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Abstract

Multiple-target tracking (MTT) poses difficult computational challenges related to the measurement-

to-track data association problem, especially in the presence of spurious and missing measurements.

Different approaches have been proposed to tackle this problem, including various approximations and

heuristic optimization tools. The Cross Entropy (CE) method and the related Parametric MinxEnt (PME)

method are recent optimization heuristics that have proveduseful in many combinatorial optimization

problems. They are akin to evolutionary algorithms in that apopulation of solutions is evolved, however

generation of new solutions is based on statistical methodsof sampling and parameter estimation. In

this work we apply the Cross-Entropy method and its recent MinxEnt variant to the multi-scan version

of the data association problem in the presence of misdetections, false alarms, and unknown number of

targets. We formulate the algorithms, explore via simulation their efficiency and performance compared to

other recently proposed techniques, and show that they obtain state-of-the-art performance in challenging

scenarios.

Index Terms

Target tracking, data association, combinatorial optimization, Kalman filtering, cross-entropy method,

Monte-Carlo methods

I. INTRODUCTION

Multiple-target tracking (MTT) is an essential component of surveillance-related systems. A general

formulation of the problem assumes an unknown and varying number of targets that are continuously

moving in a given region. In the single-sensor version, the states of these targets are sampled by the

sensor and the noisy measurements are provided to the tracking system. The detection probability is not

perfect and the targets may go undetected at some sampling intervals. In addition, there are spurious

July 12, 2011 DRAFT



2

reports of possible targets, or clutter measurements whicharise independently of the targets of interest. A

primary task of the MTT system is data association, namely, partitioning the measurements into disjoint

sets, each generated by a single source (target or clutter).The secondary goal is estimation of the states

based on the measurements originating from the targets of interest. The data association problem may

be formulated in several ways. In single scan data association the raw measurements are processed one

scan at a time and the target states are updated accordingly.Alternatively, several sets of measurements

may be collected and processed together in batch mode – this is the multi scan data association. For an

illustration see Fig. 4.

Several methods now exist to handle the data association problem. These may be roughly grouped

into two types: Bayesian and non-Bayesian. Among the Bayesian methods, there is the well known Joint

Probabilistic Data Association Filter (JPDA) [1], which isa single scan filter where the states of existing

targets are to be updated based on the latest set of measurements (scan). Data association is handled by

summing over the probabilities of all feasible partitions,where no two targets can share a measurement

and each target may be a source of at most one measurement per scan. A shortcoming of the basic JPDA is

its inability to initiate and terminate tracks. In addition, calculating the probabilities of all feasible events

is NP-hard [2] in the number of targets and measurements and the calculation becomes intractable even for

a moderate size of the problem. Another well known approach is the multiple hypotheses tracker (MHT)

[3], in which each hypothesis associates past observationswith targets and, as a new set of observations

arrives, a new set of hypotheses is formed by augmenting the previous ones. The hypothesis with the

highest posterior is returned as a solution. MHT is capable of initiating and terminating tracks. However,

the number of hypotheses involved in the calculation grows exponentially over time. Thus, in order to

overcome this computational complexity, certain pruning and clustering methods must be used at expense

of optimality. Another method for handling data association in the Bayesian manner is the Probabilistic

Multi-Hypothesis Tracker (PMHT) [?]. The PMHT algorithm employs a more lenient measurement model

in comparison to PDAF and MHT. Whereas the latter assume thata target can generate at most one

measurement per scan, PMHT drops this constraint, and posits the measurement/target association process

as independent across measurements. Similarly to JPDA, thebasic PMHT assumes a fixed and known

number of targets in the scenario under consideration.

The non-Bayesian approach is characterized by hard measurement-to-track association, such that some

cost function is maximized. The problem may then be reformulated as an integer programming problem

[4] or, more precisely, as a multidimensional assignment problem, which is NP-hard when the number

of sets (scans) to be assigned is greater than or equal to3 [5]. Therefore, for the multi scan data
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association, one should invoke some approximations schemes for the multidimensional assignment such

as Lagrangian relaxation techniques that relax some of the problem constraints and solve the relaxed

problem by utilizing linear programming techniques [6]. Note, however, that when there are only two

sets of data to be assigned, there exist exact, polynomial time solutions which have been combined with

particle filter based algorithms in the context of multi-target tracking [7]. Additionally, an algorithm for

assigning a set of measurements to the set of predicted target states using the competitive Hopfield neural

network was proposed in the recent work [8]. Nonetheless, the simulations presented therein included

relatively small tracking scenarios.

Another option to solve the multi scan data association problem is by utilizing stochastic search

methods. In [9] the problem was solved by applying the MarkovChain Monte Carlo (MCMC) method

to obtain the partition with maximum posterior. Using the Metropolis algorithm, the authors proposed

a set of moves for modifying a partition of the measurements,such that sampling from the posterior

distribution was possible after a few thousands of moves. They showed a remarkable performance of

the algorithm in comparison to the MHT method in terms of accuracy of the solution and running time.

However, the algorithm is still susceptible to getting trapped in a strong local maxima. Such behavior is

typical of local search algorithms.

The main contribution of this paper is the development of feasible algorithms that solve the multi scan

data association problem and are capable of initiating and terminating a varying number of tracks. The

general setup and problem definition are very similar to those in [9]. In particular, the basic assumptions

for the data association problem are identical to those usedin JPDA, MHT, and MCMCDA. Namely, we

assume that each measurement may either belong to at most onetarget or be classified as a false alarm,

and at most one measurement may be associated with a given target at a time. (A detailed discussion

of these assumptions is provided in section II). The solution approach, however, is different. We invoke

the Cross Entropy (CE) method [10] and the related Parametric MinxEnt (PME) method [11] in order to

obtain the partition with the highest posterior. CE based schemes are approaches for combinatorial and

continuous optimization, and (originally) for estimationof rare-events probabilities. They are inherently

global search methods and, therefore, may reduce the risk ofgetting stuck in shallow local maxima.

The main idea is representing the solution space with a set ofparameters and defining a probability

distribution on these parameters. Then, two successive steps are iterated – sampling from the existing

distribution, and updating this distribution using a subset of elite (better-valued) samples. The underlying

principle of solution improvement is thus akin to evolutionary optimization algorithms (see, e.g. [12]), but

the solution generation mechanism is different, and the whole scheme has very few meta-parameters that
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need to be tuned. The resulting Cross Entropy Data Association (CEDA) and Parametric MinxEnt Data

Association (PMEDA) algorithms are applied here to challenging tracking scenarios, and show improved

performance relative to current state-of-the-art techniques.

The structure of this paper is as follows. We formally state the (discrete-time) general multiple-target

tracking problem in section II. In section III we outline theCE and PME methods for combinatorial

optimization. In section IV we present general purpose CEDAand PMEDA algorithms for multiple target

tracking. The algorithms are applied in simulation to densetracking scenarios and their performance is

compared with several popular algorithms in section VI.

II. PROBLEM DEFINITION

A. Preliminaries

Consider a surveillance scenario of durationT ∈ ℤ
+. There areK targets moving around the

surveillance regionℛ for some duration[tki , t
k
f ] ⊂ [1, T ] for k = 1, . . . ,K whereK is an unknown

integer. The volume ofℛ is V and it is scanned periodically by a single sensor having scanperiodTs

normalized to one time unit. The notation[ti, tj ] should be interpreted as{ti, ti + 1, ..., tj}.

B. Target Model

In this subsection we describe the target modeling commonlyused in the target tracking literature

(see e.g. [13]). Each targetk starts at a random position inℛ at time tki , moves aroundℛ until tkf and

disappears. An existing target may disappear at each sampling time with probabilitypz and persists with

probability 1 − pz. The number of new targets arising at each time inℛ is modeled to have a Poisson

distribution with a parameter�bV , where�b is the birth rate of new targets per unit time and volume.

The initial position of a new target is uniformly distributed overℛ. We describe the motion of a target

by the discrete-time dynamicsF : ℝd → ℝ
d, whered is the dimension of the state variable, andxt ∈ ℝ

d

is the state at timet. The targetk moves according toxkt+1 = F (xkt , w
k
t ), t = tki , . . . , t

k
f − 1 where

wk
t ∈ ℝ

d are white noise processes. In this work, we consider the samelinear dynamical model for each

target, namely, if a target is observedℓ times atti, i = 1, ..., ℓ, its dynamic model may be expressed as:

xti+1
= A(ti+1, ti)xti +G(ti+1, ti)wti , (1)

wherewti is a white Gaussian noise with covariance matrixQ. A andG are matrices of appropriate

sizes, with entries determined by the sampling interval(ti, ti+1) for eachi.
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C. Sensor and Measurement Models

We assume that a single sensor scans the surveillance regionperiodically with scan timeTs of one

time unit. Noisy observations of the position of each targetare obtained with detection probabilityPd.

In addition, the sensor generates false alarms, whose number is assumed to have a Poisson distribution

with parameter�fV , where�f is the false alarm rate per unit time per unit volume. The origin of each

observation (i.e. target or false alarm) is not a-priori known, since each observation is assumed to carry

only the cartesian position and the corresponding time tag.

Let nt be the number of observations at timet, including both noisy observations and false alarms. Let

y
j
t ∈ ℝ

m denote thej-th observation at timet for j = 1, . . . , nt, wherem is the dimensionality of each

observation vector. Each target generates a unique observation at each sampling time if it is detected.

We assume a linear observation model, namely, an arbitrary observation at timeti, y
j
ti , is generated as

follows:

y
j
ti =

⎧



⎨



⎩

C(ti)xti + vti , y
j
ti is object originated

ut, otherwise
, (2)

wherevti ∈ ℝ
m is a white Gaussian noise independent ofwti with covariance matrixR, C is a matrix

of appropriate size, andut ∼ Unif(ℛ) is the random process of false alarms, assumed to be uniformly

distributed in space.

D. Solution Space and Optimization Criteria

Dealing with hard (as opposed to soft) data association we seek for a partition of the measurements

into disjoint sets. One of these sets is the collection of false alarms and the others are collections of

measurements originating from the same target – one set per target. LetYt =
{

y
j
t : j = 1, . . . , nt

}

be

the set of observations at timet, andY1:T =
∪

t∈{1,...,T} Yt be the set of all observations.Ω is defined to

be the set of partitions ofY1:T such that, for! ∈ Ω:

1) ! = {�0, �1, . . . , �K}.

2)
∪K

k=0 �k = Y1:T and �i ∩ �j = ∅ for i ∕= j, i.e., each measurement belongs to at most one target,

or is classified as a false alarm.

3) �0 is considered as the set of false alarms and�k, k ≥ 1 is considered as thekth track – a set of
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measurements that are attributed to thekth target1

�i =
{

yi1t1 , y
i2
t2 , . . . , y

j
tj ∣ j ∈ ℤ

+, t1 < t2 < . . . < tj

}

,

i.e. each track is comprised of a subset of measurements ordered according to their time tags in

an increasing order.

4) ∣�k ∩ Yt∣ ≤ 1 for k = 1, . . . ,K and t = 1, . . . , T . That is, each measurement belongs to one track

at most.

5) ∣�k∣ ≥ 2 for k = 1, . . . ,K, where∣�k∣ denotes the cardinality of�k. That is, a track must contain

at least two measurements.

We make two additional assumptions as part of the problem formulation.

A. The maximal velocity of any target is bounded by a known constantvmax.

B. The number of consecutive missing observations of any track is bounded by a known constantdmax.

This assumption may be used as a criterion to distinguish an event of a new targets appearance

from an event of a continuation of an existing track.

For further discussion of the last two restrictions the reader is referred to [9].

Any partition ! in Ω is said to be valid or feasible. Once a partition! ∈ Ω is chosen, the tracks

�1, . . . , �K ∈ ! and the set of false alarms�0 ∈ ! are completely determined. We thus face a problem

of choosing the best (in some appropriate sense) partition!∗ given the set of observationsY1:T . This is

the so-called measurement oriented approach to data association.

A natural criterion for this approach is the Maximum a-Posteriori probability [3], [9], [13]. That is,

looking for the optimal partition!∗ in the MAP sense:

!∗ = argmax
!∈Ω

ℙ {! ∣ Y1:T} . (3)

E. The Posterior Probability

Expressions for the posterior probabilityℙ {! ∣ Y1:T } are commonly used in the target tracking literature

[1], [3], [9], [13]. The expression (5) below can be obtainedfrom that of [13] and the complete derivation

is available in [14]. For each partition! let mt denote the number of targets at timet, at be the number of

new targets at timet, zt – the number of targets terminated at timet, dt – the number of target detections

1We shall refer to the above set of measurements as a track, although usually a track is the estimated trajectory, that is after

filtering (or smoothing) out the measurement noise.
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at time t, ut – be number of undetected targets at timet (according to! i.e. missing measurements

within a path), andft be number of false alarms at timet. Bearing in mind thatnt is the total number

of measurements obtained at timet, it may be easily verified that the following relations hold:

mt = mt−1 + at − zt (4)

ut = mt − dt

ft = nt − dt.

The final expression reads,

ℙ {! ∣ Y1:T} =
1

Z0

∏

�∈!∖{�0}

∣� ∣
∏

i=2

N (�(ti); ŷti(�), Bti(�)) (5)

⋅
T
∏

t=1

pztz (1− pz)
mt−1−zt ⋅ P dt

d (1− Pd)
ut�at

b �
ft
f ,

whereZ0 is a constant that does not depend on!, N (x;�,Σ) is the Gaussian density with mean� and

covarianceΣ evaluated atx, �(ti) is the i-th measurement associated with track� , ŷti(�) is the i-th

predicted measurement obtained from the standard Kalman applied to the measurements associated with

track � , andBti(�) is the corresponding innovation covariance.

III. B ACKGROUND ON CE AND PME

A. The CE Method for Combinatorial Optimization

Let X be a finite set of elements andS(⋅) be a performance function defined onX . Our goal is to

find the maximum ofS(⋅) overX . Namely2,

S(x∗) = ∗ = max
x∈X

S(x). (6)

A convenient way to introduce the CE method is from the parameter estimation perspective. When solving

optimization problems using the CE method, one searches fora probability distribution concentrated near

the global extremum of the objective function. Assume we candefine a parameterized probability density

function f(x;v) on the setx ∈ X . The goal is to construct a sequence of parameter vectorsv1,v2, ....

such thatf(x;vt) becomes concentrated around the global optimumx
∗ as t increases. This goal is

2Note that the variablex below is not related to the state variablext defined in section II. We use this notation to comply

with conventions.
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achieved by sampling fromf(x;vt) and constructing the next parameter vectorvt+1 as the Maximum

Likelihood estimate of the distribution parameter based onthe elite samples. Namely,

v̂t+1 = argmax
v

ln f(X̃1, ..., X̃N�;v), (7)

where X̃1, ..., X̃N� are theN� elite samples, achieving the best performance in the current set, and

f(X̃1, ..., X̃N�;v) is the joint density evaluated at̃X1, ..., X̃N�. The new parameter vector defines a new

distribution from which we can sample again and repeat the procedure. Instead of updating the parameter

vectorvt directly via the solution of (7) one may use the smoothed update which reduces the probability

that some components ofvt will become degenerate at early stages,

v̂t = �ṽt + (1− �)v̂t−1, 0 ≤ � ≤ 1, (8)

whereṽt is the solution obtained from (7). The whole procedure is summarized in Alg. 1. The stopping

Algorithm 1 The CE Algorithm for Optimization.
1: Define v̂0 = u. Sett = 1 (level counter)

2: GenerateX1, . . . ,XN from f(⋅;vt−1) and compute the sample(1 − �)-quantile ̂t of the perfor-

mances.

3: Find the MLE of the new parametervt based on the set of the elite samples. Namely, solve (7).

4: Smooth the estimate via (8).

5: If stopping criteria are met - stop, otherwise sett = t+ 1 and reiterate from step 2.

criteria in step 5 of Alg. 1 may be lack of significant improvement for several iterations, or convergence

to a degenerate distribution.

Assume now thatX = (X1, ...,Xn) is a random vector such that eachXi is a discrete random variable

that can assume a finite number of values{a1, ..., am}. The important observation that makes the CE

method very easy to apply to various optimization problems,such as the Traveling Salesperson and

MaxCut [5], [10], is that in this case there is a simple componentwise analytical solution to (7) that reads

[10]

v̂jk =

∑N
i=1 1{Xij=ak}1{S(Xi)≥̂t}
∑N

i=1 1{S(Xi)≥̂t}

, (9)

whereXij is the j-th element of thei-th sampleXi drawn fromf(x,vt−1) and1{A} is the indicator

function ofA. Namely, the updated value of each parameter is the relativefrequency of the appearance

of the corresponding value in the current elite sample.
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B. The PME Method for Combinatorial Optimization

Recall that the goal of the CEM was to find a “good” sampling density concentrated near the global

optimum of the problem at hand. Another option is to considerthe (single constrained) Minimum Cross

Entropy (MinxEnt) program that reads

min
f(x)

{

D(f ∣ℎ) =

∫

ln
f(x)

ℎ(x)
f(x) dx = Ef

[

ln
f(X)

ℎ(X)

]}

(10)

subject to the first moment constraint:

EfS(X) = , (11)

wheref and ℎ are n-dimensional pdf’s,S(x) is the known performance function,x ∈ ℝ
n, and  is

a performance close to the optimal∗ in (6). Assumingℎ(⋅) is a known pdf that incorporates all the

available prior information, the problem is to find the closest toℎ(x) densityf(⋅) in the Kullback-Leibler

sense subject to the moment constraint. If no prior information is available,ℎ(x) is taken to be uniform.

We shall restrict ourselves to the discrete distributionsf(x) andℎ(x) parameterized by parameter vectors

v,u respectively –f(x,v) andℎ(x,u). The solution of the MinxEnt program is [15]

f(x,v∗) =
ℎ(x,u) exp {−S(x)�}

Eu [exp {−S(X)�}]
, (12)

where� is a constant (temperature) obtained from the following equation

Eu [S(X) exp {−S(X)�}]

Eu [exp {−S(X)�}]
= , (13)

andX ∼ ℎ(x,u). For  = ∗, the optimal temperature is�∗ = −∞ and the optimal densityf∗(x) is

a Dirac delta function located atx∗. Given a successful choice of and obtaining the corresponding

value of� we could, in principle approximate the optimalx
∗ by generating samples from (12). However,

sampling from such distribution is not a trivial task. In fact, no efficient methods are known to exist [16].

Thus, we shall approximate the distribution (12) as a product of marginal densities which will allow

easy sampling similarly to the basic CE method. Note that ifℎ(x,u) is a discrete (multidimensional)

distribution with finite support, then so isf(x,v∗) and, consequently, all its marginal distributions. Thus,

all these distributions are completely determined by theirparameters which may be calculated as follows.

Assuming as before, thatX = (X1, ...,Xn) is a random vector such that eachXi is a discrete random

variable that can assume a finite number of values{a1, ..., am}, then the PME estimator of

vjk ≜ ℙ {Xj = ak} = Ev

[1{Xj=ak}

]

is [11]

v̂jk =

∑N
i=1 1{Xij=ak} exp {−S(Xi)�}
∑N

i=1 exp {−S(Xi)�}
. (14)
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It is readily seen that (14) is essentially the same as (9) with indicators1{S(Xi)≥̂t} being replaced by

exponentialsexp {−S(Xi)�}. The optimal “temperature” parameter� is obtained from the (numerical)

solution of the stochastic version of (13) such that the single constraint in (11) is satisfied:
∑N

i=1 S(Xi) exp {−S(Xi)�}
∑N

i=1 exp {−S(Xi)�}
= . (15)

Similarly to the CE method, we invoke a multi-stage procedure where a sequence of reference parameters

{vt, t ≥ 0}, a sequence of levels{t, t ≥ 1} and a sequence of temperatures{�t, t ≥ 1} are generated. As

before, we shall use the latest available information for the prior density. Namely, at staget, ℎ(x,u) =

f(x,vt). The whole optimization procedure is summarized in Algorithm 2. For both CE and PME

Algorithm 2 The PME Algorithm for Optimization.
1: Define v̂0 = u. Sett = 1 (level counter).

2: GenerateX1, . . . ,XN from f(⋅; v̂t−1) and compute the performance mean from̂t = Ev̂t−1
S(X).

3: Use the same sampleX1, . . . ,XN and solve the stochastic program (15). Denote the solution by �̂t.

4: Updatev̂t componentwise via (14).

5: If stopping criteria are met - stop, otherwise sett = t+ 1 and reiterate from step 2.

optimization routines we expect the parameter vectors to converge to degenerate ones, such that by

sampling from the final distribution we shall always obtain optimal or near-optimal solutions. Unlike CE,

all samples are used to update the parameters in the PME method (although modifications are possible)

and the solution for� in (15) requires a line-search procedure and usually cannotbe done analytically.

We thus expect each iteration of the PME method to be slower than its CE counterpart. All “tuning”

methods used for CE, such as smoothing and stopping rules, are directly applicable here as well.

IV. CE BASED DATA ASSOCIATION

In this section we develop a family of CE-based algorithms tosolve the multi-scan multi-target tracking

problem. Since the only difference between the CE and PME methods for combinatorial optimization

is the updating scheme of the parameters, we shall describe both methods together and explain the

differences when needed. In order to apply the CE and PME methods to our problem we must specify

the parameterized family of pdfs{f(⋅;v)}, as well as the parameter vectorv with respect to the data

association problem, and the procedure for sampling the solutions from it. We describe these in the

following subsections. To this end, we encode the optimization problem as a graph and introduce the

randomization on the graph’s edges or nodes [10].
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A. The Connectivity Graph

Let n =
∑T

t=1 ∣Yt∣ = ∣Y1:T ∣ be the total number of observations (both noisy detections and false

alarms). We defineG = (V,E) to be thebasic connectivity graphof the problem, where the set of nodes

V = Y1:T is the set of all measurements as defined above, and the graph edges are

E = {(yt1 , yt2) ∣ yt1 , yt2 ∈ Y, t1 < t2, ∥yt2 − yt1∥ ≤ (t2 − t1)vmax, t2 − t1 ≤ dmax}. (16)

This graph connects every node (measurement) with any othernode that can be an immediate successor in

a feasible track, subject to speed and separation constraints. A feasible track, which is a set of observations

with increasing time tags, is represented as apath in G, that is

� =
{

yi, i = 1, 2, . . . , j ∣ (yi, yi+1) ∈ E, i = 1, . . . , j − 1
}

.

The nodes of the graph represent measurements (both noisy detections and false alarms), and the edges

represent the possible event that their endpoints are successive measurements from the same target. Note

that a nodey that has no incoming and outgoing edges is a false alarm by default, and may be removed

from the graph and permanently added to the set of false alarms �0. Henceforth, we shall assume that all

such nodes have been removed from the graph. We identify eachvalid partition of the measurements with

the corresponding partition of the graph nodes. Thus, the goal is to find a partition of the the graph nodes

into a set of vertex-disjoint paths{�i, i ≥ 1} (which will represent tracks) and a set of isolated nodes�0

(which will represent false alarms) such that the posteriorℙ {! ∣ Y1:T }, defined in (5), is maximized. Let

S(!) = ℙ {! ∣ Y1:T} denote the cost of a partition! ∈ Ω.

In the discussion below we shall denote the graph nodes asni, i = 1, ..., ∣V ∣. When no confusion

occurs we shall use the notationi, i = 1, . . . , ∣V ∣ to refer toni. We shall assume that the nodes are

ordered according to the time stamps of the corresponding measurements. Namely, ifni1 andni2 belong

to scanst1 and t2 respectively, such thatt2 > t1, then i2 > i1. The ordering of the nodes representing

measurements within the same scan is arbitrary. An edge between nodeni and nodenj (or, equivalently,

betweeni andj) will be denoted(i, j). An example of the connectivity graph is shown in Fig. 1(a).

B. Distribution of Feasible Partitions

Recall that we need to define a probability distribution on the set of feasible partitionsΩ, parameterized

by a parameter vectorv. This vector will comprise of the following elements:

∙ pb(i), i ∈ V : The probability that measurementi, or equivalently nodei in the connectivity graph

G = (V,E), is an initial node in some path (including a single-node path, namely a false alarm).

July 12, 2011 DRAFT



12

∙ pf (i), i ∈ V : The probability that a path that reaches nodei terminates at it.

∙ pij , (i, j) ∈ E: The probability that nodej follows nodei in a path that goes throughi.

All probabilities are naturally required to be in[0, 1]. In addition, we require that

pf (i) +
∑

j:(i,j)∈E

pij = 1, ∀ i ∈ V.

This means that a path going through nodei has probability 1 of either continuing to a neighboring node

j or terminating ini. The probabilities{pf (i), i ∈ V } and{pij, (i, j) ∈ E} define a stochastic matrix

P which reads

P =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 p12 p13 . . . pf (1)

0 0 p23 . . . pf (2)
...

...
...

. . .
...

0 0 0 . . . pf (∣V ∣)

0 0 0 . . . 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(17)

(the last line corresponds to an absorbing final statef which terminates each path). The probability of a

single path� = (i1, . . . , im) in G will thus be proportional to

Ppath(�) ≜ pb(i1)

(

m−1
∏

l=1

pil,il+1

)

pf (im). (18)

Denoting byℬ the set of initial nodes of the paths{�1, ..., �K} in a partition! = {�0, �1, ..., �K}, the

probability of afeasiblepartition ! can now be specified as

f(!;v) =
1

Z1

K
∏

k=1

Ppath(�k)
∏

i/∈ℬ

(1− pb(i)), (19)

whereZ1 is a normalization constant that does not depend on!. The probability of infeasible partitions

is identically set to zero.

The probability distribution (19) on the set of feasible partitions Ω is best interpreted through the fol-

lowing sampling process (the actual sampling process we usewill be described later in subsection IV-D).

For each nodei = 1, ..., ∣V ∣, an independent Bernoulli random variable with success probability pb(i)

is drawn and determines whether that node is a first node in a path. If it is, we start a random walk

from i according to the transition probabilities{pij} in (17), until the terminal statef is reached. These

paths correspond to theK tracks{�1, ..., �K}. All nodes that were not visited in any of these paths are

classified as false alarms and allocated to�0. The resulting partition! is a valid sample if! ∈ Ω. If !

is not a feasible partition (i.e., it has intersecting pathsor paths below the minimal required length), it is

rejected and the above procedure is repeated until a feasible partition is reached.
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(a) The Connectivity Graph
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(b) The Augmented Connectivity Graph

Figure 1. An example of the connectivity graph (a) and of the ACG (b). Solid circles represent the actual measurements. Node
i is denoted asni. Dashed circles are the nodes added to the connectivity graph to obtain the ACG.

C. The Augmented Connectivity Graph

It will be convenient for illustration and implementation purposes to incorporate in a single graph

all the relevant options (and their probabilities), including track initiation and termination. This will

be done by augmenting the basic connectivity graph by introducing new nodes and edges. In order to

incorporate the possibility of termination of a target, we introduce an additional “sink” nodef that

represents termination of a track. Each other nodeni in the basic connectivity graph is connected to

f by a directed edge represents the event thatni corresponds to the last detection of the target prior

to termination. In order to handle target initiation in arbitrary time and place, we introduce additional

n ‘start’ nodes into the graph – one for each original node of the basic graph. These will be labeled

s1, s2, ..., sn. Each new nodesi has an outgoing edge leading to the corresponding nodeni ∈ V . The

event represented by this edge is that nodeni is the first detection of a track. A path that represents

a track with j measurements now containsj + 2 nodes as follows –{sn1
, n1, ..., nj , f}. We call the

extended graph anaugmented connectivity graph(ACG), denotedGA = (VA, EA), and refer to the

original nodes in the basic connectivity graph (representing the actual measurements) as inner nodes. An

example of an ACG is shown in Fig. 1(b). For notational convenience, denote a generic node in the ACG

as n̄i, i = 1, ..., ∣VA∣. We order these nodes as follows:

(n̄1, ..., n̄∣VA∣) = (s1, ..., sn, n1, ..., nn, f). (20)

Let GA = (VA, EA) be the ACG of the problem. The parameter vectorvA is now defined to comprise
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of the following transition probabilities

vA =
{

pAij , (i, j) ∈ EA

}

,

wherepAij is the probability that nodēnj follows noden̄i in a path that goes through̄ni in GA. We set

pAij =

⎧











⎨











⎩

pij , if n̄i = ni, n̄j = nj

pb(j), if n̄i = sj, n̄j ∕= f

pf (i), if n̄i = ni, n̄j = f

, (21)

where{pij, pb(j), pf (i)} were defined in subsection IV-B. In addition, definepff = 1 (as before), and

pAij = 1− pb(k) if n̄i = sk, n̄j = f,

which simply complement to 1 the outgoing probabilities from nodes{si}.

The augmented parameterspAij define a stochastic matrixPA, which has the following form (under the

assumed ordering of the nodes in (20))

PA =

⎛

⎝

0 B

0 P

⎞

⎠ , (22)

whereP is defined in (17), and

B =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

pb(1) 0 ⋅ ⋅ ⋅ 0 1− pb(1)

0 pb(2) ⋅ ⋅ ⋅ 0 1− pb(2)
...

...
. . .

...
...

0 0 ⋅ ⋅ ⋅ pb(n) 1− pb(n)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

The two0 matrices haven columns that correspond to the start nodes(s1, . . . , sn).

Note thatPA may be interpreted as a one-step transition matrix of a directed random walk on the

augmented graphGA.

D. Sampling of Candidate Solutions

We now describe how to sample a partition! from the distribution defined through the augmented

connectivity graphGA and the corresponding transition matrixPA. Our goal is to sample efficiently,

in the sense that the number of infeasible partitions that need to be rejected should be minimized. We

describe the sampling procedure in three stages. First, we describe sampling a single path inGA. We

then proceed with sampling multiplenon-intersectingpaths. We finally describe how to handle paths that

fall below the minimal required length.
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1) Sampling a Single Path:Sampling a single random path from the graphGA is performed by

picking uniformly at random (u.a.r.)i1 from {1, ..., n} and generating a random walk onGA starting at

si1 according to the transition matrixPA until hitting f . Note that sinceGA is a directed acyclic graph –

after at mostT steps the sink nodef will be reached and the process will terminate. The resulting path

is � =
{

si1 , ni1 , ..., nij , f, j ≥ 1
}

, or {si1 , f}. In the latter case we declare the path as void. Otherwise,

the path represents a track through the nodes
{

ni1 , ..., nij

}

.

2) Sampling Non-intersecting Paths:To sample a partition that avoids intersecting paths, we generate

n potential paths as described above, starting from the nodes{s1, . . . , sn} in random order. To avoid

track intersection, we invoke an elimination principle similar to the one used in [10] in relation with

the Travelling Salesperson Problem. After each single pathis sampled, we mark each of its nodes (save

for the sink nodef ) as occupied, and eliminate all incoming edges to these nodes, namely nullify the

probabilities on these edges. We then re-normalize the transition probabilities of the remaining outgoing

edges to 1. This elimination step is equivalent to eliminating the corresponding nodes from the augmented

transition matrixPA in (22), and re-normalizing each row sum to 1. After alln paths have been generated,

the remaining internal nodes (that is, those measurements that have not been selected as part of any path)

are allocated to the set of false alarms�0.

3) Dealing with Short Paths:The partition! = {�0, . . . , �K} obtained in the previous stage may still

be non-feasible, as some of the tracks�1, . . . , �K may be too short (recall that we require each feasible

track to contain some minimal number of measurements). Rather than rejecting these partitions, which

could still lead to a high rejection rate, we redefine measurements contained in short tracks as false

alarms, and append them to�0. We note that this step entails some modification to our definition of the

probability distribution in (19); however the precise expression is not required as part of the algorithm.

Upon completion of these steps we are left with a feasible partition !. The sampling procedure is

formally summarized in Algorithm 3.

E. Parameter Update

In order to obtain the new parameter vectorvA that will define the updated probability distribution,

we estimate its components using the best samples that were obtained in the previous iteration. Recall

that our goal is maximization of the posterior probability (5). Parameter update is performed by taking

the elite samples, according to the cost function (5), and calculating the Maximum Likelihood estimate

of vA. As is well known (e.g. [10, p. 139]), the MLE for each parameter pAij is given by

p̂Aij =
Nij

Ni
,

July 12, 2011 DRAFT



16

Algorithm 3 Basic Sampling Procedure.
Input: The augmented connectivity graphGA and transition matrixPA defined in (22).

1: Initialize: SetS = {s1, ..., sn} (remaining start nodes),k = 1 (path counter),P = PA.

2: Start k-th path: Let j = 1 (node counter). Picks uniformly at random fromS. SetS = S∖ {s}.

Define vk,1 = s to be the first node of thek-th path. Setu = vk,1 (current node indicator). Set

�k = {u}.

3: Modify transition matrix: Eliminate nodeu from P by setting theu-th column ofP to 0 and

normalizing the rows to sum up to 1.

4: Sample next node: Generatevk,j+1 from the distribution formed by theu-th row ofP . If vk,j+1 = f

go to 5. Otherwise setu = vk,j+1, �k = �k ∪ u, j = j + 1 and reiterate from 3.

5: Proceed to next path: If S = ∅ go to 6. Otherwise, setk = k + 1 and repeat from step 2.

6: Generate the FA set: Set�0 to the set of all inner nodes in{�1, ..., �k}. Further, remove all single-

node paths from{�1, ..., �k}, and append them to�0. Let K be the number of remaining paths.

Output: ! = {�0, �1, ..., �K}.

whereNij is the number of times the edge(i, j) was used in the elite sample andNi is the number

of times nodeni was visited in that sample. The PME updating is performed in asimilar manner as

explained in section III. In addition, in our experiments wehave used the smoothed update (equation

(8)) as described in section III.

F. Basic Initialization Scheme

To invoke the CE-based algorithm one should introduce an initial probability distribution on the set of

solutions, parameterized by the vectorv0. In typical applications such as TSP or MaxCut, where no prior

information is available, the vectorv0 is often chosen to induce a uniform distribution on the solution

space [10]. Our first initialization scheme takes a similar approach, with some required modifications

related to track initialization:

1) For internal nodesni, i = 1, . . . , n, we assignpz, the termination probability of a track, to the

edge connectingni with f and equal probabilities to all outgoing edges fromni. In case the only

outgoing edge is the one leading tof , it is assigned a probability 1.

2) For start nodessi, i = 1, . . . , n, we setpb(i) (the probability that nodesi starts a path) topb, a

chosen initial probability which is equal for all nodes. Theparameterpb may be empirically tuned,

and is related to the known birth rates of the new targets�b. The choice ofpb = 0.3 was found to

work well in our initial experiments.
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This simple initialization method works well in small problems, but is inefficient in large instances. A

more effective method, which utilizes the dynamical natureof the problem is described in subsection V-C.

V. IMPROVEMENTS TO THEBASIC ALGORITHM

The algorithm described in section IV provides a basic version of cross-entropy based data association.

However, the performance of this algorithm may be greatly enhanced by adding certain key improve-

ments to the sampling scheme, that make use of the specific problem characteristics. In the next three

subsections we discuss (a) history-based sampling that takes account of the target’s dynamic model, (b)

bidirectional sampling that helps in sampling complete trajectories rather than their tails, (c) an improved

initializations scheme for the sampling distribution, and(d) elimination technique for unlikely tracks.

These modifications define our final algorithm as used in the simulation experiments. We end this section

by discussing the computational complexity of the modified algorithm.

A. History-Based Sampling

Recall that our basic sampling scheme is based the connectivity graph where each inner node cor-

responds to a single measurement, and the next node in a path is sampled according to a probability

distribution thatdepends only on the present node. Assume that measurements contain position estimates

only (but not velocity estimates), as is often the case. Thisessentially implies that the choice of next node

may depend only on the current target position, but not on other motion parameters such as the target

velocity (direction and speed), which may be estimated fromthe path sampled so far. To the contrary, the

dynamic target model assumed in this work (see equations (1)-(2)) implies that other components of the

state vectorxt should be useful in estimating the next target position. These components typically include

the target velocity (direction and speed), and possibly higher position derivatives. For concreteness, let

us focus the discussion on target velocity.

To integrate target velocity into our sampling scheme, two options may be considered. One is to add

a (discretized) velocity variable to each node, which is estimated based on the sampled path so far, and

allow the next-node sampling distribution to depend on thisvariable as well. A simpler option, which

we pursue here, is to allow the next-node sampling distribution to depend on the recent two (or more)

nodes in the current path, rather than on the last node alone.Clearly, the position data in two sequential

nodes encodes the target velocity, position data from threenodes can encode the target acceleration, etc.

Thus, we modify the parametric distribution that underliesthe CE and PME algorithms in the following

way. Instead of sampling the next node in each path based on the current node alone, we allow the

sampling probability to depend on the lastr recent nodes (withr = 2 used in our simulations). To keep
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our previous algorithms, it is useful to note that the above modification can be easily translated to an

expansion of the connectivity graph, where each possible sequence ofr nodes in the original graph now

forms a node in the new graph. The actual sampling, initialization and updating schemes described in

sections IV-D, IV-F, and IV-E remain the same accept that they are applied to this extended graph.

Clearly, the proposed extension increases the number of parameters to be estimated by the CE and

Parametric MinxEnt methods. Forr = 2, the increase is proportional to the average out-degree of the basic

connectivity graph representing the problem. While the number of parameters increases proportionally,

the performance improvement is dramatic.

The preceding extension may also be motivated by considering the sequential sampling schemes used

in CE based algorithms as a useful approximation to the full probability distribution. The following

discussion may be related to some recent ideas found in [16].Consider for example the solution for

the MinxEnt program (12), which specifies some probability density f∗(x) over the components of

x = (x1, x2, ..., xn). In general, one may writef∗(x) in sequential form:

f∗(x) = fn(xn∣x
n−1
1 ) ⋅ ⋅ ⋅ f2(x2∣x1) ⋅ f1(x1), (23)

where we have used the shorthand notationx
j
i = (xi, xi+1, ..., xj). The idea behind CE and Parametric

MinxEnt is to approximate each element in this product by a parameterized distribution, with simplified

dependence on past component. The simplest approximation assumes that the components ofx are

independent. The next approximation, which is commonly used for path-sampling ( [10], [17]), employs

the (first-order) Markov chain structure:

f∗(x) ≈ ℎn(xn∣xn−1) ⋅ ℎn−1(xn−1∣xn−2) ⋅ ⋅ ⋅ ℎ2(x2∣x1) ⋅ ℎ1(x1), (24)

where theith component depends on the corresponding parametervi. This is the approximation used

in our basic scheme, where the componentsxi correspond to the nodes in the connectivity graph, and

transitions on that graph are sampled via conditional probabilities of the formpvi(xi+1∣xi). Alternatively,

we may use a less crude approximation by allowing the distribution of the next node in the path to

depend on two (or more) previous nodes (second-order Markovchain structure), as follows

f∗(x) ≈ ℎn(xn∣xn−1, xn−2) ⋅ ℎn−1(xn−1∣xn−2, xn−3) ⋅ ⋅ ⋅ ℎ3(x3∣x2, x1) ⋅ ℎ2(x2∣x1) ⋅ ℎ1(x1).

This representation translates to the two-node based sampling scheme as proposed above.

B. Bidirectional Path Sampling

Recall that we sample paths by picking at random ansi node and generating a random walk forward

in time, starting atsi and ending atf . If the nodesi (or ni) happen to fall in the middle of an actual
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path, we will clearly miss the first part of this path. Thus, most of the paths sampled in such manner will

be “truncated” since only their tails will be sampled. In other words, in order to obtain good solutions

with tracks beginning at the actual appearance times of the targets, we might need sufficiently many

samples and many iterations of the algorithms. This limitation may be efficiently resolved by allowing

bidirectionalsampling from the starting nodesi. That is, in additional to sampling a forward path in the

usual manner, we also samplebackwardin time from si. The two sampled halves are joined to form one

complete path.

Sampling backward paths is carried out using a separate structure, which is composed of a backward

connectivity graph with suitable sampling parameters. Thebackward connectivity graph is simply obtained

from the connectivity graph by reversing the direction of the graph edges. We augment this graph with a

new final nodef ′ (see Fig. 2). However, the start nodes nodes (si) are shared with the forward connectivity

graph. The relevant sampling parameters for the reverse graphs are as usual the transition probabilities

between adjacent edges.

Sampling a complete path now starts, as before, by picking atrandom a start nodes. From that node,

a forward path is sampled over the forward connectivity graph, and a backward path is sampled using

the reverse graph. Finally, the two halves are concatenatedat s to create the complete path. The rest of

the algorithm proceeds essentially as before: Paths are valuated according to the cost function (5), and

the parameters are updated independently for the forward and backward graphs.

The improved initialization scheme of the next subsection uses the dynamical model of the target state

evolution. For the reverse connectivity graph, we use the following ”backward” version of the dynamical

model (1), namely

xti = A−1(ti+1, ti)xti+1
−A−1(ti+1, ti)G(ti+1, ti)wti . (25)

Here we assume that the dynamics matrixA(ti+1, ti) is invertible (which valid in our simulation models,

in particular).

C. Likelihood-Based Initialization

We next present an improvement on the basic initialization scheme introduced in subsection IV-F.

Recall that a uniform initial distribution may be used when no prior information is available. In our

case, however, prior information on possible target paths is embedded in the dynamical and measurement

models (1)-(2).

For example, if all targets are assumed to obey the (nearly) constant velocity model [18] and the

measurement model is accurate, high probability should be assigned to edges that connect nodes rep-
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s1 s2 s3 s4 s5 s6

f

f ′

Figure 2. An example of the bi-directional sampling scheme.s1, s2, ..., s6 are shared by the original and the backward
connectivity graphs. The sampled forward path iss3 → n3 → n4 → n5 → f . The sampled backward path iss3 → n3 →

n2 → f ′. The resulting path is comprised of the nodesn2 → n3 → n4 → n5.

resenting co-linear measurements. Initialization of the nodes{s1, ..., sn} that was described in subsec-

tion IV-F remains unaltered, and the proposed modification refers to the inner nodes of the graph –

ni, i = 1, ..., n, wheren is the number of the inner nodes representing the actual measurements. We

describe the initialization procedure for these nodes withrespect to the history-based sampling described

in subsection V-A.

To initialize the nodes representing the actual measurements we apply a Kalman Filter to every three (or

possibly more – depending on the target model) neighboring nodes ofGA that represent three consecutive

measurements. The filter is initialized with the first two measurements using the two-point differencing

technique [18]. Namely, we initialize the position as that of the first measurement and the velocity as the

difference between the two measurements divided by the difference in their time tags. We can now use

the Kalman filter equations to obtain the expected position and covariance of the third measurement. The

corresponding probabilitypAij of each edge of the graph is set proportional to the likelihood function of

the corresponding measurements relative to that prediction.

To illustrate, consider the situation depicted in Fig. 3. Assume that we have initialized a KF usingy1

andy2 that were obtained at two consecutive sampling times, andŷ is the resulting predicted measurement

to the next sampling time. Assume that the neighbors ofn2 (representing the measurementy2) in the

connectivity graph aren3, n4 andn5 (representing the measurementsy3, y4, andy5 respectively), that

carry the same time tag aŝy. The probabilities on the edges connectingn2 to n3, n4, andn5, arepA23,

pA24, andpA25. These are determined on the basis of the distance betweenŷ and y3, y4, y5 respectively,

using the assumption that the true measurement deviates from the predicted one according to a Gaussian

July 12, 2011 DRAFT



21

y1 y2

y3

y4

y5

ŷ
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(b) The corresponding graph nodes

Figure 3. Example of the initialization scheme. (a) Solid circles represent measurements, dashed circle represents predicted
measurement. (b) The corresponding part of the connectivity graph is shown.

distribution. Mathematically, this reads,

yi ∼ N (ŷ, B), i = 3, 4, 5 (26)

pA2i ∝ N (yi − ŷ, B),
∑

pA2i = 1,

whereB is the innovation covariance obtained forŷ. Clearly, some edges cannot be initialized in such

manner, e.g., the edgesn1 → n2 andn1 → n6 in the above example sincen1 has no possible predecessor.

We assign those a uniform distribution. In our examplepA12 = pA16 = 0.5.

As in the basic initialization scheme, the probabilities onthe edges linking the inner nodes tof are

initialized to the termination probabilitypz, which was introduced in section II. The probabilities on the

other edges calculated via the above procedure are then re-normalized to sum to 1. In case the only

outgoing edge is the one leading tof , it is assigned a probability 1.

D. Elimination of Unlikely Tracks

The basic procedure of section IV together with the improvements described above produce a feasible

solution to the multi-scan data association problem havinghigh posterior probability. However, it is

possible that among the actual tracks found by the algorithm, several false tracks, or ghosts, will be

generated. These tracks are patterns of consecutive false measurements that constitute feasible tracks

according to the definition of subsection II-D.

To reduce the number of such false tracks we apply additionallikelihood-based test as follows. For

each track� in the final partition! we compute its likelihoodℓ(�), and alsoℓ0(�) which is the likelihood

of all measurements in� classified as false alarms. Ifℓ(�) exceedsℓ0(�) we exclude� from the tracks

{�1, ..., �K} of ! and add its measurements to the set of false alarms of! – �0. This procedure may only

increase the posterior probability of the partition!, thus resulting in a better score of the final solution.
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E. Computation Complexity

We now evaluate briefly the running time of the proposed algorithms. The total running time is

determined by the number of iterations (sampling-evaluation-updating cycles) until convergence –nCE.

Each iteration is determined by the number of sampled candidate solutions –N , the time required to

generate each solution, the time required to evaluate the cost of solution, and the time to update the

parameters for the following CE or PME iteration. Recall that n is the number of inner graph nodes

representing the actual measurements of the problem, andT is the duration of the surveillance scenario,

namely the number of scans to be assigned (see subsection II-A). In the following we summarize the time

complexity (in terms of the number of elementary operations) of various procedures. First, we provide

the computational requirements of the basic algorithm of section IV and then proceed with the improved

scheme of section V.

1) Computational Complexity of the Basic Algorithm:

∙ The complexity of sampling a candidate solution isO(Tn2).

∙ The complexity of evaluation of the cost of a solution isO(nT 2).

∙ The complexity of updating the distribution isO(Nn2).

∙ The complexity of calculation of the initial distribution is O(n2).

The overall procedure time requirements are summarized asO(nCE(NTn2 +NnT 2 +Nn2) + n2).

2) Computational Complexity of the Improved Algorithm:The improved scheme differs from the basic

one by an increased number of graph nodes and an increased number of parameters to be estimated. The

increase is proportional to the average out-degree of the basic connectivity graph. Denoting this quantity

by �, we obtain the following worst case complexity.

∙ The complexity of sampling a candidate solution isO(Tn2).

∙ The complexity of evaluation of the cost of a solution isO(nT 2).

∙ The complexity of updating the distribution isO(N�n2).

∙ The complexity of calculation of the initial distribution is O(�n2).

Note that the time required for sampling a single candidate solution and evaluating its cost remain

unchanged since the path maximal length is not affected by the improved sampling scheme, nor is the

maximal number of the paths in the augmented connectivity graph. The complexity of updating the

distribution at each iteration, however, increases due to the increased number of parameters and nodes.

The overall procedure time requirements are summarized as

O(nCE(NTn2 +NnT 2 +N�n2) + �n2). (27)
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(a) A single scan
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(b) All scans

Figure 4. An example of a typical scenario. Target detections and FAs from all 10 scans are shown (a), FAs from a single
scan are shown (b).

For dense scenarios, where� = O(n) andT ≪ n the above time complexity becomesO(nCENn3).

Although nCE, the number of iterations of CE-based algorithms, cannot bebounded in advance, in all

our experiments convergence has been obtained within 7 to 10iterations. A similarly low number of

iteration till convergence seems to be typical of other CE applications as well [10].

VI. SIMULATION RESULTS

A. General Simulation Setup

We consider a similar simulation setup to that in [9]. A rectangular region on a plane,ℛ = [0, 1000]×

[0, 1000] ⊂ ℝ
2 is taken to be the surveillance region (to be specific, lengthunits can be taken as meter

and time units as seconds). Each target has a 4-component state vector with position and velocity in the

x andy directions, that isxt = [pxt, vxt, pyt, vyt]
T . We have used the Discrete White Noise Acceleration

(DWNA) model [18] for the targets dynamics. Namely,

xt+1 = Axt +Gwt,

where

A = diag [F1, F1] , F1 =

⎡

⎣

1 Ts

0 1

⎤

⎦ .

In addition, the vector process noise iswt = [wxt wyt]
T with covarianceQ = diag(�2

w, �
2
w), and

cov(Gwt) = �2
w ⋅ diag(Q1, Q1), Q1 =

⎡

⎣

1
4T

4
s

1
2T

3
s

1
2T

3
s T 2

s

⎤

⎦ .
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The measurement equation is

yt =

⎡

⎣

pxt

pyt

⎤

⎦+

⎡

⎣

vxt

vyt

⎤

⎦ = Cxt + vt,

where

C =

⎡

⎣

1 0 0 0

0 0 1 0

⎤

⎦ ,

and the (vector) measurement noise isvt = [vxt vyt]
T with covariance matrixR = diag(�2

v , �
2
v). We

have used a surveillance duration ofT = 10 scans. Targets appear at a uniformly chosen position from

the left bottom or right bottom quadrants ofℛ respectively. They all move diagonally (in straight lines)

with constant velocity randomly chosen between0.2vmax and 0.9vmax. Each target’s appearance and

disappearance times are chosen uniformly from the first and last quarters of the surveillance interval

respectively. An example of a typical scenario is shown in Fig. 4.

B. Performance Measures

To the best of our knowledge, a standard definition of performance measures for evaluation of MTT

algorithms is an open question. Performance evaluation of single-target tracking algorithms (both with

and without measurement origin uncertainty) may be quantified by means of the Mean Square Error

(MSE). Such criteria are problematic when dealing with association algorithms, since the MSE may

provide meaningful insight on the performance only provided the data association is perfect. We thus

adopt the following, rather intuitive, measures for performance evaluation suggested in [9].

1) The normalized correct associations (NCA), that is, the number of correct associations made by

the algorithm divided by the true number of associations.

2) The incorrect-to-correct association ratio (ICAR) which measures the ratio of incorrect to correct

associations.

An associationhere means two consecutive measurements on the same track. Mathematically, for each

partition! ∈ Ω, the set of all associations in! is represented as

SA(!) = {(�, t�i , t
�
i+1) : i = 1, . . . , ∣� ∣ − 1, � ∈ !}

wheret�i is the time of thei-th observation in track� . The set ofcorrect associations in! relative to

!∗, which is the true partition, is

CA(!) = {(�, t, s) ∈ SA(!) : �(t) = �∗(t), �(s) = �∗(s), for some�∗ ∈ !∗}, (28)
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where�(t) is the measurement at timet associated with track� . The above measures now read:

NCA(!) =
∣CA(!)∣
∣SA(!∗)∣

, ICAR(!) =
∣SA(!)∣ − ∣CA(!)∣

∣CA(!)∣
, (29)

where∣A∣ is the cardinality of the setA. From the definition, NCA varies between0 and1 and it provides

a measure of the number of correct associations. In case of perfect associations, NCA= 1. NCA does

not account, however, for false tracks. On the other hand, ICAR is a positive measure not bounded from

above and, informally, it counts false associations – both false tracks and false continuations of true

tracks. When no incorrect associations are made, ICAR= 0. These performance measures are illustrated

in Fig. 5. In addition, we record the number of tracks estimated by the algorithms. For the CEDA and
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PMEDA algorithms we split this number into true and false tracks.

C. Compared Algorithms

The performance of the CE based algorithms was compared to the following data association schemes.

First, is the Multiple Hypotheses Tracker (MHT) for which results have been reported in [9]. The authors

have used the implementation from [19], [20], which implements pruning, gating, clustering,N -scan-

back logic andk-best hypotheses (see [19] for details on these techniques). Second, is the greedy tracker

proposed in [9]. It is a batch-mode nearest neighbor multiple-target tracking algorithm. It generates

candidate tracks by picking measurements nearest to the predicted states until there are no unused

measurements left. Finally is the Markov Chain Monte Carlo Data Association (MCMCDA) also proposed
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in [9]. The MCMCDA algorithm allows sampling from complex distribution by simulating an ergodic

Markov chain which converges to the desired limiting distribution. In [9] the authors constructed a Markov

chain on the set of all feasible partitions of the measurements (see subsection II-D) with the posterior (5)

as the limiting distribution. Using a small set of elementary moves (e.g. track birth, track termination,

track splitting etc.) sampling from the posterior was possible after a few thousands of moves. Then, a

sample with the highest posterior was returned as the solution. The initial state of the Markov chain was

provided by the output of the Greedy algorithm. For the performance comparison we have reconstructed

the results for the MCMCDA and the greedy algorithms and usedthe results reported in [9] for the MHT.

D. Experiments and Results

In this section we test the performance of the proposed algorithms by comparing them with the

performance of the methods mentioned in the previous subsection. The algorithms are compared to each

other using the performance measures NCA, ICAR and the estimated number of targets described above.

Several options exist to challenge a data association algorithm. The first is by increasing the false

alarm rate�fV . In addition, one can decrease the detection probabilityPd and increase the density of

tracksK. Closely moving targets, low detection probabilities and high false alarm rate make the problem

more difficult. In the following we perform three different test sequences in which we modify different

parameters to evaluate the performance of the algorithms – the false alarm rate�f , the density of tracks

K, and the detection probabilityPd. Additional simulation tests including the influence of theprocess

and measurement noises, the segment length and robustness to the target model are available in [21]. In

all simulations presented below the results are averaged over 8 repeated runs with new measurements

generated independently at each run.

1) Number of Targets:In this sequence we modify the track density. The number of targetsK in the

scenario is varied between10 and75, while keeping the clutter rate low and the detection probability high.

Each target moves at constant velocity uniformly chosen between 30 and 120 m/s. All other parameters

are fixed as well, namely –�fV = 1, Pd = 0.999 andvmax = 140 m/s, pz = 10−2, and�bV = 1 such

that, on average, there is a single new target at each scan. The average NCAs, ICARs and number of

tracks are presented in Fig. 6. It is readily seen that both cross-entropy based algorithms score higher

than Greedy and MCMCDA in NCA and better in ICAR, introducingno significant difference between

CEDA and PMEDA. Note that MCMCDA improves only slightly the performance achieved by the greedy

algorithm. All algorithms outperform the MHT.
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Figure 6. Simulation results for various values ofK, the number of targets.

2) False Alarms Rate:Here we keep a constant number ofK = 10 tracks, with targets moving

at constant velocity each uniformly chosen between 30 and 120 m/s. The clutter rate varies between

�fV = 1 and�fV = 100. Pd = 0.999, vmax = 140 m/s, pz = 10−2, and�bV = 1. Namely, in this

experiment we test our algorithms in heavily cluttered environment, keeping the detection probability high

and the number of targets low. The results are depicted in Fig. 7. Superiority of PMEDA may be noticed

in the NCA parameter with nearly 90% of correct associations. The CEDA algorithm behaves similarly

at low and moderate clutter rates, but degrades in NCA performance at high clutter rates. However, false

tracks are not produced keeping the ICAR relatively low. We may conclude that, in this application, the

updating rule of the PMEDA algorithm, which uses all the samples obtained at a given iteration rather

than the elite samples used by CEDA, is preferable. It is worth mentioning, however, that the slightly
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Figure 7. Simulation results for various values of�fV . The actual number of targets is10.

increased rate of false tracks produced by PMEDA, while small in absolute terms, reflects that the two

algorithms are operating at different points on the NCA-ICAR trade-off curve and there is no clear overall

superiority of either of the two.

As reported in [9], the MHT algorithm does not make any associations when�fV ≥ 80 resulting in

zero NCA and unreported ICAR. This is due to various heuristics used in the specific implementation

of the MHT which are necessary for finite running times. Additional discussion of the behavior of the

MHT in the discussed experiments is provided below. The MCMCDA algorithm being initialized with

the output of the greedy algorithm, removes many of the falsetracks found at the initialization stage,

thus improving the ICAR, but at the same time it degrades the NCA performance by changing some of

the correct associations. As a result, the obtained NCA is lower than that of the greedy algorithm by a
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Figure 8. Simulation results for various values ofPd.

few percent. The greedy algorithm achieves reasonable performance in terms of the NCA with more than

80% of correct associations, but results in unacceptably large ICAR due to generation of high number

of false tracks which also increase the ICAR.

3) Detection Probability: There is a constant number ofK = 10 tracks, which move at constant

velocity each uniformly chosen between 30 and 120 m/s. The clutter rate is kept constant at�fV = 1.

The probability of detection varies betweenPd = 0.3 to Pd = 0.9. Due to lower detection probabilities we

have setdmax = 5 since many consecutive missed detections may occur (recallthatdmax is the maximum

number of consecutive missing observations of any track that was defined in section II). The probability

of track termination ispz = 0.01 and the appearance of new tracks is modeled by�bV = 1. The results

are depicted in Fig. 8. Both cross entropy based algorithms outperform all other algorithms with some
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superiority of the PMEDA over CEDA. Unlike the previous tests, the greedy algorithm performs poorly

with less than 50% of correct associations. MCMCDA scores better than MHT, but much worse than

cross entropy based algorithms especially at very low detection probabilities.

E. Discussion

It it noticeable in the first and second experiments that MCMCDA does not introduce significant

improvement in terms of the NCA in comparison to the greedy tracker with which it has been initialized.

This occurs when the greedy algorithm finds a solution that isa strong local maximum of the problem,

and MCMC, being a local search method, needs many steps to escape from this strong local extremum.

Although in theory the MCMC method is considered a global optimization method, it turns out in this

experiment that at this level of problem complexity it quickly got trapped in local minima, from which

it could not get out in any reasonable computation time. Thus, MCMC effectively reduces here to local

search, while CE based algorithms maintain a more global flavor as witnessed by their performance.

Another interesting phenomenon is the relatively poor performance of the MHT algorithm as reported

in [9]. Although in theory MHT is an optimal solution in the MAP sense it performs poorly when the

detection probability is low or the false alarm rate is high due to the necessary heuristics used in the

algorithm. These heuristics are required as part of all practical implementations of MHT since without

them the number of hypotheses grows exponentially fast. MHTwith such heuristics may work well when

a few hypotheses carry most of the weight. However, when the detection probability is low or the false

alarm rate is high, there are many hypotheses with low weightand there is set of dominating hypotheses,

so MHT cannot perform well. This explains the poor behavior of the method when tested in the extreme

cases illustrated in Fig. 7 and Fig. 8. Similarly, for high values ofK the specific implementation of the

MHT encounters difficulty in finding tracks, and the most of the returned ones are false. Thus, the total

number of tracks in Fig. 6 becomes low and plateau for highK, with the corresponding NCA being low

and ICAR being high.

F. Computation Times

All algorithms proposed in this paper were implemented in Matlab R⃝ without any code optimizations

and ran on a PC with 2.8GHz Intel processor. Recall that the overall performance is determined by

the time required to obtain and evaluate a single sample in the CE/PME procedures in addition to the

initialization and updating procedures. For dense scenarios, however, the time to obtain a single sample,

which requiresO(Tn2) calculations, dominates the overall computation time. We present in Fig. 9 this

empirically found time versus the clutter rate which is proportional to the average number of observations
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in the problem at hand. It is readily seen that this empiricalevidence strongly supports the calculated

complexity needed to obtain a single sample.
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Figure 9. Time required to obtain a single sample.

We note that, as reported in [9], the running times of MHT (implemented in C++) are comparable to the

running times of our algorithms (implemented in Matlab). The running times of the MCMCDA algorithm

as reported in [9] are much shorter than ours (although a faircomparison is hard since MCMCDA was

implemented in C++ as opposed to the Matlab implementation of our algorithms). However, the point in

our algorithms is that better performance is attained. Indeed, the performance curves of MCMCDA tend

to flatten after the initial improvement period, so that further improvement should be hard to attain (this

point is further discussed in Section VI-E).

VII. SEQUENTIAL MULTI -SCAN TRACKING

In typical (off-line or on-line) applications, the number of sequential measurements (or scans) is too

large to be handled simultaneously by existing multi-scan data association algorithms. In that case, the

overall scenario may be divided into shorter segments, of length suitable for the application of a multi-

scan association algorithm. Still, it is desirable to maintain continuity of paths between adjacent segments,

as well as some interchange of relevant data.

We extend our algorithm to handle long scenarios by dividingthe whole surveillance duration into

overlapping segments of lengthTW each. In each segment we execute the basic CEDA algorithm using

the observations which belong to that segment. The overlap region allows to correct associations obtained

at the final scans of the previous segment using measurementsfrom the next segment, and vice versa, to

initialize the next segment with existing tracks. The idea is illustrated in Fig. 10.
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In more detail, suppose the CEDA algorithm has been applied to segmentk. Associations obtained in

the first part of that segment (before the overlap region) arefixed and cannot be changed. To initialize the

algorithm in segmentk+1, we assign probability1 to the edgessi → yi for nodesyi that belong to the

first scan of segmentk + 1 and were associated with tracks in segmentk. Thus, these nodes are bound

to be starting nodes of paths in the new segment. All other probabilities in that segment are initialized

as in the single segment case according to the scheme described in subsection V-C.
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y13
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Figure 10. Sequential multi-scam data association. The algorithm is invoked on two overlapping windows. Measurementsy7
and y9 associated with�1 in window k1 are used to initialize the track in windowk + 1. Measurementsy12, y14, and y15
associated with�2 in window k + 1 improve the associations obtained in windowk by classifyingy10 as a false alarm.

The extent of overlap between two adjacent segments is a design parameter which should be chosen

using the following considerations. On the one hand, the overlap should be large enough, so that

misassociations at the later scans of segmentk can be corrected while solving in segmentk+1. On the

other hand, large overlaps increase the number of segments and hence the computation time. However,

we have found, via simulation, that performance is not affected significantly when the overlapping length

is increased beyond a certain point, and satisfactory results are obtained for small overlaps. The results

supporting this statement are summarized in Table I for a small scenario with 20 targets, 45 scans

surveillance duration, and segment length of 15 scans. Whereas the worst performance is achieved for

Overlap size 0 3 6 9
NCA 0.89 0.94 0.93 0.95

Table I
THE OVERLAP INFLUENCE ON THE PERFORMANCE

non-overlapping windows, large overlaps do not introduce significant changes. Further testing of the

proposed sequential CEDA algorithm was done as follows. We have used the following parameters. The

surveillance region is increased toℛ = [0, 10000] × [0, 10000] ⊂ ℝ
2, and the surveillance duration is

increased toT = 90 scans. Segment size isTW = 15, and the length of the overlap between adjacent
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windows is 4 scans. Targets appear and disappear at random times and positions and clutter rate is

�fV = 10. Pd = 0.9, dmax = 3 and maximum velocity is set tovmax = 230 m/s. All other parameters

remain unchanged. Three test cases are generated with totalnumber of 50 tracks, 100 tracks and 150

tracks. Typical results for the overall NCA and ICAR for the above test cases are summarized in Table II.

These results indicate that the proposed algorithm is indeed capable of initiating, tracking and terminating

Number of targets NCA ICAR
50 0.95 0.04
100 0.94 0.04
150 0.92 0.06

Table II
SEQUENTIAL TRACKER PERFORMANCE

tracks for long scenarios.

VIII. C ONCLUSION

We have proposed two related methods for the multi-scan multi-target data association problem based

on the CE and PME heuristics. These schemes have been tested in simulation and show improved

performance relative to the state-of-the-art algorithms.A major issue in the proposed algorithms is their

computation time. Although polynomial in the problem parameters, the computation time is still consid-

erable in challenging scenarios which involve a large number of measurements (ranging from minutes

to hours for the more complex scenarios using unoptimized Matlab code as described in section VI). In

these cases the proposed algorithms are more suitable for off-line data analysis. Future research directions

should address further reduction of the computation time while keeping the advantages of the proposed

approach. Furthermore, various extensions to the model should be of interest, including non-linear target

dynamics and multisensor measurements.
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