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Abstract – We consider the problem of tracking the
state of a hybrid system capable of performing a bounded
number of mode switches. The system is assumed
to follow either a nominal or an anomalous model,
where the nominal model may stand for, e.g., the non-
maneuvering motion regime of a target or the fault-free
operation mode of a sensor, and the anomalous model
may stand for, e.g., the abrupt evasive maneuvers of
a target or the faulty operation of a sensor. As is
well known, the optimal algorithm requires implemen-
tation of an exponentially growing number of primitive
Kalman filters. On the other hand, the system’s switch-
ing dynamics is not Markov because of the a priori
bounded number of model switches, thus ruling out the
use of popular estimation schemes such as the inter-
acting multiple model (IMM) and generalized pseudo-
Bayesian (GPB) filters. We derive an efficient scheme
that uses a number of primitive Kalman filters that is
linear in the number of possible maneuvers. The scheme
resembles the IMM algorithm in that it uses interaction
between some of the primitive filters before every esti-
mation cycle, thus reducing the number of such filters.
The algorithm’s performance is evaluated via a simula-
tion study, and shown to outperform the state-of-the-art
IMM filter in a typical example.

Keywords: Multiple model estimation, target track-
ing, hybrid systems, fault detection and identification.

1 Introduction

Hybrid systems are characterized by a continuously
varying state vector and a discretely varying (switch-
ing) parameter vector, that takes values in some finite
set [1]. The switching parameter vector is usually re-
ferred to as the system mode. The hybrid system frame-
work is frequently used in multi-sensor fault-prone sys-
tems. Typical examples are navigation systems using
the signals of global navigation satellite systems (that
are prone to jamming and spoofing) and inertial sensors
(accelerometers and rate gyros) that are, frequently, of

low grade. Another typical application of the hybrid
system framework is in maneuvering target tracking,
where it is assumed that the target can maneuver, at
any time, in one of a finite set of maneuvers (modes).

Since many hybrid systems are characterized by
stochastic state and/or parameter vector, much work
has been devoted to the simultaneous estimation of
both state and parameters. As is well known, the mean
squared optimal filtering algorithm for hybrid systems
requires infinite computation resources [2]. Therefore,
a variety of suboptimal estimation techniques was pro-
posed [3–7]. In all of these cases, the number of mode
switches permitted by the system’s model was assumed
to be unbounded, and the switching parameter vector
was assumed to obey a Markovian transition law.

When the number of mode switches permitted by the
system is bounded (assuming some knowledge about
this bound), the Markovian assumption no longer holds.
Typical problems featuring a bounded number of mode
switches are encountered in maneuvering target track-
ing, particularly during the end-game phase of the in-
terception scenario. Thus, [8] analyzes a stochastic bal-
listic missile interception scenario where the (incom-
ing) blind theatre ballistic missile executes a random
bang-bang maneuver consisting of a maximal maneuver
in one direction, followed by a randomly-timed single
switch to a maximal maneuver in the opposite direc-
tion. In [9], optimal differential games-based strategies
are derived, showing that, for both adversaries, these
are of the bang-bang type, with possibly a single di-
rection change if the target has non-minimum phase
dynamics. In [10], two possible target strategies are as-
sumed: a constant maximum maneuver, and a square
wave maneuver with a small number (one or two) of di-
rection changes. Constant target maneuvers have also
been assumed in [11].

This paper addresses the problem of tracking the
state of a hybrid system capable of performing a
bounded number of mode switches. It can be shown
that the optimal tracking algorithm requires the imple-



mentation of an exponentially growing number of prim-
itive Kalman filters (KF), thus calling for suboptimal
algorithms. On the other hand, the system’s switch-
ing dynamics is not Markov because of the a priori
bounded number of model switches, ruling out the use
of popular estimation schemes such as the IMM [6] and
GPB [2] algorithms. We derive an efficient estimation
scheme that uses a number of primitive KFs that is lin-
ear in the number of possible maneuvers. The scheme
resembles the IMM in that it uses interaction between
the primitive filters before every estimation cycle, thus
reducing the number of such filters. The algorithm’s
performance is evaluated via a simulation study, and
shown to outperform the state-of-the-art IMM filter in
a typical example. The study also demonstrates that
the algorithm’s performance degrades gracefully when
the underlying assumptions do not hold.

The remainder of this paper is organized as follows.
The problem is formulated in Section 2. Section 3 is
devoted to the derivation of the new method. The al-
gorithm steps are then summarized and the relation to
IMM is discussed. In Section 4 we extend the filter to
be capable of treating uncertainties in the initial model.
The algorithm is tested and compared to IMM in Sec-
tion 5. Concluding remarks are offered in Section 6.

2 Problem Formulation

Consider the standard state-space representation of
a stochastic dynamical system

xk+1 = Axk + Gwk (1)

zk = Hxk + vk. (2)

Here {wk} and {vk} are mutually independent, zero-
mean white Gaussian noise sequences with covariances
Q and R, respectively. These processes are assumed to
be independent of the initial state x0, that is assumed
to be Gaussian with mean x̄0 and covariance P0.

The system (1)–(2) is specified by five matrices A,
H , G, Q, and R, that may depend on the time index k.
These matrices define the mode of the system, which
we denote as Mk , {Ak, Hk, Gk, Qk, Rk}. Different
mode values may correspond to different flight regimes
(e.g., maneuvering/non-maneuvering) of an aircraft, or
different sensor conditions (e.g., nominal/faulty).

The state xk may be estimated optimally in the
mean-square sense using a standard KF even if the
mode sequence is time-dependent, as long as the ex-
act value of Mk is known for each k.

We consider the case where at time k the mode Mk

may assume one of two possible values, m1 or m2. The
model m1 is the nominal one. In target tracking ap-
plications it represents the nominal, non-maneuvering
motion regime of a target. In fault detection and identi-
fication (FDI) applications, it may represent the fault-
free condition of the sensor. The second possible mode,

m2, represents the abnormal situation, e.g., a maneu-
vering target, or a faulty sensor. It is possible to de-
scribe various maneuver regimes using, e.g., Singer’s ex-
ponentially correlated acceleration (ECA) model [12].

Consider the situation where the mode Mk does not
evolve in a deterministic manner. Namely, during the
entire surveillance interval the target mode switches be-
tween the two models according to some stochastic law.
We assume that the total number of mode switches is
upper bounded by a known constant rmax. Let {Sk}
be a sequence of random variables assuming the values
0, ..., rmax, such that Sk = ℓ if ℓ mode switches have oc-
curred by time k. The switching mechanism considered
here is described by the following transition law:

Pr{Mk+1 = mj | Mk = mi, Sk = ℓ}

=

{

pij ℓ < rmax

δij ℓ ≥ rmax

i, j ∈ {1, 2} , k = 0, 1, ...

(3)

where {pij} are known probabilities and δij is Kro-
necker’s delta. For clarity of exposition, we assume that
Pr {M0 = m1} = 1. This assumption will be relaxed in
section 4. Equations (1), (2) and (3) define a hybrid
stochastic system as the continuous uncertainty associ-
ated with xk is accompanied by a discrete uncertainty
associated with the (discrete) random mode transition
law.

It is well known that the optimal minimum mean
squared error (MMSE) estimate of the state xk using
the measurement sequence Zk , {z0, ..., zk} is given by
the conditional expectation E [xk|Zk]. It can be shown
that the optimal filter for computing x̂k = E [xk|Zk]
requires the use of (primitive) KFs, in a number that
grows polynomially in time and exponentially in rmax.
Thus, applying the optimal scheme for such systems
cannot be practical even in short-duration scenarios.

Although the number of mode switches constitutes
a Markov chain with state space {0, 1, ..., rmax}, the
above system is not a standard Markov-jump linear
system (MJLS), because the mode transition law is
Markov only given the number of mode switches that
have occurred so far. Thus, the IMM and related meth-
ods cannot be applied directly to the problem at hand.
The IMM assumes that modes switch according to a
Markov law, such that transition probabilities are cap-
tured by a known transition probability matrix (TPM).
Because the process is not Markov, such a matrix does
not exist, and, therefore, applying the IMM and related
algorithms can only be done in an approximate manner
by defining a pseudo-transition matrix. Note that for
the case rmax = 1 the mode transition law is Markov,
since the number of occurred switches (0 or 1) uniquely
determines the current mode (assuming M0 = m1).

Our goal is to obtain an efficient suboptimal algo-
rithm capable of tracking the state xk of a system that



may perform a bounded number of mode switches, us-
ing the measurements Zk , {z0, ..., zk}, without assum-
ing Markovian mode transitions.

3 Algorithm Derivation
We assume, for simplicity, p12 = p21 = p. General-

ization to arbitrary values of the transition probabilities
is straightforward and the derivation is omitted.

The optimal estimate of the state x̂k = E [xk|Zk] is
the mean of the posterior density p(xk | Zk). We have

p(xk | Zk) =

rmax
∑

ℓ=0

p(xk | Zk, Sk = ℓ) Pr{Sk = ℓ | Zk }

,

rmax
∑

ℓ=0

p(xk | zk, Zk−1, Sk = ℓ)µℓ(k). (4)

Equation (4) can be viewed as an implied definition of
the switching sequence probabilities {µℓ(k)}rmax

ℓ=0
, which

serve here as weighting factors. In the sequel we sepa-
rately compute these weighting factors along with the
conditional posterior pdf’s, p(xk | zk, Zk−1, Sk = i).

3.1 Weighting Factors

At each time instance k the number of mode switches
is upper bounded both by rmax, by the problem’s defini-
tion, and, naturally, by k. Using Bayes’ rule and the law
of total probability we have, for 1 ≤ ℓ ≤ min(rmax, k)
and some normalization constant c,

µℓ(k) = Pr{Sk = ℓ | Zk }

=
1

c
p(zk | Zk−1, Sk = ℓ) Pr{Sk = ℓ | Zk−1 }

=
1

c
p(zk | Zk−1, Sk = ℓ)

×
ℓ

∑

j=ℓ−1

Pr {Sk = ℓ | Sk−1 = j, Zk−1 }µj(k − 1)

=
1

c
p(zk | Zk−1, Sk = ℓ)

× [pµℓ−1(k − 1) + (1 − p)µℓ(k − 1)]. (5)

For ℓ = 0 the equation for µℓ(k) is modified accordingly,
yielding, along with (5),

µℓ(k) =
1

c
p(zk | Zk−1, Sk = ℓ)

× [pµℓ−1(k − 1)δℓ0 + (1 − p)µℓ(k − 1)]. (6)

The likelihood p(zk | Zk−1, Sk = ℓ) may be approxi-
mated to be Gaussian, as follows

p(zk | Zk−1, Sk = ℓ) ≈ N (zk; ẑℓ
k, Sℓ

k), (7)

where ẑℓ
k and Sℓ

k are the predicted measurement and
innovation covariance, respectively, that are computed
by a KF matched to the event that ℓ switches have oc-
curred by the time k. The Gaussian approximation (7)

is commonly used in the target tracking literature, and
especially in suboptimal filters for hybrid systems, such
as the GPB [2] and IMM [6,13] filters.

3.2 Conditional Posterior Densities

Consider the posterior densities in (4), conditioned
on the number of mode switches. Using Bayes’ rule

p(xk | zk, Zk−1, Sk = ℓ)

=
p(zk | xk, Sk = ℓ)

p(zk | Zk−1, Sk = ℓ)
p(xk | Zk−1, Sk = ℓ), (8)

where we have used the fact that, conditioned on the
event {Sk = ℓ}, the probabilistic law of zk is completely
determined by xk and is, thus, independent of Zk−1.

Eq. (8) is the measurement update step of a filter
conditioned on ℓ switches. Starting with the prior,
p(xk | Zk−1, Sk = ℓ), it represents the evolution of the
density after processing the new measurement, zk.

To perform the time update step we expand the prior
density using the law of total probability:

p(xk | Sk = ℓ, Zk−1)

=

ℓ
∑

j=ℓ−1

p(xk | Sk = ℓ, Sk−1 = j, Zk−1)

× Pr {Sk−1 = j | Sk = ℓ, Zk−1 } . (9)

Clearly, one cannot compute the density p(xk | Sk =
ℓ, Sk−1 = j, Zk−1) precisely without resorting to ex-
haustive enumeration. Thus, it is approximated by
merging the previous histories into a single estimate:

p(xk | Sk = ℓ, Zk−1)

≈
ℓ

∑

j=ℓ−1

p(xk | Sk = ℓ, Sk−1 = j,
{

x̂i
k−1, P

i
k−1

}rmax

i=0
)

× Pr{Sk−1 = j | Sk = ℓ, Zk−1 } . (10)

In other words, the measurement history Zk−1 is
replaced by a function of it, represented here by
the set of conditioned estimates and their corre-
sponding covariances. Defining µj|ℓ(k − 1|k) ,

Pr {Sk−1 = j | Sk = ℓ, Zk−1 } , (10) is rewritten as

p(xk | Sk = ℓ, Zk−1)

≈
ℓ

∑

j=ℓ−1

p(xk | Sk = ℓ, Sk−1 = j,
{

x̂i
k−1, P

i
k−1

}rmax

i=0
)

× µj|ℓ(k − 1|k). (11)

Each of the (two) densities in (11) is approximated as
Gaussian with parameters determined by the latest ac-
tive model and, therefore, each term is completely spec-
ified by the event {Sk−1 = j}, in the following manner:

p(xk | Sk = ℓ, Sk−1 = j,
{

x̂i
k−1, P

i
k−1

}rmax

i=0
)

≈ N
(

xk; E
[

xk|Sk = ℓ, x̂j
k−1

]

, P j
k−1

)

. (12)



Summarizing, the prior density is approximated as

p(xk | Sk = ℓ, Zk−1)

≈
ℓ

∑

j=ℓ−1

N
(

xk; E
[

xk|Sk = ℓ, x̂j
k−1

]

, P j
k−1

)

× µj|ℓ(k − 1|k), (13)

which is a Gaussian mixture that can be further ap-
proximated by a single Gaussian with the same first
and second moments. Namely,

p(xk | Sk = ℓ, Zk−1) ≈ N (xk; mℓ, Σℓ) (14)

with

mℓ = E
[

xk|Sk = ℓ, x̂ℓ−1

k−1

]

µℓ−1|ℓ(k − 1|k)

+ E
[

xk|Sk = ℓ, x̂ℓ
k−1

]

µℓ|ℓ(k − 1|k) (15a)

and

Σℓ

=
(

P ℓ−1

k−1
+ (x̂ℓ−1

k−1
− mℓ)(x̂

ℓ−1

k−1
− mℓ)

T
)

µℓ−1|ℓ(k − 1|k)

+
(

P ℓ
k−1 + (x̂ℓ

k−1 − mℓ)(x̂
ℓ
k−1 − mℓ)

T
)

µℓ|ℓ(k − 1|k).
(15b)

Eq. (15a) has the following interpretation. Start-
ing with the previously obtained conditioned esti-
mates, x̂ℓ−1

k−1
and x̂ℓ

k−1
, they are propagated through

the ℓ-KF to obtain the time updated estimates,
E

[

xk|Sk = ℓ, x̂ℓ−1

k−1

]

and E
[

xk|Sk = ℓ, x̂ℓ
k−1

]

, respec-
tively. These are then fused into a single estimate using
the mixing probabilities µℓ−1|ℓ(k−1|k) and µℓ|ℓ(k−1|k).
Since the KF is a linear operator, the fusion of the es-
timates can be performed before the conditional time
update step, and the mean of the Gaussian density in
(15a) may be rewritten as

mℓ = E[xk|Sk = ℓ, x̂ℓ−1

k−1
µℓ−1|ℓ(k−1|k)+x̂ℓ

k−1µℓ|ℓ(k−1|k)].
(16)

Using (16) in (14) we obtain the following property
of the proposed algorithm. The input (i.e., the mea-
surement updated estimate from the previous cycle) to
the filter matched to ℓ mode switches is obtained from
an interaction of the outputs of itself and of the fil-
ter matched to ℓ− 1 mode switches. The interaction is
performed by combining these outputs using the mixing
probabilities µℓ−1|ℓ(k − 1|k) and µℓ|ℓ(k − 1|k). Clearly,
the filter matched to ℓ = 0 switches does not interact
with any other filter, and, in fact, operates as a usual
KF matched to the model m1.

It remains to describe the computation of the mixing
probabilities, µj|ℓ(k − 1|k). This is done next.

3.3 Mixing Probabilities

Using Bayes’ rule yields, for some constant c,

Pr {Sk−1 = j | Sk = ℓ, Zk−1 }

=
1

c
Pr{Sk = ℓ | Sk−1 = j, Zk−1 }µj(k − 1). (17)

Note that Pr {Sk = ℓ | Sk−1 = j, Zk−1 } does not vanish
only for j = ℓ and j = ℓ − 1. It is equal to 1 − p in
the former case, as no mode switch occurred at time
k − 1, and to p in the latter case. Thus, the mixing
probability recursions are summarized as follows:

µj|ℓ(k − 1|k) =
1

c

{

pµℓ−1(k − 1) j = ℓ − 1

(1 − p)µℓ(k − 1) j = ℓ
. (18)

It is worth mentioning that this recursive computa-
tion does not entail any approximation.

3.4 Algorithm Summary and Filter

Structure

For convenience, the algorithm is summarized in Al-
gorithm 1.

Algorithm 1

Input: Zk = {z1, ..., zk}, m1, m2, x̂0, P0

1: Mixing Probabilities: Compute µj|ℓ(k−1|k), ℓ =
0, 1, ..., min(k, rmax) using Eq. (18).

2: Mixing: Given the outputs of the filters ℓ and ℓ−1
compute

x̂ℓ
0 = x̂ℓ−1

k−1
µℓ−1|ℓ(k − 1|k) + x̂ℓ

k−1µℓ|ℓ(k − 1|k)

for ℓ = 0, ..., min(k, rmax) and the associated covari-
ances using (15b).

3: Conditional Filtering: Using x̂ℓ
0 and (15b) com-

pute the posterior estimates x̂ℓ
k and P ℓ

k as well as
the conditional likelihoods given in Eq. (7).

4: Probabilities Update: Compute the weighting
factors of (4) using (6).

5: Output: Compute x̂k (the mean of (4)) with the
corresponding covariance.

Output: x̂k, Pk.

The schematic structure of the proposed filter is pre-
sented in Fig. 1. Notice that each filter interacts with at
most one filter to produce the initial condition for the
next iteration. Similarly to other multiple model esti-
mation methods, the final estimates are used for output
purposes only, and are not part of the estimation cycle.

3.5 Relation to IMM

Despite the conceptual similarity between the pro-
posed algorithm and the IMM, which is exhibited by
the cooperation of the primitive filters to obtain an ap-
proximation of the first two moments of the desired
posterior density p(xk | Zk), there are several impor-
tant differences that we outline below.

First, each primitive KF in the IMM algorithm is
matched to one of the specific models the system is
assumed to obey. In the new algorithm, on the other
hand, each KF is matched to a different event describing
the number of mode switches that have occurred. Since
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Figure 1. Schematic implementation of the proposed filter (the covariances accompanying the
estimates are not shown, for clarity).

an even number of mode switches does not affect the
actual mode of the system, half of the primitive filters
are matched to m1 and the other half to m2. It is worth
noting that, although there is some redundancy in that
the same filter is duplicated several times, direct savings
cannot be obtained, as each of the (same) filters is fed
with different inputs at the same estimation cycle.

The second difference is related to the filter cooper-
ation mechanism. Whereas in the IMM algorithm all
outputs are used in the mixing stage to produce the
initial conditions of each of the filter, in the new algo-
rithm, the input of filter ℓ is produced by mixing the
outputs of only two filters, ℓ and ℓ − 1. The initial
conditions are unaffected by other KFs. This difference
stems from the mode transition mechanism – at each
time the number of mode switches may either stay un-
changed, or increase by one.

We note, in passing, that the problem may be refor-
mulated using a Markovian framework by introducing
a super mode {Sk, Mk} that consists of the actual mode
and the number of performed transitions. This would
allow running the standard IMM, however, at the ex-
pense of a significantly increased number of primitive
KFs running in parallel.

4 Unknown Initial Model
The filter derived in Section 3 assumes that the initial

model at time k = 0 is m1. In some applications this
might be an unrealistic stipulation. We now extend the
basic algorithm to handle the case of an unknown initial
model.

Consider, again, the optimal estimate of the state xk

given by the conditional expectation E [xk|Zk]. Condi-
tioning on the initial model yields

E [xk|Zk] = E [xk|Zk, M0 = m1] Pr {M0 = m1 | Zk }

+ E [xk|Zk, M0 = m2] Pr {M0 = m2 | Zk } . (19)

In principle, both conditional expectations in Eq. (19)
assume known initial models, and, therefore, can be
computed using the basic algorithm of Section 3 (with

a straightforward modification). It remains to com-
pute the conditional probability Pr {M0 = m1 | Zk },
which amounts to identification of M0. This can
be done sequentially as αk , Pr {M0 = m1 | Zk } =
1

c
p(zk | Zk−1, M0 = m1)αk−1, meaning that the

solution of the identification problem boils down
to computing the model-matched innovation density
p(zk | Zk−1, M0 = m1). This density may be com-
puted either by conditioning on {Sk = ℓ}, or by per-
forming a likelihood ratio-based test using the ratio
p(zk | Zk−1, M0 = m1)/p(zk | Zk−1, M0 = m2).

5 Simulation Study
In this section we test the performance of the pro-

posed algorithm. For better visualization, and without
loss of generality, even numbers of mode switches are
taken in the examples, such that the final model is m1.

In all figures in the sequel, horizontal axes represent
time in seconds. Position, velocity and acceleration er-
rors are in meters, meters per second, and meters per
second squared, respectively.

5.1 General Simulation Setup

We consider the following dynamical system

xk+1 = Ai
kxk + Gi

kwi
k, i = 1, 2, (20)

where the state vector xk = [pk vk ak]T comprises the
target’s position, velocity, and acceleration.

The nominal model m1 is the discrete white noise ac-
celeration model [13] with the associated process noise
variance σ2

w1
. The abnormal mode, m2, is chosen to

be the discrete Wiener process acceleration model [13]
accompanied with the covariance σ2

w2
.

The measurements are generated according to (2)
where H = [1 0 0], and vk ∼ N

(

0, σ2
v

)

. In all examples
below we have used σ2

w1
= 0.3, σ2

w2
= 6, σ2

v = 140.

5.2 Example: rmax = 2

The following scenario, lasting 400 seconds is consid-
ered. Starting at x0 = [0 0 0]T the target performs two



mode switches according to the following pattern. 1)
For the first 100 seconds the target moves according to
m1, 2) at k = 100 the target switches to m2 and com-
plies with this model for additional 100 seconds, 3) at
k = 200, the target switches back to m1. Thus, in this
(deterministic) scenario, mode switches occur after 100
and 200 seconds. To comply with the assumed model
we set p12 = p21 = p = 0.01.

The new algorithm is compared with the performance
of the IMM filter. Since with rmax > 1 the mode
transition dynamics is not Markovian, the transition
probability matrix of the IMM needs to be adjusted in
some manner. According to our modeling, a reason-
able choice would be TPM = ( p11 p12

p21 p22
), where we set

p12 = p21 = p = 0.01, to comply with a mode switch
once in every 100 seconds, on average.

As an overall reference we also generate the optimal
estimate using a “genie-based” KF that knows the exact
times of the mode switches. Knowing the model at each
time degenerates the problem to the standard setting
such that a standard KF yields optimal results.

Fig. 2 presents the squared errors of the position and
velocity of the new filter, the IMM filter and the genie-
based KF, averaged over 200 Monte Carlo runs. It is
readily seen that before the second (and last) switch
both the new filter and the IMM yield similar errors.
However, after the second switch the performance of the
new filter is superior to that of IMM. In fact, the errors
associated with the new filter closely approximate those
of the genie-based KF, thus achieving the best possible
performance.
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Figure 2. Position and velocity errors of the new
filter, IMM, and genie-based KF, rmax = 2.

The superiority of the proposed method after the

maximum number of model switches has been ex-
hausted, is best understood via observing Fig. 3, show-
ing the probabilities of the number of switches as
computed by the proposed algorithm and the mode
probabilities computed by the IMM. Notice that after
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Figure 3. Probabilities of number of switches
and mode probabilities of IMM, rmax = 2.

the maximum number of switches, rmax, has been ex-
hausted, the new algorithm knows precisely the model
being currently in effect. Therefore, it nullifies all prob-
abilities µℓ for ℓ < rmax and assigns µrmax

= 1. This
means that the scheme’s state estimate is based on the
true model, which yields optimal performance. The
IMM filter, on the other hand, assumes that the mode
transitions obey a Markovian structure, which is not
true in our case. Therefore it cannot nullify any of the
modal probabilities in order to keep both models ‘alive’
(so as to be prepared for a possible future switch). This
introduces an additional mismatched term to the out-
put estimate, thus increasing the estimation error.

5.3 Monte Carlo Evaluation

In this experiment we test the algorithms in a com-
pletely random scenario. The simulation setup is sim-
ilar to that of the previous examples, except that now
the switching times are generated in a random man-
ner. Therefore, the MSEs are the true squared errors
averaged over all the randomness in the system (and
not only over the measurement and process noises as
done in the previous example). The duration of the sce-
nario is increased to 800 seconds, the maximum number
of mode switches is taken to be 2, and the switching
probability is chosen to be p = 0.004. Thus, with a
high probability, both switches occur at the beginning
of the scenario (within the first 500 seconds, on aver-
age) and in the final part of ≈ 300 seconds the target
continues its motion according to m1. For easier vi-
sualization, we present the mean squared errors of the
position and velocity normalized by those obtained by
the genie-based KF. Fig. 4 shows the position and ve-
locity estimation normalized MSEs for both the new
filter and the IMM filter. The results are averaged over
500 independent runs. The new algorithm’s errors are
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Figure 4. Normalized estimation errors of the
new filter and IMM, Monte Carlo evaluation.

only slightly higher than those of the genie-based KF,
meaning that it achieves nearly optimal performance.
In addition, it is clear the new filter outperforms the
IMM filter. The explanation for these results is similar
to the one given in the previous example. In the sec-
ond half of the time interval both mode switches have
already occurred, and the target is driven according to
the m1 dynamics. Knowing the maximum number of
switches, the new filter generates estimates obtained by
m1, the correct model. In contradistinction, the IMM
filter is forced to maintain the second model as well,
thus increasing the overall errors.

5.4 Robustness

We now test the performance when the assumption
on the total number of switches is incorrect by assuming
rmax that is higher or lower than the actual one.

The same dynamic models are used as in the previous
examples, with a scenario duration of 500 seconds. The
target performs 4 model switches with the exact pattern
being as follows. 1) During the subintervals [0 100],
[200 300], [400 500] the target maneuvers according to
m1, 2) during the subintervals [100 200], [300 400] the
target follows the model m2.

5.4.1 Overestimated rmax

We set rmax = 6, whereas the true value is 4. The
position and velocity errors, normalized by those of the
genie-based KF, are presented in Fig. 5. The corre-
sponding probabilities are presented in Fig. 6. It is
readily seen that, although the desired effect of degener-
ating the probabilities to zero and one does not happen
anymore (since the predefined number of switches has
not occurred), the performance of the new algorithm is
comparable to that of the IMM with some superiority
at the end of nonmaneuvering sections. Namely, even
for the case of overestimated number of maneuvers, the
performance gracefully degrades and remains tolerable
and even superior to that of the IMM (at the expense,
however, of additional computation burden in terms of
the extra filters running simultaneously). Notice also
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Figure 5. Normalized estimation errors of the
new filter and IMM, overestimated rmax.

that the probabilities of 5 and 6 switches remain low
throughout the entire scenario.
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Figure 6. Probabilities of number of switches
and IMM mode probabilities, overestimated
rmax.

5.4.2 Underestimated rmax

In this experiment we set rmax = 2, whereas the true
value remains 4. The position and velocity errors for
this case, normalized by those of the genie-based KF,
are presented in Fig. 7. The corresponding probabil-
ities are presented in Fig. 8. A priori one could ex-
pect a complete crash of the algorithm. However, this
is not the case. Until the second mode switch (inclu-
sive), the algorithm behaves as previously, and after
that the corresponding probability degenerates to 1 as
no additional switches are expected. The correspond-
ing errors are lower than those of the IMM due to the
reasons outline in the previous examples. The non-
conservativeness of the algorithm causes a significant
position error at k ≈ 300, when the third mode switch
occurs (as opposed to the assumption). However, this
singular error is reduced quickly and the algorithm co-
incides again with the IMM. During this interval, the
dominating filter is the one corresponding to m1 and,
therefore, the probability of 1 switch rises again. It
should, however, be interpreted as the probability of 3
occurred switches. After the fourth switch the situation
is identical to that after the second one – the algorithm
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Figure 7. Normalized estimation errors of the
new filter and IMM, underestimated rmax.
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Figure 8. Probabilities of number of switches
and IMM mode probabilities, underestimated
rmax.

‘believes’ that all switches are exhausted, thus raising
the corresponding probability to almost 1, and outper-
forming the IMM filter in terms of estimation errors.

6 Conclusions
We have proposed a novel efficient algorithm for

tracking the state of a hybrid system characterized by a
bounded number of mode switches. Unlike in classical
multiple model estimation problems, model transitions
do not possess Markovian dynamics, and direct utiliza-
tion of popular methods such as the IMM and GPBr
filters is inadmissible. The new filter inherits several
properties of the state-of-the-art IMM filter, such as
interaction of primitive KFs, constituting the entire es-
timation scheme at each cycle. Except for the trivial
case where the target is limited to performing just one
maneuver, the proposed filter is superior to ad-hoc uti-
lization of the IMM filter, as demonstrated via several
numerical examples. A simulation study shows that the
performance of the new filter gracefully degrades when
the number of switches is either over- or underestimated
relative to the true number of switches.
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