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Abstract—The problem of fault tolerant state estimation is considered.
We propose a unified, general formulation of the problem in which

two different types of faults affect the system’s output simultaneously.
This problem statement generalizes previously reported formulations that
may be obtained as special cases. Three families of state estimation

methods for fault-prone systems are presented, generalizing several
classical estimation algorithms. These families include: one-step near-
optimal filters, which are closely related to the GPB filter family, IMM-

based filters, and linear optimal estimators.

I. INTRODUCTION

Fault tolerant state estimation is vital in many applications and

especially in navigation systems. Playing a key role in operations such

as aircraft steering and landing, spacecraft pointing and rendezvous

missions, and missile guidance, navigation systems require reliable

mechanisms for fault detection and isolation (FDI).

Although the most general formulation of fault-prone systems

assumes that faults can alter both the dynamics equation as well as

the measurement equation of the state-space system representation,

an important subclass of problems assumes states that are unaffected

by faults, such that fault indicators affect directly only the measure-

ment equation. Typical examples are navigation systems using GPS

signals that are prone to jamming and spoofing, and inertial sensors

(accelerometers and rate gyros) that are, frequently, of low grade.

Two main types of faults characterize fault-prone systems. The first

one is multiplicative faults, usually referred to as interruption fault

indicators. These faults are modeled as Bernoulli random variables

multiplying the state vector in the measurement equation. Thus, de-

pending on the actual value of the fault indicator, the state may either

be observed through the usual measurement channel, or go undetected

such that the acquired signal carries no valuable information. The

second type of faults is additive faults, also known as measurement

biases. These are modeled as random additive disturbances, affecting,

e.g., the nominal measurement noise variance.

Many estimation techniques consider systems affected by only one

of the fault types, proposing various state estimation algorithms for

such systems. One of the earliest contributions considering multi-

plicative faults is the work of Nahi [1], that examined the case, where

the fault indicators constitute an i.i.d. Bernoulli process, and derived

the linear optimal state estimator. Sawaragi et al. [2] considered a

similar problem for correlated fault indicators at subsequent times.

Hadidi and Shwartz [3] generalized the problem and considered

general Bernoulli sequences, including a special case of a Markov

sequence. Costa [4] considered a more general problem at the expense

of state augmentation. For contributions involving the second type of

faults the reader is referred to [5] and references therein.

Although different in nature, both types of fault processes may

be interrelated, such that a fault event may result in an increased

bias, misdetected measurement, or both. Thus, a general formulation

requires a unified treatment of both kinds of faults affecting the

system simultaneously. In [6] both types of faults were considered

simultaneously, but these were governed by the same stochastic

process, such that at a given time either both faults occurred or none.

We propose a general formulation of linear, fault-prone dynamical

systems, that are subject to simultaneously-acting multiplicative and

additive measurement faults. The formulations of [1], [3], and [6],

as well as several additional problems, follow as special cases of

our general formulation. We propose three families of suboptimal

filters for state estimation in the above problems. These families are

one-step optimal filters, that are closely related to the generalized

pseudo-Bayesian (GPB) filter family [7], IMM-based filters [8], and

linear optimal filters. For the latter case, the proposed algorithms

relax several restrictive assumptions made in [3].

The remainder of this paper is organized as follows. In Section II

we formulate the general fault-prone dynamical system and derive

several special cases to be considered. In Sections III and IV,

respectively, we derive one-step near-optimal and IMM-based filters

for the general problem, and present closed-form algorithms for

the special cases defined in Section II. In Section V the linear

optimal filter is presented. Several numerical examples are presented

in Section VI. Concluding remarks are made in Section VII.

II. PROBLEM DESCRIPTION

Consider the following hybrid dynamical system

xk+1 = Axk +wk (1)

zk = °kHxk + vk(±k). (2)

{wk} is a zero mean white Gaussian sequence with known covari-

ance Qk ≡ Q, {°k} is a discrete-time Bernoulli random process,

and {±k} is a sequence of positive binary random variables. Given

{±k}, {vk} is a zero-mean white Gaussian sequence, such that

cov (vk ∣ ±k) = R±k. For simplicity we assume that ±k may assume

two values, 1 and C > 1, corresponding to the nominal and faulty

situations, respectively. The process noise sequence is assumed to

be independent of {°k}, {±k}, and {vk}. All the sequences under

consideration are independent of the initial state x0 which is assumed

to be Gaussian with zero mean and known covariance P0.

The described system is subject to two types of faults. The first

type, associated with the sequence {°k}, is the multiplicative fault

sequence, and the second type, associated with {±k}, is the additive

fault sequence. These two types of fault sequences correspond to the

following undesirable effects. Under fault occurrence, the signal of

interest, xk, may not be present in the acquired signal zk at all, or

may be corrupted by a stronger than nominal measurement noise. In

the former case, the signal would carry a non-informative data of

nominal or increased intensity.
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Whenever a multiplicative fault occurs, °k = 0 and the measured

signal carries only noise. One would expect the filter to ignore the

non-informative measurements and utilize only those for which °k =
1. Whenever an additive fault occurs, a faulty measurement results in

a higher variance of the noise variable vk. In this case a good filter is

expected to use all measurements, assigning smaller weight to those

carrying stronger noise.

Formulation (1)–(2) induces a family of problems, four of which

we consider here:

Problem 1. {°k}, {±k} are mutually independent i.i.d. sequences.

Problem 2. {°k}, {±k} constitute a vector-valued i.i.d. se-

quence {°k, ±k} with known joint distribution at time k,

Pr {°k = °, ±k = ±}.

Problem 3. {°k}, {±k} are mutually independent homogeneous

Markov sequences with known transition laws.

Problem 4. {°k}, {±k} constitute a vector-valued homogeneous

Markov sequence {°k, ±k} with known joint transition kernel,

Pr {°k = °, ±k = ± ∣ °k−1 = °1, ±k−1 = ±1 }.

These problems may be viewed as listed in order of increasing

complexity. In fact, Problem 1 is a special case of Problems 2–4.

Problems 1–3 may be viewed as special cases of Problem 4. Note,

however, that Problems 2 and 3 do not generalize each other.

As is well known, the optimal estimator x̂k using the available

data Zk ≜ {z0, ..., zk} is given by the conditional expectation

E [xk∣Zk]. The computation of this expectation requires an expo-

nentially growing memory and is, therefore, impractical for all of the

above problems. Consequently, we consider suboptimal approaches.

First, we consider recursive estimators that compute the estimate at

time k, using the previously obtained estimate x̂k−1 and the new mea-

surement zk. Each such computation is performed by conditioning

on the current fault indicators, which results in an optimal or near-

optimal update with respect to this conditioning. The overall estimate,

with respect to the entire measurement sequence, is suboptimal,

due to the performed history merging. These estimators will be

called in the sequel one-step near-optimal filters. The technique

resembles GPB estimation, in that history sequences are merged and

represented by a single estimate. In the second approach, we utilize

the IMM method by using interaction of several primitive Kalman

filters matched to different models. Finally, we derive linear optimal

recursive estimators for the considered problems.

III. ONE STEP NEAR-OPTIMAL FILTERS

Consider the MMSE-optimal estimator of xk using all the available

measurements up to and including time k. It is given by the

conditional expectation of the state given the measurements Zk ≜

{z0, ..., zk}. We expand the conditional expectation by conditioning

on the latest joint fault indicator {°k, ±k}:

x̂k = E [xk ∣ Zk ]

=
∑

°,±

E [xk ∣ Zk, °k = °, ±k = ± ] Pr {°k = °, ±k = ± ∣ Zk } .

(3)

Some of the conditional expectations in (3) may be com-

puted precisely and some may be reasonably approximated. For

°k = 0 the current measurement does not carry valuable infor-

mation about the state. It thus follows that, for any ± ∈ {1, C},

E [xk ∣ Zk, °k = 0, ±k = ± ] = Ax̂k−1 where we have utilized the

fact that {zk, °k = 0, ±k = ±} is independent of {xk−1, Zk−1}. In

other words, given that the last measurement is faulty, it does not

carry useful information about the state at the previous time. Thus,

the optimal estimate of xk given that the last measurement is faulty

is just a linear extrapolation of the previously obtained estimate.

The remaining terms are E [xk ∣ Zk, °k = 1, ±k = 1] and

E [xk ∣ Zk, °k = 1, ±k = C ]. We interpret these as optimal esti-

mates of xk given that the latest observation is informative, that

is multiplicative fault-free (albeit noisier than a nominal one). We

approximate them by considering the following suboptimal reasoning.

Instead of looking for overall optimality, we shall approximate the

term E [xk∣Zk, °k = 1, ±k = ±] by a step-wise near-optimal expres-

sion. Namely, we shall compute the estimate xk that is near-optimal

with respect to the previously obtained x̂k−1 and the current, fault-

free measurement zk. Mathematically, this approximation reads,

E [xk∣Zk, °k = 1, ±k = ±] ≈ E [xk∣x̂k−1, zk, °k = 1, ±k = ±] . (4)

Note, that in the standard (fault-free) Kalman filter (KF) setting (4)

holds with equality, since the information carried by the entire mea-

surement sequence is equivalent to that carried by the latest estimate

x̂k−1 and the the new measurement zk. A similar approximation is

used in the GPB filters, where the whole history is merged into a

single estimate from the previous step.

Using (4), an estimate may be obtained via a usual KF update step

that uses the previously obtained estimate together with the latest

measurement to yield the next estimate. Formally,

E [xk ∣ x̂k−1, zk, °k = 1, ±k = ± ] ≈ F1x̂k−1 + F2zk, (5)

where F1 = (I − F2H)A, and

F2 = (APk−1A
T +Q)HT (H(APk−1A

T +Q)HT +R±)−1
(6)

where Pk is the estimation error covariance, given by the recursion

Pk = (I − F2(k − 1)H)(APk−1A
T +Q). (7)

Consider next the weighting factors in (3)

¹°,±(k) ≜ Pr {°k = °, ±k = ± ∣ Zk }

=
p (zk ∣ Zk−1, °k = °, ±k = ± )

p (zk ∣ Zk−1 )
Pr {°k = °, ±k = ± ∣ Zk−1 }

(8)

For ° = 1, the term in the numerator is the likelihood of the present

measurement conditioned on the entire history as well as on the event

that it is not a faulty measurement. If all past measurements were

fault-free, the above density would be Gaussian with mean ẑk =
Hx̂k and (innovation) covariance Sk = HPkH

T + R, that may be

easily obtained from the standard KF procedure. Since this is not the

case, the following is an approximation:

p (zk ∣ Zk−1, °k = 1, ±k = ± ) ≈ N (zk; ẑk, HPkH
T +R±). (9)

The likelihood of zk given that it is a faulty measurement, i.e. ° = 0,

may be computed precisely, as in this case zk is independent of

the history p (zk ∣ Zk−1, °k = 0, ±k = ± ) = N (zk; 0, R±). The last

term on the RHS of (8) may be expanded using the total probability

law as

Pr {°k = °, ±k = ± ∣ Zk−1 }

=
∑

°1,±1

Pr {°k = °, ±k = ± ∣ Zk−1, °k−1 = °1, ±k−1 = ±1 }

× ¹°1,±1(k − 1). (10)

Unlike previously considered terms, the remaining conditional prob-

ability is affected by the differences between various problems posed

at the beginning of this section. We treat each case independently.



Problem 1. In this case the vector valued sequence {°k, ±k} is

i.i.d. Hence,

Pr {°k = °, ±k = ± ∣ Zk−1 } = Pr {°k = °}Pr {±k = ±} . (11)

Problem 2. Similarly to the case of Problem 1 we have

Pr {°k = °, ±k = ± ∣ Zk−1 } = Pr {°k = °, ±k = ±} . (12)

Problem 3. The derivation of the filter for this problem rests on

the following lemma.

Lemma 1. Let {ak} and {bk} be independent Markov sequences.

Then, the vector-valued sequence {ak, bk} is Markov.

Equipped with Lemma 1, the derivation of the filter for Problem

3 boils down to the following relation:

Pr {°k = °, ±k = ± ∣ Zk−1, °k−1 = °1, ±k−1 = ±1 }

= Pr {°k = ° ∣ °k−1 = °1 }Pr {±k = ± ∣ ±k−1 = ±1 } . (13)

Problem 4. The solution to Problem 4 is obtained in a similar

manner to Problem 3. The only difference is that the joint conditional

probability in the last equation cannot be decomposed into a product

of marginal conditional probabilities.

Pr {°k = °, ±k = ± ∣ Zk−1, °k−1 = °1, ±k−1 = ±1 }

= Pr {°k = °, ±k = ± ∣ °k−1 = °1, ±k−1 = ±1 } . (14)

We have, thus, obtained efficient estimation schemes for Problems

1–4, that are based on a step-wise approximation of the conditional

expectation. In all cases, three primitive KFs, each matched to a

different joint fault indicator event, run in parallel and produce

local, conditional estimates. These estimates are then fused into a

single output (to be used as the filter’s input in the next iteration)

using weighting probabilities that are computed using the outputs

of the KFs. The differences between different problems are in the

computation of these weighting probabilities and they stem from

the different mechanisms controlling the transitions between faults

at different times.

In the next section we adopt an alternative, suboptimal approach

for estimating the state for the posed problems. This approach is

based on the well known IMM method, and uses the same number

of primitive filters with different fusion mechanism.

IV. IMM-BASED FILTERS

To invoke the IMM algorithm we consider the posterior density of

the state xk given all the measurements Zk = {z0, ..., zk}.

p (xk ∣ Zk )

=
∑

°,±

p (xk ∣ Zk, °k = °, ±k = ± ) Pr {°k = °, ±k = ± ∣ Zk } .

(15)

The weighting probabilities may be computed in the same manner

as in Section III. The difference is introduced in the approximate

calculation of the conditional densities carrying the information of

the (conditional) estimates E [xk ∣ Zk, °k = °, ±k = ± ]. We outline

this calculation next.

Consider the conditional density in (15). We may rewrite it using

Bayes’ rule as follows

p (xk ∣ Zk, °k = °, ±k = ± )

=
p (zk ∣ °k = °, ±k = ±,xk )

p (zk ∣ °k = °, ±k = ±, Zk−1 )
p (xk ∣ Zk−1, °k = °, ±k = ± ) .

(16)

This equation represents the measurement update step of a standard

KF matched to the event {°k = °, ±k = ±} which represents the

active model at time k.

The IMM technique is utilized in the approximate computation of

the corresponding time update step, represented by the conditional

prior density p (xk ∣ Zk−1, °k = °, ±k = ± ). To this end, we define

three possible modes, as follows: m1 ≜ {°k = 1, ±k = 1}, m2 ≜

{°k = 1, ±k = C}, m3 ≜ {°k = 0}. Consequently, three primitive

KFs, each matched to a different mode, are run in parallel. At each

estimation cycle, all three filters are fed by the current measurement

as well as by new initial conditions. The initial conditions are

obtained from an interaction of all three filters using their outputs

as inputs to the interaction block. Thus, poorly performing filters are

“punished”, whereas well-performing ones are “rewarded” in terms of

their initial conditions. The overall output is obtained, at each step,

as a weighted combination of the individual outputs of the mode-

matched filters.

The steps of the IMM algorithm are summarized below:

1) Mixing probabilities computation:

¹i∣j(k − 1 ∣ k − 1) = Pr {ℳk−1 = mi ∣ ℳk = mj , Zk−1 }

=
1

c
pij¹i(k − 1), i, j = 1, 2, 3, (17)

where pij ≜ Pr {ℳk = mj ∣ ℳk−1 = mi } and c is some

normalization constant that may depend on j.

2) Mixing: starting with the estimate matched to model mi from

time k − 1, x̂i
k−1, compute the mixed initial condition for the

filter matched to mj :

x̂
0j(k − 1) =

3
∑

i=1

x̂
i
k−1¹i∣j(k − 1 ∣ k − 1), j = 1, 2, 3 (18)

and the associated covariance P 0j
k−1.

3) Mode-matched filtering: using the initial conditions of step 2
as inputs to the filter matched to mj , obtain the mode-matched

estimate x̂
j
k and P j

k , as well as the associated likelihood

function Λj(k) ≜ p (zk ∣ ℳk = mj , Zk−1 ) for j = 1, 2, 3.

4) Mode probability update: the probabilities ¹j(k), j = 1, 2, 3
are calculated similarly to ¹°,±(k) in (8).

5) Estimate combination: x̂(k) =
∑3

j=1 x̂
j
k¹j(k), with the corre-

sponding covariance.

Note that the filter matched to m3 assumes that no measurement

carries useful information. Therefore, it simply propagates its initial

conditions over time.

V. LINEAR OPTIMAL FILTERS

Next we derive the linear optimal filters for the different cases

of fault sequences posed in Section II. We consider the following

recursive form for x̂k ≜ x̂k∣k:

x̂k+1 = F1(k)x̂k + F2(k)zk+1. (19)

For x̂k to be MMSE-optimal, it should satisfy the following necessary

and sufficient orthogonality conditions [9]:

E

[

(x̂k+1 − xk+1) z
T
i

]

= 0, i = 0, ..., k + 1. (20)

We utilize these conditions for computing F1(k) and F2(k). We

proceed similarly to [1], [3], omitting the dependence of F1 and

F2 on k, as well as the dependence of vk+1 on ±k+1, for brevity.



A. Filter Derivation

Consider the orthogonality conditions (20) for i = 0, ..., k.

Substituting (1) and (19) and utilizing the independence of wk and

{°k+1, zi}, it can be shown that the following relations guarantee

satisfaction of the orthogonality conditions for i = 0, ..., k

F1 = A− F2HAPr {°k+1 = 1 ∣ °i = 1} . (21)

Clearly, (21) holds iff its RHS does not depend on i. Thus

Lemma 2. Sufficient conditions for the first k + 1 orthogonality

conditions of (20) to hold are that Pr {°k+1 = 1 ∣ °i = 1} be

independent of i for i = 0, . . . , k.

A similar lemma was originally presented in [3] for the case of

multiplicative faults, where the above conditions were shown to be

necessary and sufficient. However, for the necessity, H was required

to be of rank n (the dimension of xk) which is a very strong

requirement (since it means that all components of the state are

observed through the measurement equation).

Note that for the fault-free case, where Pr {°i = 1} = 1, we obtain

the standard KF equation as expected.

Corollary 1. Let {°k} be a homogeneous Bernoulli Markov chain

satisfying the sufficient conditions of Lemma 2, and suppose that not

all elements of the transition matrix of {°k} are in {0, 1}. Then one

of the following conditions holds

1) Pr {°k+1 = 1 ∣ °k = 1} = 1.

2) The transition probability matrix of {°k} has identical rows.

When either of the conditions of Corollary 1 holds, we

shall denote the transition probability Pr {°k+1 = 1 ∣ °i = 1} =
Pr {°k+1 = 1 ∣ °k = 1} as p11.

To obtain the second relation between F1 and F2 we consider (20)

for i = k + 1. Taking the expectation we have:

E [°k+1] (I − F2H)Ck+1H
T

− F1p11E
[

x̂kx
T
k+1

]

HT − F2RE [±k+1] = 0, (22)

where Ck = E
[

xkx
T
k

]

.

For convenience we summarize the filter equations below.

x̂k+1 = F1x̂k + F2zk+1 (23a)

F1 = A− p11F2HA (23b)

F2(k) =
(

E [°k+1]Ck+1 − p11AVkA
T
)

HT

×
[

E [°k+1]HCk+1H
T − p211HAVkA

THT +RE [±k+1]
]−1

(23c)

Ck+1 = ACkA
T +Q (23d)

Vk+1 = F1VkF
T
1 + F2(E [°k+1]HCk+1H

T +RE [±k+1])F
T
2

+ p11F2HAVkF
T
1 + p11F1VkA

THTFT
2

(23e)

B. Special Cases

Equations (23) are general. The terms affected by the specific

problem under consideration are p11 and E [°k+1] = Pr {°k+1 = 1}.

Their computation is discussed next.

Problem 1. In this case p11 = Pr {°k+1 = 1} = E [°k+1]. In the

additive fault-free case, i.e., Pr {±k = 1} = 1, this reduces to the

classical result of Nahi [1].

Problem 2. It follows that {°k} is an i.i.d. sequence as well. Thus,

Pr {°k+1 = 1 ∣ °i = 1}

= Pr {°k+1 = 1, ±k+1 = 1}+ Pr {°k+1 = 1, ±k+1 = 0} . (24)

Problem 3. In this case, following Corollary 1, p11 is assumed

known. In the additive fault-free case, this filter reduces to that of [3].

Problem 4. Similarly to the case of Problem 3, the desired

quantities may be obtained from the joint law of {°k} and {±k}.

VI. SIMULATION STUDY

In this section we compare the performance of the optimal linear

algorithm with that of the one-step near-optimal nonlinear filter in a

simple scalar example.

A. General Simulation Setup

Consider the following system, adapted from the example in [3].

xk+1 = −0.8xk +wk, (25)

where xk is a scalar state variable, wk is a zero-mean, unit variance,

white Gaussian noise and x0 = 0. The system is observed via one

of two channels. The first channel introduces only additive faults:

zk = xk + vk(±k). (26)

The second channel is subject to both kinds of faults:

zk = ¯kxk + vk(±k). (27)

The sequence {vk} is a zero mean white Gaussian process indepen-

dent of {wk}, and {¯k} is a Bernoulli Markov fault sequence of the

second channel with known transition probability matrix P .

The first channel is the actual measurement channel with probabil-

ity 1−q, and the second one is chosen with probability q. The choice

between the two channels is done independently of {wk} and {vk}.

The sequence of the additive fault variables {±k} is chosen to be i.i.d.
such that each ±k assumes the values 1 and C with probabilities r
and 1− r, respectively.

Both measurement channels constitute a unique observation equa-

tion of the following form

zk = °kxk + vk(±k), (28)

where °k = 1− ®+ ®¯k, and Pr {® = 1} = 1− Pr {® = 0} = q.

The formulation (28) induces various transition structures of {°k},

as discussed in the next subsection.

In all examples in the sequel the following common parameters

are used C = 10, R = 1, r = 0.8, p = 0.9.

B. Example 1: Markov Transitions

In this experiment we set q = 1 and P =
(

1−p p
p 1−p

)

. Conse-

quently, °k = ¯k, meaning that the sequence of multiplicative faults

indicators is a Markov process. Since the sequence {±k} is i.i.d. and,

in particular, a Markov process, the conditions of Problem 3 hold.

Note that in this case the necessary conditions of Corollary 1 are not

satisfied for p /∈ {0, 1
2
}. Hence, the sufficient conditions of Lemma 2

do not hold, and no claim can be made regarding the optimality of

the linear estimator.

We compare the mean squared error of this linear filter to that of

the one step near-optimal filter devised in Section III. As an overall

reference we also generate the optimal estimate using a “genie-based”

KF that knows the exact values of all fault indicators at every time.

Knowing the faults at each time degenerates the problem to the

standard setting such that a standard KF yields optimal results.
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Figure 1: Normalized estimation errors of the linear optimal filter (dashed), and the one-step optimal filter (solid)

Both error sequences, normalized by the errors of the genie-based

filter and averaged over 10000 Monte Carlo runs are presented, versus

time, in Fig. 1(a). Note that in this case, whereas the linear filter

acts under conditions it is not designed for, the nonlinear estimator

operates under Markovian dynamics of the modes it was designed

for. It is, therefore, not surprising that the errors produced by the

linear filter are higher than those of the nonlinear one.

C. Example 2: Non-Markov Transitions

In this example we deviate slightly from the scope of the problems

defined in Section II by considering the system (25)–(28) such that

the 2nd condition of Corollary 1 is satisfied, and the linear filter

devised earlier is the linear, MMSE-optimal estimator for the problem

at hand. Since a Markov process satisfying the above conditions has

a somewhat degenerate structure, we consider a more complicated

case under which the Markov property is not valid. To this end we

set q = 0.7 and P =
(

1−p p
1−p p

)

, such that °k ∕= ¯k. It can be shown [3]

that the transition probability Pr {°k = 1 ∣ °j = i} has the following

form:

Pr {°k = 1 ∣ °j = i} =

{

p, i = 0
1−q(1−p2)
1−q(1−p)

, i = 1
. (29)

Since Pr {°k = 1 ∣ °j = 0} ∕= Pr {°k = 1 ∣ °j = 1}, and p ∕= 1
and q ∕= 1, neither the rows of the corresponding transition matrix are

identical, nor Pr {°k = 1 ∣ °k−1 } = 1 and, according to Corollary 1,

the process is not Markov.

We compare the errors (normalized by those generated by the

genie-based filter) of the linear and the nonlinear filters. The results

are presented in Fig. 1(b).

In this case, the linear filter is optimal within the family of all

linear filters, but the one-step optimal filter operates under conditions

deviating significantly from those it is designed for since the mode

transitions are no longer Markov and the transition kernel of Eq. (29)

is only an approximation of a TPM that is required in the one-step

optimal filter. Not surprisingly, the performance of the optimal linear

filter is superior to that of the nonlinear one.

VII. CONCLUDING REMARKS

We have presented a unified formulation of a general fault-prone

dynamical system where faults affect the measurement equation.

Unlike previously reported research, the proposed formulation ad-

mits simultaneous presence of both multiplicative faults representing

interruptions indicators, and additive faults representing measurement

biases. Both types of faults may be decoupled, or they can be strongly

correlated, such that classical problems are obtained as special cases

when the proposed formulation is appropriately degenerated. Several

special problems resulting from the general formulation have been

listed, and three families of suboptimal state estimators have been

derived for these problems. These algorithm families include 1)

one-step near-optimal filters, 2) IMM-based filters, and 3) recursive

linear optimal filters. The linear optimal and one-step near-optimal

filters have been tested in simulation, demonstrating their relative

performance and providing rules of thumb on the conditions when

either of the approaches should be preferred.
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