = m1, Nk+1 = 1}

= 1. (5)



On the other hand,

P {Mk+1 = m1 | Mk = m1 }

= P {Mk+1 = m1 | Mk = m1, Nk+1 = 1}

× P {Nk+1 = 1 | Mk = m1 }

+ P {Mk+1 = m1 | Mk = m1, Nk+1 = 0}

× P {Nk+1 = 0 | Mk = m1 }

= P {Nk+1 = 1 | Mk = m1 }

6= 1. (6)

Lemma 1 provides the reason for the fact that the IMM

algorithm and related methods cannot be applied in a straight-

forward manner to the problem at hand. The IMM algorithm

assumes that modes switch according to a Markov law, with

transition probabilities that are stated in a known transition

probability matrix (TPM). In the present case, since the mode

switching process is not Markov, applying the IMM and

related algorithms can only be done in an approximate manner

by defining a pseudo transition probability matrix that aims at

capturing the main switching characteristics of the process in

some approximate sense.

Our goal in the present work is to obtain an estimation algo-

rithm, having moderate computational resource requirements,

that is capable of tracking the state of a hybrid system that

may perform a finite number of mode transitions that follow

the transition law of Eqs. (3) and (4).

III. FILTER DERIVATION

In this section we describe the proposed method for state

estimation in hybrid systems with modes evolving according

to (4). The main idea is to transform the system’s non-

Markovian mode set into an equivalent one, governed by a

Markovian switching law. This, then, permits a straightforward

utilization of a standard IMM algorithm on the equivalent

Markovian mode set. Thus, the exposition of the new method

essentially reduces to deriving the mode set transformation.

For completeness, nevertheless, we first outline the principles

and mode of operation of the IMM filtering algorithm.

A. Background on IMM

The IMM filter assumes that the mode sequence {Mk} con-

stitutes a Markov chain on a finite state space {m1, . . . , mr}
with known transition probability matrix (TPM) Pr×r = (pij).
The main idea underlying the IMM algorithm is to maintain a

bank of primitive Kalman filters, each matched to a different

model in the given model set. At step k of the algorithm, the

j-th filter produces a local estimate x̂j(k) with an associated

error covariance Pj(k) using its initial estimate x̂0
j(k−1) and

the associated covariance P 0
j (k−1), which are generated exter-

nally, and the current measurement zk, which gets processed

by all KFs in the bank. In addition, each filter produces a

current value of its own (model-matched) likelihood function

Λj(k). The key element of the IMM scheme is the interaction

block that generates, using all local estimates, covariances,

and likelihoods from the previous cycle, individual initial

conditions for each of the primitive filters in the bank. The

steps of the algorithm are summarized as follows.

a) Mixing Probabilities: For i, j = 1, . . . , r compute

µi|j(k − 1) , P {Mk−1 = mi | Mk = mj , Zk−1 }

=
1

cj

pijµi(k − 1), (7)

where cj is a normalizing constant and µi(k) ,

P {Mk = mi | Zk }.

b) Mixing Step: For j = 1, . . . , r compute the initial

state estimate for the filter matched to mj

x̂0
j(k − 1) =

r
∑

i=1

x̂i(k − 1)µi|j(k − 1) (8)

and the corresponding covariances.

c) Mode-Matched Filtering: For j = 1, . . . , r, using (8)

and the corresponding covariance compute the mode-matched

estimate x̂j(k) and Pj(k) as well as the likelihood Λj(k)
which is approximated as Gaussian

Λj(k) = N (zk; ẑj(k), Sj(k)), (9)

where ẑj(k) and Sj(k) are the predicted measurement and

innovation covariance computed by the j-th filter using the

initial conditions (8).

d) Mode Probability Update: For j = 1, . . . , r

µj(k) =
1

c
Λj(k)

r
∑

i=1

pijµi(k − 1), (10)

where c is a normalization factor.

e) Output Computation: The algorithm output at time k
is obtained as a fused version of the local estimates:

x̂(k) =

r
∑

j=1

x̂j(k)µj(k). (11)

The associated covariance is computed in a similar manner.

B. Mode Set Transformation

We have already observed that the system’s natural mode

sequence, {M(k)}, is not a Markov process. However, the

joint sequence {M(k), Nk} is Markov, as the following

lemma states.

Lemma 2. The joint sequence {M(k), Nk}, with {Nk}
defined in (3), is Markov with transition probability matrix

having the following entries

P {Mk+1 = mj , Nk+1 = α | Mk = mi, Nk = β }

=



















pijp0, α = 0, β = 0

δij(1 − p0), α = 1, β = 0

0, α = 0, β = 1

δij , α = 1, β = 1

. (12)

Proof: Rewrite the distribution of the supermode at time

k + 1 conditioned on the entire history as in (13), where the



P {Mk+1 = mj , Nk+1 = α | Mk = mi, Nk = β,Mk−1 = mi1 , Nk−1 = β1, . . .}

= P {Mk+1 = mj | Nk+1 = α,Mk = mi, Nk = β,Mk−1 = mi1 , Nk−1 = β1, . . .}

× P {Nk+1 = α | Mk = mi, Nk = β,Mk−1 = mi1 , Nk−1 = β1, . . .}

= P {Mk+1 = mj | Nk+1 = α,Mk = mi }P {Nk+1 = α | Mk = mi, Nk = β } (13)

second transition follows from the distribution of the mode

sequence {Mk} and the auxiliary Markov chain {Nk}. The

right hand side of (13) depends on mi, mj , α, and β, rendering

the joint sequence {M(k), Nk} Markov. The calculation of the

TPM (12) is straightforward.

Equipped with Lemma 2 we construct an augmented mode

set by defining a supermode as the pair {M(k), Nk}. Tran-

sitions between different supermodes occur according to a

Markovian dynamics, with TPM calculated in (12). Clearly,

the number of modes in the augmented set is twice the original

number of modes. This duplication is the cost of transforming

the non-Markovian transition dynamics into an equivalent

Markovian one.

Example 1. To illustrate the structure of the augmented

Markov chain consider again the case of r = 2. The state

transition diagram depicted in Fig. 1 captures the transition

dynamics of the augmented process. Notice that essentially

the same set of primitive Kalman filters will be used for states

corresponding to N = 0 and N = 1. This is obvious, since

top and bottom states in Fig. 1 do not differ in their dynamical

model, but rather by the fact that no more mode transitions

will occur for N = 1.

m2, N = 0

m1, N = 1 m2, N = 1

m1, N = 0

p12p0

p21p0

p11p0
p22p0

1

1− p0

1

1− p0

Figure 1: State transition diagram of the Markov chain for the

augmented mode set of Example 1.

C. Discussion: Soft vs Hard Bounds on the Number of Mode

Transitions

The proposed algorithm is closely related to the filter

devised in [15], that tackles the problem of tracking a maneu-

vering target with a deterministically known hard bound on the

number of possible maneuvers (mode transitions). Obviously,

the dissimilarities between the two different problem formu-

lations imply corresponding differences between the resulting

estimation algorithms. We highlight here two such differences,

that constitute two clear advantages of the novel formulation

introduced herein over the one presented in [15].

The first advantage stems from the fact that the present

formulation naturally and straightforwardly adapts to systems

with an arbitrary number of dynamical models, corresponding

to, e.g., different maneuvering regimes. In clear contradistinc-

tion, the approach of [15] can only handle the case of a system

possessing just two dynamical models, corresponding to, e.g.,

the maneuvering and non-maneuvering states of the system.

The obvious enhanced flexibility of the present approach is

a direct consequence of using the IMM algorithm on the

augmented Markovian model set, as the IMM algorithm can

handle a model set of arbitrary size.

The second difference between the two approaches has

to do with the system’s mode initialization. The approach

of [15] makes a rather restrictive assumption on the initial

mode of the system, by constraining it to be deterministically

known. Although several methods are proposed there to relax

this assumption, they are either ad-hoc, or require unjusti-

fied increase in the method’s computational complexity. The

current algorithm, on the other hand, inherits again from the

IMM algorithm its elegant treatment of the unknown initial

conditions, by setting a prior probability distribution on the

set of possible initial modes.

IV. SIMULATION STUDY

In this section we test the performance of the proposed

algorithm and compare it with that of two existing algorithms:

1) the method for hard-bounded number of maneuvers, pro-

posed in [15], and 2) the state-of-the-art IMM filter, adapted

in an ad-hoc manner to the problem at hand. We first describe

the experimental setup, consisting of the models m1 and m2,

and the measurement generation model. We then present three

examples, differing in their mode evolution mechanisms. In

the first example, the mode sequence evolves according to

the TPM of (12). In the second example, the mode sequence

evolution follows the problem setting of the filter for hard-

bounded number of maneuvers. Finally, we test the algorithm

in a Markovian scenario, where the number of mode transitions

is unbounded.

Simulation Setup

We consider the following state equation

xk+1 = Akxk + wk, (14)

describing the dynamics of a maneuvering target, where the

state vector xk = [pk vk ak]T comprises the target’s position,

velocity, and acceleration, and cov(wk) = Qk.



At time k, the pair {Ak, Qk} may assume one of two values,

m1 =
{

A1, Q1
}

or m2 =
{

A2, Q2
}

. In the (nominal) regime

m1, the system obeys the dynamics of the discrete white noise

acceleration (DWNA) model [17], specified by the following

matrices:

A1 =





1 T 0
0 1 0
0 0 0



 , Q1 =





T 4/4 T 3/2 0
T 3/2 T 2 0

0 0 0



 σ2
w1

,

(15)

where σ2
w1

is some nominal process noise intensity. In the (ab-

normal) regime, m2, the corresponding model is chosen to be

the discrete Wiener process acceleration (DWPA) model [17],

specified by the following matrices:

A2 =





1 T T 2/2
0 1 T
0 0 1



 , Q2 =





T 4/4 T 3/2 T 2/2
T 3/2 T 2 T
T 2/2 T T



 σ2
w2

,

(16)

where σ2
w2

is the abnormal process noise intensity.

The measurements are generated according to

zk = Hkxk + vk, (17)

where, irrespective of the current motion regime, Hk = [1 0 0],
and {vk} is a zero mean white Gaussian sequence with

(constant) covariance Rk = σ2
v .

Notice that, in the present case, at time k, the mode Mk =
{Ak, Hk, Qk, Rk}, defined in Section II, has a deterministic

part, {Hk, Rk}, and a stochastic one {Ak, Qk}. Thus, for

the sake of brevity, we shall refer to the subset {Ak, Qk}
as the actual mode. The stochastic transition law between the

possible mode values, m1 and m2, is described in the sequel.

In all examples below the following common parameters

were used: σw1
= 0.3 m/s2, σw2

= 6 m/s2, σv = 140 m,

T = 10 s. These parameters correspond to a maneuvering

index λ = σwT 2/σv of about 0.2 for the nonmaneuvering

regime, and about 4.2 for the maneuvering one, meaning that

the problem cannot be solved to a satisfactory level of accuracy

using a single, non-adaptive KF (see, e.g., the discussion

in [18]) and the use of adaptive filters of the multiple model

variety is inevitable.

In addition, in all examples below, the initial state is

x0 = [0 0 0] and P0 is an all-zero matrix. Each filter is

initialized in a perfect manner and the inial model is set to

be the nonmaneuvering one.

Performance Evaluation

In all experiments in the sequel we generate a sequence of

N = 200 state vectors using, at each time, one of the models

m1 or m2 defined in the previous subsection. We use different

transition mechanisms for generating transitions between the

two modes.

In all cases we compare the performance of the proposed

filter, termed here Soft Bound Filter (SBF), the filter of [15]

for hard-bounded number of maneuvers, termed Hard Bound

Filter (HBF), and a standard IMM adapted in an ad-hoc (yet

reasonable) manner to the problem at hand, termed here A-

H/IMM. In addition, we generate a “genie” Kalman filter,

that possesses perfect information on the mode transitions

times. The latter, ideal (but non-realistic), filter serves as

an overall performance bound, indicating for each of the

compared algorithms how far is it from the (theoretical and

unachievable) optimal performance.

Three experiments are presented. In the first one, transitions

are generated according to the TPM of the proposed filter

defined in (12). In the second experiment, we generate the

transitions according to the model assumed by the filter

for hard-bounded number of maneuvers of [15]. Finally, we

generate a random scenario according to a standard Markovian

dynamics. We elaborate on each of the experiments next.

Example 1: In this experiment the transitions between m1

and m2 are generated according to the TPM of (12) with

p0 = 0.98 and p11 = p22 = 0.92, (18)

meaning that the expected time until the terminal transition

is 1

1−p0

= 50, the expected time between transitions (before

the terminal transition) is 1

1−p11

= 12.5, and the expected

number of transitions (before the terminal transition is made)

is 50

12.5
= 4.

To make a fair comparison, we set the maximal number

of transitions for the hard-bounded algorithm to 4, and the

probability for a mode switch to 0.08. Likewise, the IMM

algorithm comprises two models, with ( 0.92 0.08
0.08 0.92 ) serving as

the transition probability matrix.

The corresponding squared position and velocity errors of

all three algorithms, averaged over 20, 000 independent Monte

Carlo runs, are presented in Fig. 2.

Not surprisingly, the proposed filter attains the best perfor-

mance, almost coinciding with the “genie” KF in the second

half of the time interval. Indeed, since, on average, the system

is allowed to perform 4 transitions, after the corresponding

time these are exhausted and a single model is the true one

until the end of the scenario. Knowing this fact, the proposed

filter generates its estimates using the correct model, thus

attaining nearly optimal performance. The filter for hard-

bounded number of transitions operates under a mismatched

model regime, since the number of transition is 4 on average,

whereas the true number may be larger or smaller. Thus, it

is not surprising that its performance is inferior to the that of

the SBF algorithm. However, since at the end the transitions

are exhausted, with significant probability the HBF algorithm

eventually follows the correct model, which results in good

estimates. This explains the fact that in the second half of the

interval the HBF attains slightly better performance than the

ad hoc IMM filter, which, assuming Markovian transitions,

operates here in a mismatched model regime.

Example 2: In this experiment the transitions between m1

and m2 are generated according to the modeling mechanism

underlying the HBF algorithm, such that the system may

perform exactly 4 mode transitions with probability 0.08 for

a switch between models. The TPM of the proposed filter, as

well as that of the ad hoc IMM filter, remain unchanged. The
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Figure 2: Squared position and velocity estimation errors of Example 1.
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Figure 3: Squared position and velocity estimation errors of Example 2.

corresponding squared position and velocity errors of all the

algorithms, averaged over 20, 000 independent Monte Carlo

runs, are presented in Fig. 3.

Operating under nominal conditions, the HBF algorithm

attains superior performance, coinciding with the genie KF,

in the second half of the interval, after all 4 transitions have

been exhausted. Remarkably, the SBF algorithm performs only

slightly worse than the HBF algorithm, though operating in

non-nominal conditions. Specifically, the two filters nearly

coincide at the beginning, before the maximum number of

transitions has been performed (since the transition dynamics

then looks the same for both), and towards the end, when both

filters follow the true model. The ad hoc IMM filter operates

with acceptable accuracy (relatively to HBF and SBF) as long

as the system alternates between m1 and m2, since these alter-

nations resemble then Markovian transitions, but, relatively to

these two filters, its performance degrades significantly after

the system follows a constant model (approximately after 50
time steps, which is the mean time for performing 4 mode

transitions). The poor performance of the ad hoc IMM filter

is explained by the fact that the filter is not aware of the

fact that, after the hard bound on mode transitions has been

achieved, no more transitions can occur; therefore, it maintains

a mismatched primitive KF, thus increasing the overall MSE.

Note that in the present example, since rmax is even,

the final target dynamics is dictated by the nonmaneuvering



model. This explains the smaller steady-state errors obtained

by all filters in comparison to the previous and the following

examples.

Example 3: In the final example we test all algorithms in a

true Markovian scenario, such that the underlying assumptions

of both HBF and SBF do not hold. We generate a random

scenario using the TPM of the IMM filter, such that transitions

occur with probability 0.08. As in the previous cases, the HBF

algorithm assumes that there are 4 possible transitions, and

the SBF algorithm assumes that the terminal transition would

occur within 50 time units on average. The corresponding

squared position and velocity errors of all the algorithms,

averaged over 20, 000 independent Monte Carlo runs, are

presented in Fig. 4.

As could be expected, the ad hoc IMM filter attains the best

performance, as it operates under precisely-matched, nominal

conditions. Nevertheless, it is still significantly sub-optimal,

as is observed by comparing its performance with that of the

“genie” KF. The performance of the SBF algorithm appears

to be robust, being only slightly inferior to that of the IMM.

Interestingly, the HBF algorithm is much more sensitive to

modeling errors, and develops significant errors after 50 time

steps, since after that time, on average, unmodeled transitions

occur. Notice that all filters perform equally well before

k = 50. This is true because before 4 transitions have been

performed, violations in the modeling assumptions cannot be

sensed. This observation does not hold for Example 1, since

there the terminating transition may occur after more or less

than 4 transitions. Thus the SBF becomes superior before

k = 50.

V. CONCLUSIONS

We have revisited the problem of tracking the state of a

hybrid system characterized by a bounded number of mode

transitions. Contrary to a previously addressed version of the

problem, where the bound on the number of mode transitions

was assumed to be deterministically known, in the present

formulation we assume a soft, stochastic bound, permitting

an unlimited number of mode transitions yet rendering this

number finite with probability 1. The new formulation leaves

intact the major problem addressed also in the previous

formulation, in that, given the bound (whether deterministic or

stochastic), the mode switching mechanism is non-Markovian.

This precludes the use of state-of-the-art estimators devised for

hybrid systems with Markovian mode sequences, such as those

belonging to the GPB variety or the interacting multiple model

(IMM) algorithm. The solution approach, adopted herein, is

based on a novel redefinition of the system mode, leading to a

more complex modal state space, but rendering the augmented

mode sequence Markov. A standard IMM algorithm is then ap-

plied straightforwardly to the transformed problem, to yield a

sub-optimal solution to the original problem with performance

comparable to that of an IMM filter when applied to a Markov

hybrid system.

The new formulation enjoys two advantages over the hard-

bound version of the problem. First, the number of modes

the system is permitted to possess is unlimited; in the hard-

bound version the system could only possess two modes,

e.g., nominal and anomalous. Second, whereas in the hard-

bound formulation the system was assumed to determinis-

tically start from a known mode, the present formulation

removes this assumption and naturally addresses stochastic

mode initialization (some solutions were proposed to alleviate

this limitation in the hard-bound formulation, but these either

were ad hoc or were associated with an unreasonable increase

in computational complexity).

A simulation study demonstrates the performance of the

new filter in three examples, comparing it with the filter for

hard-bounded number of mode transitions and a standard IMM

filter applied to the original (non-Markovian) system. It is

shown that when applied to a system with a soft bound on the

number of mode transitions, the new filter outperforms both

alternatives and reaches almost optimal performance. Even

when a hard bound is put on the number of transitions, the

new algorithm performs nearly as good as the filter devised

for hard-bounded number of mode switches. When the filters

are applied to a system with truly Markov (unbounded) mode

transitions, the new filter’s performance closely approximates

the performance of the IMM filter, and clearly outperforms the

filter devised for a hard-bounded number of mode switches.
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Figure 4: Squared position and velocity estimation errors of Example 3.
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