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Partially Linear Estimation With Application to
Sparse Signal Recovery From Measurement Pairs
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Abstract—We address the problem of estimating a random
vector from two sets of measurements and , such that the
estimator is linear in . We show that the partially linear min-
imum mean-square error (PLMMSE) estimator does not require
knowing the joint distribution of and in full, but rather only
its second-order moments. This renders it of potential interest in
various applications. We further show that the PLMMSE method
is minimax-optimal among all estimators that solely depend on the
second-order statistics of and .We demonstrate our approach
in the context of recovering a signal, which is sparse in a unitary
dictionary, from noisy observations of it and of a filtered version.
We show that in this setting PLMMSE estimation has a clear
computational advantage, while its performance is comparable to
state-of-the-art algorithms. We apply our approach both in static
and in dynamic estimation applications. In the former category,
we treat the problem of image enhancement from blurred/noisy
image pairs. We show that PLMMSE estimation performs only
slightly worse than state-of-the art algorithms, while running an
order of magnitude faster. In the dynamic setting, we provide
a recursive implementation of the estimator and demonstrate
its utility in tracking maneuvering targets from position and
acceleration measurements.

Index Terms—Bayesian estimation, deblurring, denoising, min-
imum mean-square error, target tracking.

I. INTRODUCTION

B AYESIAN estimation is concerned with the prediction of
a random quantity based on a set of observations ,

which are statistically related to . It is well known that the
estimator minimizing the mean-square error (MSE) is given by
the conditional expectation . There are various
scenarios, however, in which the minimal MSE (MMSE) esti-
mator cannot be used. This can either be due to implementation
constraints, because of the fact that no closed form expression
for exists, or due to lack of complete knowledge of the
joint distribution of and . In these cases, one often resorts
to linear estimation. The appeal of the linear MMSE (LMMSE)
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estimator is rooted in the fact that it possesses an easily imple-
mentable closed form expression, whichmerely requires knowl-
edge of the joint first- and second-order moments of and .
For example, the amount of computation required for cal-

culating the MMSE estimate of a jump-Markov Gaussian
random process from its noisy version grows exponentially
in time [1]. By contrast, the LMMSE estimator in this setting
possesses a simple recursive implementation, similar to the
Kalman filter [2]. A similar problem arises in the area of
sparse representations, in which the use of Bernoulli–Gaussian
and of Laplacian priors is very common. The complexity of
calculating the MMSE estimator under the former prior is
exponential in the vector’s dimension, calling for approximate
solutions [3], [4]. The MMSE estimator under the latter prior
does not possess a closed form expression [5], which has
motivated use of alternative estimation strategies such as the
maximum a posteriori (MAP) method.
In practical situations, the reasons for not using theMMSE es-

timator may only apply to a subset of themeasurements. In these
cases, it may be desirable to construct an estimator that is linear
in part of the measurements and nonlinear in the rest. Partially
linear estimation was studied in the statistical literature in the
context of regression [6]. In this line of research, it is assumed
that the conditional expectation
is linear in . The goal, then, is to approximate from a
set of examples drawn independently from the joint
distribution of and . In this paper, our goal is to de-
rive the separable partially linear MMSE (PLMMSE) estimator.
Namely, we do not make any assumptions on the structure of the
MMSE estimate , but rather look for the estimator
that minimizes the MSE among all functions of the form

.
We show that in certain sparse approximation scenarios, the

PLMMSE solution may be computed much more efficiently
than the MMSE estimator. We demonstrate the usefulness of
the sparse PLMMSE both in static and in dynamic estimation
settings. In the static case, we apply our method to the problem
of image deblurring from blurred/noisy image pairs [7]. Here,
we show that PLMMSE estimation performs only slightly worse
than state-of-the art methods, but is much faster. In the dynamic
regime, we provide a recursive implementation of the PLMMSE
solution and demonstrate its usefulness in tracking a maneu-
vering target from position and acceleration measurements. We
show the advantage of PLMMSE filtering over state-of-the-art
algorithms when the measurements are prone to faults or con-
tain outliers.
The paper is organized as follows. In Section II, we present

the PLMMSE estimator and discuss some of its properties. In
Section III, we show that the PLMMSE method is optimal in
a minimax sense among all estimators that solely rely on the

1053-587X/$31.00 © 2012 IEEE



2126 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 5, MAY 2012

second-order statistics of and . In Section IV, we derive
the PLMMSE estimator for recovering a signal, sparse in a uni-
tary dictionary, from a pair of observations, one blurred and one
noisy. We apply our method to the problem of image enhance-
ment from blurred/noisy measurement pairs in Section V. In
Section VI, we consider PLMMSE estimation for tracking ma-
neuvering targets.

II. PARTIALLY LINEAR ESTIMATION

We denote random variables (RVs) by capital letters. The
mean of an RV is denoted and the auto-covariance
matrix of is denoted

. Similarly, stands for the cross-covariance matrix
of two RVs and .

The joint cumulative distribution function of and is written
as , where the inequalities are
elementwise. By definition, the marginal distribution of is

. In our setting, is the quantity to be es-
timated and , and are two sets of measurements thereof. The
RVs and take values in and , respectively.
The MSE of an estimator of is defined as .
The pseudoinverse of a matrix is denoted by .
We begin by considering the most general form of a partially

linear estimator of based on and , which is given by

(1)

Here, is a matrix-valued function and is a vector-
valued function, so that the realization of is used to choose
one of a family of linear estimators of based on .
Theorem 1: Consider estimators of having the form (1),

for some (Borel measurable) functions and
. Then the estimator minimizing the MSE within

this class is given by

(2)

where de-
notes the cross-covariance of and given and

is the autocovariance of
given .
Proof: See Appendix A.

Note that (2) is indeed of the form of (1) with

and

As can be seen, although theMMSE solution among the class of
estimators (1) has a simple form, it requires knowing the condi-
tional covariance , which limits its applicability. In par-
ticular, this solution cannot be applied in cases where we only
know the unconditional covariance .
To relax this restriction, we next consider separable partially

linear estimation. Namely, we seek to minimize theMSE among
all functions of the form

(3)

Fig. 1. The statistical knowledge required for computing the PLMMSE esti-
mator (4).

where is a deterministic matrix and is a vector-valued
function.
Theorem 2: Consider estimators of having the form (3),

for some matrix and (Borel measurable) function
. Then, the estimator minimizing the MSE within

this class is given by

(4)

where

(5)

Proof: See Appendix B.
Note again that (4) is of the form of (3) with

and . The major advan-
tage of this solution with respect to the nonseparable estimator
(1) is that the only required knowledge regarding the statistical
relation between and is of second-order type. Specifically,
as we show in Appendix C,

(6)

where we denoted and .
Therefore, all we need to know in order to be able to compute
the separable PLMMSE estimator (4) is the covariance matrix

, the conditional expectation and the marginal
joint cumulative distribution function of and . This
is illustrated in Fig. 1. In fact, as we show in Section III, in
addition to being optimal among all partially linear methods,
the PLMMSE solution (4) is also optimal in a minimax sense
among all estimation strategies that rely solely on the quantities
appearing in Fig. 1.
The intuition behind (4) is similar to that arising in dynamic

estimation schemes, such as the Kalman filter. Specifically, we
begin by constructing the estimate of based on the
measurements , which minimizes the MSE among all func-
tions of . Next, we would like to account for . However,
since has already been accounted for, we first need to sub-
tract from all variations caused by . This is done by con-
structing the RV of (5), which can be thought of as the inno-
vation associated with the measurements with respect to the
initial estimate . Finally, since we want an estimate that
is partially linear in , we update our initial estimate with the
LMMSE estimate of based on .
Before discussing the minimax-optimality of the PLMMSE

estimator, it is insightful to examine several special cases, as
we do next.
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a) Independent Measurements: Consider first the case in
which and are statistically independent. In this setting,

, and therefore the PLMMSE estimator (4) becomes

(7)

where denotes the LMMSE estimate of from . Thus,
in this setting, the PLMMSE estimate reduces to a linear com-
bination of the LMMSE estimate and the MMSE estimate

. The need for subtracting the mean of arises because
both and account for it. Indeed, note that

, so that without subtraction of , the estimate
would be biased, with a mean of .
b) Is Independent of and : Suppose next that both
and are statistically independent of . Thus, in addition to

the fact that , we also have . Con-
sequently, the PLMMSE solution (4) reduces to the LMMSE
estimate of given :

(8)

c) Is Uncorrelated With and Independent of : Con-
sider the situation in which and are statistically independent
and and are uncorrelated. Then, , and also

so that (4) becomes the MMSE estimate of
from :

(9)

d) Is Independent of : In situations where and are
statistically independent, one may be tempted to conclude that
the PLMMSE estimator should not be a function of . However,
this is not necessarily the case. Specifically, although the second
term in (4) becomes the constant , it is easily
verified that , so that the first term in (4) does not
vanish unless is uncorrelated with . As a consequence, the
PLMMSE estimator can be written as

(10)

in which the last term is a function of . This should come as
no surprise, however, because if, for instance, ,
then the optimal estimate is , even if and are
independent. This solution is clearly a function of .

e) Is Uncorrelated With : A similar phenomenon
occurs when and are uncorrelated. Indeed in this case,

, so that the first term in (4) does not

vanish unless is uncorrelated with . Consequently,
the estimator (4) can be expressed as

(11)

in which the first term is clearly a linear function of .
f) Additive Noise: Perhaps the most widely studied mea-

surement model corresponds to linear distortion and additive
noise. Specifically, suppose that

(12)

where and are given matrices and ,
and are zero-mean RVs such that and are mutually
independent. As we show in Section IV, there are situations
in which the distribution of is such that the complexity of
computing the MMSE estimator is huge, whereas
the complexity of computing is modest. In these cases,
one may prefer to resort to PLMMSE estimation. This method
does not correspond to a convex combination of the LMMSE
estimate of from and the MMSE estimate of from
, as might be suspected. Indeed, in this situation,

and . Furthermore,
, so that

and . Consequently, from (6), the
PLMMSE estimator (4) becomes

(13)

where is the identity matrix and is given by

(14)

with . We see that, as opposed to a

convex combination of and , the PLMMSEmethod re-
duces to a combination of and . Furthermore, the weights
of this combination are matrices rather than scalars.
As a toy example demonstrating this, suppose that is a

scalar binary RV taking the values with equal probability,
that , and that and .
It is easily verified that in this case

(15)

where denotes the Gaussian density function with
mean and variance , evaluated at . Similarly,

(16)

where we used the facts that and
. The PLMMSE estimator (13), is therefore given by

(17)

where [see (14)]. Fig. 2

compares the MSE attained by the PLMMSE method to that of
the naive convex-combination estimator

(18)

for all . As can be seen, when , the MMSE
of the PLMMSE method is roughly 12% lower than the lowest
MSE of the naive estimator. This advantage becomes less sig-
nificant as and draw apart. As mentioned above, how-
ever, in multidimensional problems, the PLMMSEmethod uses
matrix weights rather than scalars, so that its potential for im-
provement over the naive estimator is yet greater.

III. PARTIAL KNOWLEDGE OF STATISTICAL RELATIONS

As discussed in Section II, one of the appealing properties of
the PLMMSE solution is that it does not require knowing the
entire joint distribution of and , but rather only its second-
order moments. However, the fact that the PLMMSE estimator
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Fig. 2. The MSE attained by of (17) and by of (18) as a function
of for several values of and . (a) . (b)

. (c) .

is merely determined by , and
does not yet imply that it is optimal among all methods that
rely solely on these quantities. The question of optimality of an
estimator with respect to partial knowledge regarding the joint
distribution of the signal and measurements was recently ad-
dressed in [8]. One of the notions of optimality considered there,
which we adopt here as well, follows from a worst-case per-
spective. Specifically, any estimator , may attain
high MSE under certain distributions consistent
with our knowledge and it may attain low MSE under other
such distributions. We consider an estimator minimax-optimal
if its worst-case MSE over the set of all feasible distributions
is minimal. For example, the LMMSE estimator attains the
minimal possible worst-case MSE over the set of distributions

with given first- and second-order moments [8].
In the next theorem, we show that the PLMMSE method is

optimal in the sense that its worst-case MSE over the set of

all distributions complying with the knowledge
appearing in Fig. 1 is minimal.
Theorem 3: Let be the set of probability distributions of

satisfying

(19)

where and are given matrices, is a given
function and is a given cumulative distribution
function. Then, among all estimators of based on and ,
the PLMMSE method (4) has the minimal worst-case MSE

(20)

over the set .
Proof: See Appendix D.

IV. PLMMSE ESTIMATION OF SPARSE VECTORS

We now demonstrate the usefulness of the PLMMSE esti-
mator in the context of sparse approximations. Specifically, con-
sider the situation in which is known to be sparsely repre-
sentable in a unitary dictionary in the sense that

(21)

for some RV that is sparse with high probability. More con-
cretely, we assume that the elements of are given by

(22)

where the RVs and are statistically independent,
and (or take small values) with high

probability. This assumption is very common in the sparse ap-
proximation literature. For example, in [9] and [10], the vari-
ables are assumed to follow a Gamma distribution. Here, we
assume, as in [3] and [4], a Bernoulli–Gaussian prior, meaning
that the RVs are binary, such that

with some and . In par-
ticular, setting and small corresponds to vectors
that are sparse with high probability.
Assume is observed through two linear systems, as in (12),

where is an arbitrary matrix, is an orthogonal matrix sat-
isfying for some constant , and and
are Gaussian RVs with and . A prac-
tical image enhancement scenario and a target tracking situation
corresponding to this setting are detailed in Sections V and VI,
respectively. This setting can be cast in the standard sparse ap-
proximation form as

(23)

It is well known [3] that the expression for the MMSE estimate
in this case generally comprises summands,

which correspond to all different possibilities of sparsity pat-
terns in . This renders computation of the MMSE estimate
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prohibitively expensive even for modest values of and con-
sequently various approaches have been devised to approxi-
mate this solution by a small number of terms (see, e.g., [3]
and [4] and references therein). For example, the fast Bayesian
matching pursuit (FBMP) algorithm developed in [3] employs
a search in the tree representing all sparsity patterns in order to
choose the terms participating in the approximation. We note
that FBMP, as well as other sparse recovery methods, can op-
erate with general measurement and dictionary matrices.
There are some special cases, however, in which the MMSE

estimate possesses a simple structure, which can be imple-
mented efficiently. As we show next, one such case is when
both the channel’s response and the dictionary over which
is sparse correspond to orthogonal matrices. As in our setting,
is unitary and is orthogonal, this implies that we can

efficiently compute the MMSE estimate of from .
Therefore, instead of resorting to schemes for approximating

, we can employ the PLMMSE estimator of based
on and , which possesses a closed form expression [see
(13)] in this situation. This technique is particularly effective
when the SNR of the observation is much worse than that of
, since the MMSE estimate in this case is close
to being partially linear in . Such a setting is demonstrated in
Section IV-C.

A. MMSE Estimate of a Sparse Signal in a Unitary Dictionary

In our setting

(24)

with of (22). Since and are orthogonal, they are invert-
ible, so that

(25)

carries the same information on as does, namely

(26)

Now, for every , we have that ,
where is distributed . Therefore,
the set is statistically independent of the pair
and consequently

(27)

Under the event with a fixed , the RVs
and are jointly normally distributed with mean zero, im-

plying that

(28)

Finally, using Bayes rule, the term reduces to

(29)

and, similarly, is given by

(30)

Substituting (30) and (28) into (27) leads to the following ob-
servation.
Theorem 4: The MMSE estimate of of (21) given of

(24) is

(31)

where , with

(32)

Therefore, if, for example, is a wavelet basis and
(so that ), then can be efficiently computed by
taking the wavelet transform of (multiplication by ), ap-
plying a scalar shrinkage function on each of the coefficients
(namely calculating for the th coefficient) and applying
the inverse wavelet transform (multiplication by ) on the re-
sult. Note that the shrinkage curve (32) is different than the
soft-threshold operation, originally proposed in [11]. The latter
can be obtained as the MAP solution with a Laplacian prior,
whereas our function corresponds to the MMSE solution with a
Gaussian mixture prior.

B. PLMMSE Estimate of a Sparse Signal

Equipped with a closed form expression for , we
can now obtain an expression for the PLMMSE estimator (13).
Specifically, we have that

(33)

where is a diagonal matrix with
. Similarly,

(34)

where is a diagonal matrix whose element is
. This is due to the fact that the elements of

are statistically independent and the fact that the function
operates elementwise on its argument. Therefore, the PLMMSE
estimator is given by (13) with of (31) and with the
matrix

(35)

Here,
. Observe that there is generally no closed form

expression for the scalars , rendering it necessary to compute
them numerically. Since each is the variance of a scalar RV,
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it can be computed very efficiently, either by approximating the
corresponding integral by a sum over a set of points on the real
line or byMonte Carlo simulation. In SectionV, we demonstrate
how this can be done in a practical scenario.
An important special case corresponds to the setting in which

, and for every . In this situation,
we also have that for every . Furthermore,

(36)

so that is simplified to

(37)

As can be seen, in this case does not involve multiplication
by or . Thus, if corresponds to a convolution opera-
tion, then also corresponds to a filter, which can be efficiently
applied in the Fourier domain.

C. Numerical Study

Wenow compare via simulations theMSE attained by to
that attained by and the approximation to
produced by the FBMPmethod. Since we generate the signal
andmeasurements and according to the assumedmodel, we
do not compare our method to other Bayesian approaches, such
as Bayesian compressive sensing (BSC) [9] and sparse Bayesian
learning (SBL) [10], which assume a different generativemodel.
Nevertheless, we note that a practical scenario, which deviates
from the assumptions of all these methods, was studied in [3]
and showed that the performance of FBMP is commonly better
than that of BSC and SBL. In terms of running time, FBMP is
typically an order of magnitude faster than SBL and roughly
twice as slow as BSC.
In our experiment was taken to be a

Hadamard matrix with normalized columns. The matrix
corresponded to (circular) convolution with the sequence

and was taken to be diagonal. To
comply with the assumption made in [3] that the columns of
the measurement matrix are normalized, we normalized the
columns of to be of norm 0.999 and set . We
set , and for every , so that was
truly sparse with high probability. Fig. 3 depicts the MSE of all
estimators as a function of the input SNR, which we define as

. As can be seen, the MSE of the PLMMSE
method is significantly lower then that of and and
is very close to that attained by the FBMP method. At low
SNR levels and low sparsity levels (high ) the performance
of the PLMMSE method is even slightly better than the FBMP
approach.
The average running time of the PLMMSE method was

7.7 ms for all tested values of . The average running times of
the FBMP method were 2.77, 5.53, and 8.65 seconds, respec-
tively, for , and . The ratio between
the computational cost of the two approaches, which was three
orders of magnitude in this experiment, becomes higher as
the dimension of is increased. At certain dimensions, such
as images of size 512 512 (in which case ), the
FBMP method becomes impractical to apply while PLMMSE
estimation can still be used very efficiently.

Fig. 3. The MSE attained by and the approximation of
produced by the FBMP method [3]. (a) . (b) .

(c) .

A word of caution is in place, however. In situations in which
the SNR of the measurement is roughly the same as that of
(or better), the FBMP method is advantageous in terms of

performance. Therefore in this regime, decision on the use of
PLMMSE estimation boils down to a performance-complexity
tradeoff.

V. APPLICATION TO IMAGE DEBLURRING WITH
BLURRED/NOISY IMAGE PAIRS

When taking photos in dim light using a hand-held camera,
there is a tradeoff between noise and motion blur, which can
be controlled by tuning the shutter speed. Indeed, when using a
long exposure time, the image typically comes out blurred due
to camera shake. On the other hand, with a short exposure time,
the image is very noisy. In [7], it was demonstrated how a high
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quality image can be constructed by properly processing two
images of the same scene, one blurred and one noisy.
We now show how the PLMMSE approach can be applied in

this setting to obtain plausible recoveries at a speed several or-
ders of magnitude faster than any other sparsity-based method.
In our setting and correspond, respectively, to the orig-
inal, blurred (and slightly noisy), and noisy images. Thus, the
measurement model is that described by (23), where corre-
sponds to spatial convolution with some blur kernel, ,
and and correspond to white Gaussian noise images with
small and large variances, respectively. We further assume that
the image is sparse in some orthogonal wavelet basis , such
that it can be written as in (21) and (22).
As we have seen, in this setting, the PLMMSE estimator

can be computed in two stages. In the first stage, we calculate
(namely, denoise the image ) by computing

the wavelet transform , applying the scalar shrinkage
function (32) on each wavelet coefficient, and taking the inverse
wavelet transform of the result. This stage requires knowledge
of the parameters and . To this end, we
assume that for all (a truly sparse image) and that
and are the same for wavelets coefficients at the same level.
In other words, all wavelet coefficients of the noisy image at
level correspond to independent draws from the Gaussian mix-
ture

(38)

Consequently, and can be estimated by expectation
maximization (EM). In our experiments, we assumed that is
known and thus did not estimate it.
In the second stage, the denoised image needs to be

combined with the blurred image using (13) with of (35).
As discussed in Section IV-B, this can be carried out very ef-
ficiently if and for all . For the sake of
efficiency,1 we therefore abandon the assumption that and

vary across wavelet levels and assume henceforth that all
wavelet coefficients are independent and identically distributed.
In this case, corresponds to the filter

(39)

where is the frequency response of the blur kernel. Conse-
quently, the final PLMMSE estimate corresponds to the inverse
Fourier transform of

(40)

where and denote the Fourier transforms of
and , respectively. In our experiment, we assumed that
the blur and noise variance are known. In practice,
they can be estimated from and , as proposed in [7]. This

1The exact solution involving (35) can be computed by using iterative tech-
niques for matrix inversion, in which each iteration comprises filtering opera-
tions and forward and inverse wavelet transforms. However, we found that in
most cases this approach leads to improvement of only 0.2–0.6 dB in PSNR and
is much more demanding computationally.

stage also requires knowing the scalars and
, which we estimate as

(41)

Fig. 4 demonstrates our approach on the 512 512 Gold-hill
image. In this experiment, the blur corresponded to a Gaussian
kernel with standard deviation 3.2. To model a situation in
which the noise in is due only to quantization errors, we
chose and . These parameters
correspond to a peak signal to noise ratio (PSNR) of 25.08 dB
for the blurred image and 15.07 dB for the noisy image.
We used the orthogonal Symlet wavelet of order 4 and em-

ployed 10 EM iterations to estimate and in each wavelet
level. The entire process takes 1.1 seconds on a Dual-Core
3 GHz computer with unoptimized Matlab code. We note that
our approach can be viewed as a smart combination of Wiener
filtering for image deblurring and wavelet thresholding for
image denoising, which are among the simplest and fastest
methods available. Consequently, the running time is at least an
order of magnitude faster than any other sparsity-based method,
including the Bayesian approaches FBMP [3], BCS [9], and
SBL [10] and fast minimization algorithms such as NESTA
[12], GPSR [13] and Bregman iterations [14]. As an example,
the authors of [3] reported that FBMP requires a runtime of
38 min to recover a 128 128 image from a few thousands of
measurements and that GPSR requires 2.7 min for the same
task. BCS [9] was reported to require 15 s for reconstructing a
512 512 image from a few thousands of samples.
As can be seen in Fig. 4, the quality of the recoveries corre-

sponding to the denoised image and deblurred image
is rather poor with respect to the state-of-the-art BM3D deb-
noising method [15] and BM3D debluring algorithm [16]. Nev-
ertheless, the quality of the joint estimate surpasses each of
these techniques alone. The residual deconvolution (RD) algo-
rithm2 proposed in [7] for joint debluring and denoising slightly
outperforms the PLMMSE method in terms of recovery error.
A quantitative comparison on several test images is provided

in Table I. This comparison shows that the PSNR attained by the
PLMMSEmethod is, on average, 0.3 dB higher than BM3D de-
bluring, 0.4 dB higher than BM3D denoising, and 0.8 dB lower
than RD. In terms of running times, however, our method is,
on average, 11 times faster than BM3D deblurring, 16 times
faster than BM3D denoising, and 18 times faster than RD. Note
that RD requires initialization with a denoised version of , for
which purpose we used the BM3D algorithm. Consequently, the
running time reported in the last column of Table I includes the
running time of the BM3D denoising method.

VI. APPLICATION TO MANEUVERING TARGET TRACKING

Next, we discuss PLMMSE estimation in the context of ma-
neuvering target tracking from multiple types of measurements.
In noncooperative scenarios, measurements may include range,
bearing, elevation, range rate (Doppler), and more [17]. In nav-
igation applications, measurements can comprise the signals

2In our setting, this method does not produce ringing effects and thus the
additional de-ringing stage proposed in [7] was not applied.
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Fig. 4. Debluring with a blurred/noisy image pair using PLMMSE estimation and RD [7]. (a) Blurred image (top left) and noisy image (bottom right).
(b) LMMSE-deblurred image (top left) and MMSE-denoised image (bottom-right). (c) BM3D-deblurred image (top left) and BM3D-denoised image
(bottom-right). (d) Original image . (e) PLMMSE estimate from and . (f) RD recovery from and .

TABLE I
PERFORMANCE OF DEBLURRING/DENOISING ON SEVERAL IMAGES. NUMBERS ON THE LEFT AND RIGHT OF THE

SLASH INDICATE, RESPECTIVELY, PSNR IN dB AND RUNNING TIME IN SECONDS

of global navigation satellite systems and inertial sensors (ac-
celerometers and rate gyros). For concreteness, we demonstrate
the utility of our approach in Section VI-C in tracking the po-
sition of a maneuvering target from position and acceleration
measurements. Such measurements are very common, as, for
instance, most modern cellular phones and tablet computers are
equipped with GPS receivers, measuring the location, and ac-
celerometers, measuring the acceleration of the device. Loca-
tion and acceleration observations have also been employed in
the past to aid autonomous navigation [18] and traffic moni-
toring [19].

A. The Tracking Problem

To model the tracking problem one usually defines a state
vector comprising the target kinematic data, which
evolves via the stochastic linear equation

(42)

Here, is a zero-mean white noise sequence satisfying
for all and and are known

deterministic matrices. For simplicity of exposition, we assume
that (modification to other initializations is trivial).
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A simple, yet popular, approach for modeling maneuvering tar-
gets is the dynamic multiple-model method [20] in which
follows a Gaussian mixture distribution. In this case, low vari-
ance noise represents nominal (nonmaneuvering) motion and
high variance noise represents abrupt maneuvers.
Suppose that two sets of measurements of the state are ob-

served, so that

(43)

where and are mutually independent
zero-mean white noise sequences satisfying
and , and and are given ma-
trices.
At the th time instant, the goal is to obtain an estimate

of based on the measurements and
. We would like our estimator to possess a recursive

structure such that is computed from the previous esti-
mate and the current measurements and
without needing to store the entire measurement history.
Unfortunately, the MMSE estimate generally does not admit

a recursive implementation in the multiple-model setting [21].
Therefore, an alternative in these situations, is employing the
LMMSE estimator, whose recursive implementation is given by
the Kalman filter. Another option is to use approximations of the
MMSE estimate, that can be computed recursively, such as the
interacting-multiple-model (IMM) filter [1]. However, the per-
formance of the latter tends to depend heavily on the assumption
that the measurement noises are Gaussian. When their actual
distribution is unknown, the performance of the IMM filter may
substantially deteriorate.
There are some situations, though, in which the MMSE esti-

mate can be calculated in an online manner. As shown below,
this happens, for example, when the state evolves according to
the white acceleration model [22] and acceleration measure-
ments are available. When supplied with two sets of measure-
ments, only one of which allowing recursive MMSE estimation,
it may be advantageous to use PLMMSE estimation rather than
approximate MMSE solutions. In this case, under some mild
conditions, the PLMMSE estimate can be updated recursively,
similarly to the Kalman filter. This approach allows, for ex-
ample, to track the position of a maneuvering target following
the white acceleration model from position and acceleration ob-
servations, such that the estimate is linear only in the position
measurements.B. Derivation of the PLMMSE Filter

Suppose that the distribution of and
is such that, for any

and that the RVs are
uncorrelated. As we discuss in the sequel, this implies that the
MMSE estimate can be computed recursively from

and . Our goal is to compute the PLMMSE
estimate of from and .
To obtain a recursive implementation, it is insightful to examine
first the batch PLMMSE solution. To this end, we define

...
...

...

...
...

...

(44)

Therewith, we have from (42) that

(45)

where

...
...

. . .
...

(46)

(47)

and

(48)

Therefore, as we have seen in (13), the batch PLMMSE estimate
of from and is given by

(49)

with the matrix of (35).
Noting that and taking into account

our assumption that
and the block lower-triangular structure of , we see that the
th element in the vector is given by

(50)

We have thus obtained a recursive computation of from
and .

Next, it remains to determine whether the operation of can
be implemented recursively. Before we do so, we recall that the
LMMSE estimate of from , which is given by

(51)

in this case, can be implemented recursively via the Kalman
filter. In our setting, and, due to the
assumption that , we have that

. Therefore, the matrix
of the PLMMSE estimate reduces from (14) to

(52)

This matrix is the same as that appearing in (51), except for the
noise variance which is multiplied here by . This
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implies that multiplication by corresponds to a Kalman filter
with higher observation noise.
The complete recursive PLMMSE implementation comprises

the following steps:
a) Initialization: .
b) Recursion: For perform the routine summa-
rized in Algorithm 1.

Algorithm 1: One Cycle of the Recursive PLMMSE

Input:

1: .
2: .
3: .
4: .
5: Update using via a Kalman
step:

6: .

Output:

C. Example: Tracking a Maneuvering Target From Position
and Acceleration Observations

A common way of describing target kinematics is via the
nearly-constant-velocity model, also known as the white accel-
eration model [22]. Focusing on one dimension for simplicity,
and denoting by the position of the target at time , the
state vector in this
model evolves according to (42) with

(53)

If the sampling interval is small, then, to close extent [22],
. The driving noise in this model corre-

sponds to the target’s acceleration.
In many applications [23], the target’s velocity changes grad-

ually most of the time apart from abrupt transients, which occur
every once in a while. This behavior can be described by let-
ting , where and

. If is much larger than and is
small then the mean time between consecutive large accelera-
tion events is large.
Suppose that we observe noisy measurements and
of the position and acceleration , respec-

tively. These measurements relate to the state vector via (43),
with and . Indeed, it is
easily verified that in this setting .
Consequently, for

with the function of

Fig. 5. Mean squared estimation errors of the position versus using the
PLMMSE, IMM and Kalman filters. (a) Gaussian position-measurement noise.
(b) Gaussian-mixture position-measurement noise.

(32). We estimate the state vector of (42) using the recursive
PLMMSE method and compare its performance with that
of a standard Kalman filter which provides, recursively, the
LMMSE estimate from the measurement sets and

, as well as with the IMM filter [1], which is known to
be extremely effective in multiple model estimation problems
[20].
We simulated a random sequence for

according to (42) initialized at
and driven by a process noise having, at each
time, a two-modal Gaussian mixture distribution, with

, and . The state position is ob-
served via a Gaussian measurement equation with
and the covariance of the Gaussian measurement noise of the
acceleration, , is swept from 1 to 15. The average squared
position errors are presented in Fig. 5(a). Outperformed by the
IMM, the PLMMSEmethod scores better than the Kalman filter
since it optimally utilizes the acceleration measurements. At
high values of , the errors of the Kalman- and PLMMSE-fil-
ters coincide, indicating that acceleration measurements do
not carry valuable information in addition to that carried by

.
In many practical scenarios, the distribution of the position

measurement noise is far from Gaussian (see [24] and refer-
ences therein). In Fig. 5(b), we present the average squared po-
sition errors obtained for a Gaussian mixture distribution of the
position noise having the same first- and second-order statis-
tics as before. Such a distribution may model occasional outlier
measurements or sensor faults [25]. None of the filters is sup-
plied with this information and only the first- and second-order
moments are provided to the algorithms. Utilizing the position
measurements in a linear manner, both Kalman and PLMMSE
keep the performance unchanged relative to the Gaussian case.
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By contrast, the IMM algorithm results in inferior performance.
This phenomenon is tightly related to the statement of The-
orem 3 claiming that for any estimator (the IMM, tuned for
Gaussian position noise, for example) there exist noise distri-
butions with given variance under which the PLMMSE method
attains smaller MSE.

VII. CONCLUSION

In this paper, we derived the PLMMSE estimator, which is
the method whose MSE is minimal among all functions that are
linear in . We showed that the PLMMSE solution depends
only on the joint second-order statistics of and , which
renders it applicable in a wide variety of situations. Further-
more, we showed that this estimator attains the lowest worst-
case MSE over the set of distributions whose joint second-order
moments of and are fixed. We demonstrated our approach
in the context of recovering a vector, which is sparse in a uni-
tary dictionary, from a pair of noisy measurements. In this set-
ting, the PLMMSE solution achieves an MSE very close to
that attained by iterative approximation strategies, such as the
FBMP method of [3], and is much cheaper computationally.
We applied our method to the problems of image enhancement
from blurred/noisy image pairs and maneuvering target tracking
from position and acceleration measurements. In both appli-
cations, we showed that PLMMSE estimation performs close
to state-of-the-art algorithms. In the image enhancement set-
ting, we showed that it can run much faster than competing ap-
proaches. In the context of target tracking, we demonstrated the
insensitivity of the solution to the distribution of the noise in .
This property provides robustness against sensor faults and out-
lier measurements, problems which are very common in target
tracking situations.

APPENDIX A
PROOF OF THEOREM 1

Using the smoothing property, the MSE of any estimator of
the form (1) is given by

(54)

Thus, for every specific value that can take, the optimal
choice of and is that minimizing the inner expecta-
tion. The solution to this minimization problem corresponds to
the LMMSE estimate of based on , under the joint distri-
bution of given , concluding the proof.

APPENDIX B
PROOF OF THEOREM 2

We start by noting that the set of RVs constituting candidate
estimates is a closed linear subspace within the space of finite-
second-order-moment RVs taking values in . Therefore, the
MMSE estimate within this subspace, which is the projection
of the RV onto , is the unique3 RV whose estimation error

is orthogonal to every RV of the form . To

3In an almost-sure sense.

demonstrate that of (4) indeed satisfies this property, note that
the inner product between and is given by

(55)

Substituting (4), the expectation within the second term be-
comes

(56)

Recall that is the estimation error incurred
in estimating from . Consequently, and are
uncorrelated with every function of and, in particular, with

, so that this expression vanishes. Similarly, substituting
(4) and expressing , the expectation within
the first summand in (55) becomes

(57)

Being a function of , the RV is uncorrelated with
and so that this expression can be reduced to

(58)

where we used the facts that , that

[26, Lemma 2] and that is uncorrelated with
(due to the same argument as above). This completes the proof.

APPENDIX C
DERIVATION OF (6)

By definition,

(59)

where and . Here, the fourth
equality is a result of the smoothing property and the last
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equality follows from the facts that and
. In a similar manner, it is easy to show that

(60)

Using (60) and the fact that is uncorrelated with
, we obtain

(61)

APPENDIX D
PROOF OF THEOREM 3

Let denote the MSE
incurred by an estimator of based on and , when the
joint distribution of and is . It is easily
verified that for all ,

(62)

with and .

Therefore, in particular, (62) is also the worst-caseMSE of
over . We next make use of the following lemma.
Lemma 1: There exists a distribution in the set of

distributions satisfying (19), under which the PLMMSE esti-
mate of based on and coincides with the MMSE esti-
mate .

Proof: See Appendix E.
Now, any estimator that is a function of and satisfies

(63)

where the first line follows from the fact that , the
third line is a result of the fact that the MMSE and PLMMSE
estimators coincide under , and the last line is due to the
fact that is constant as a function of over
. We have thus established that the worst-case MSE of any

estimator over is greater or equal to the worst-case MSE of
the PLMMSE solution over , proving that is minimax
optimal.

APPENDIX E
PROOF OF LEMMA 1

We prove the statement by construction. Let and be two
RVs distributed according to and denote

and . Let be a zero-mean RV, statistically
independent of the pair , whose covariance matrix is

(64)

It can be easily verified that this is the covariance matrix of the
estimation error of the LMMSE estimate of
based on . Therefore, this is a valid covariance
matrix. Consider the RV4

(65)

We will show that the so constructed and satisfy the
constraints (19). Indeed, using the fact that has zero mean
and is statistically independent of , we find that the conditional
expectation of of (65) given is

(66)

Furthermore, since and are pairwise uncorrelated,
the covariance of of (65) can be computed as

(67)

where we substituted (64). Finally, the cross covariance of of
(65) and is given by

(68)

where the second equality follows from the third line of (61),
the third equality follows from [26, Lemma 2], and the fourth
equality follows from (59). Equations (66), (67) and (68)
demonstrate that the distribution associated with
and , belongs to the family of distributions satisfying (19).
Next, we show that the PLMMSE and MMSE estimators co-

incide under . Indeed, since is statistically independent
of the pair , we have that , so
that

(69)

where we used the fact that there is a one-to-one transformation
between the pair and the pair . This expression
is partially linear in , implying that this is also the PLMMSE

4Recall that and are functions of and , which
are given.
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estimator in this setting. Thus, for the distribution , the
PLMMSE estimator is optimal not only among all partially
linear functions, but also among all functions of and .
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