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Abstract

Multiple-target tracking (MTT) poses difficult computatial challenges related to the measurement-
to-track data association problem, especially in the preseof spurious and missing measurements.
Different approaches have been proposed to tackle thidgmmbncluding various approximations and
heuristic optimization tools. The Cross Entropy (CE) method the related Parametric MinxEnt (PME)
method are recent optimization heuristics that have prawssful in many combinatorial optimization
problems. They are akin to evolutionary algorithms in th@baulation of solutions is evolved, however
generation of new solutions is based on statistical metldddsampling and parameter estimation. In
this work we apply the Cross-Entropy method and its recemtx®Ent variant to the multi-scan version
of the data association problem in the presence of misdetsctfalse alarms, and unknown number of
targets. We formulate the algorithms, explore via simafatheir efficiency and performance compared to

other recently proposed techniques, and show that theynoditete-of-the-art performance in challenging

scenarios.

Index Terms

Target tracking, data association, combinatorial optatian, Kalman filtering, cross-entropy method,

Monte-Carlo methods

. INTRODUCTION

Multiple-target tracking (MTT) is an essential componehtsarveillance-related systems. A general
formulation of the problem assumes an unknown and varyingheu of targets that are continuously
moving in a given region. In the single-sensor version, ttages of these targets are sampled by the
sensor and the noisy measurements are provided to thertgasistem. The detection probability is not

perfect and the targets may go undetected at some samptienyats. In addition, there are spurious
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reports of possible targets, or clutter measurements wdrisie independently of the targets of interest. A
primary task of the MTT system is data association, namelitjtmpning the measurements into disjoint
sets, each generated by a single source (target or clulteg)secondary goal is estimation of the states
based on the measurements originating from the targetsterfest. The data association problem may
be formulated in several ways. In single scan data assogidtie raw measurements are processed one
scan at a time and the target states are updated accordiigignatively, several sets of measurements
may be collected and processed together in batch mode -sttti® imulti scan data association. For an
illustration see Fig. 4.

Several methods now exist to handle the data associatidrigmno These may be roughly grouped
into two types: Bayesian and non-Bayesian. Among the Bapeasiethods, there is the well known Joint
Probabilistic Data Association Filter (JPDA) [1], whichassingle scan filter where the states of existing
targets are to be updated based on the latest set of measisgisean). Data association is handled by
summing over the probabilities of all feasible partitiomdé)ere no two targets can share a measurement
and each target may be a source of at most one measuremeocapeAshortcoming of the basic JPDA is
its inability to initiate and terminate tracks. In additjaalculating the probabilities of all feasible events
is NP-hard [2] in the number of targets and measurementshenceiculation becomes intractable even for
a moderate size of the problem. Another well known approat¢he multiple hypotheses tracker (MHT)
[3], in which each hypothesis associates past observatithstargets and, as a new set of observations
arrives, a new set of hypotheses is formed by augmenting rédous ones. The hypothesis with the
highest posterior is returned as a solution. MHT is capableitiating and terminating tracks. However,
the number of hypotheses involved in the calculation gromgorentially over time. Thus, in order to
overcome this computational complexity, certain pruningd alustering methods must be used at expense
of optimality. Another method for handling data associatio the Bayesian manner is the Probabilistic
Multi-Hypothesis Tracker (PMHT)Y. The PMHT algorithm employs a more lenient measurementahod
in comparison to PDAF and MHT. Whereas the latter assumeahtarget can generate at most one
measurement per scan, PMHT drops this constraint, andsgbsiimeasurement/target association process
as independent across measurements. Similarly to JPDAyakie PMHT assumes a fixed and known
number of targets in the scenario under consideration.

The non-Bayesian approach is characterized by hard measotdo-track association, such that some
cost function is maximized. The problem may then be refoatad as an integer programming problem
[4] or, more precisely, as a multidimensional assignmeonbl@m, which is NP-hard when the number

of sets (scans) to be assigned is greater than or equal [&. Therefore, for the multi scan data
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association, one should invoke some approximations schéonghe multidimensional assignment such
as Lagrangian relaxation techniques that relax some of tbblgm constraints and solve the relaxed
problem by utilizing linear programming techniques [6]. tBlohowever, that when there are only two
sets of data to be assigned, there exist exact, polynomial $siolutions which have been combined with
particle filter based algorithms in the context of multigeetr tracking [7]. Additionally, an algorithm for
assigning a set of measurements to the set of predicted &eages using the competitive Hopfield neural
network was proposed in the recent work [8]. Nonetheless,simulations presented therein included
relatively small tracking scenarios.

Another option to solve the multi scan data association Iprobis by utilizing stochastic search
methods. In [9] the problem was solved by applying the Markinain Monte Carlo (MCMC) method
to obtain the partition with maximum posterior. Using the theolis algorithm, the authors proposed
a set of moves for modifying a partition of the measuremesish that sampling from the posterior
distribution was possible after a few thousands of movegyTéhowed a remarkable performance of
the algorithm in comparison to the MHT method in terms of aacy of the solution and running time.
However, the algorithm is still susceptible to getting pag in a strong local maxima. Such behavior is
typical of local search algorithms.

The main contribution of this paper is the development o$ifdla algorithms that solve the multi scan
data association problem and are capable of initiating amdibating a varying number of tracks. The
general setup and problem definition are very similar toehag9]. In particular, the basic assumptions
for the data association problem are identical to those irsd®@DA, MHT, and MCMCDA. Namely, we
assume that each measurement may either belong to at mosirgeeor be classified as a false alarm,
and at most one measurement may be associated with a gigat tdra time. (A detailed discussion
of these assumptions is provided in section Il). The safutipproach, however, is different. We invoke
the Cross Entropy (CE) method [10] and the related ParaoiginxEnt (PME) method [11] in order to
obtain the partition with the highest posterior. CE basdtkstes are approaches for combinatorial and
continuous optimization, and (originally) for estimatiohrare-events probabilities. They are inherently
global search methods and, therefore, may reduce the riglettihg stuck in shallow local maxima.
The main idea is representing the solution space with a s@acdmeters and defining a probability
distribution on these parameters. Then, two successiys stee iterated — sampling from the existing
distribution, and updating this distribution using a sulifeclite (better-valued) samples. The underlying
principle of solution improvement is thus akin to evolutoy optimization algorithms (see, e.g. [12]), but

the solution generation mechanism is different, and theleveocheme has very few meta-parameters that
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need to be tuned. The resulting Cross Entropy Data Assonid@EDA) and Parametric MinxEnt Data
Association (PMEDA) algorithms are applied here to chaleg tracking scenarios, and show improved
performance relative to current state-of-the-art techedq

The structure of this paper is as follows. We formally stéie (discrete-time) general multiple-target
tracking problem in section II. In section Ill we outline tigE and PME methods for combinatorial
optimization. In section IV we present general purpose CEDA PMEDA algorithms for multiple target
tracking. The algorithms are applied in simulation to detmaeking scenarios and their performance is

compared with several popular algorithms in section VI.

[I. PROBLEM DEFINITION

A. Preliminaries

Consider a surveillance scenario of duratidh € Z*. There areK targets moving around the
surveillance regiorR for some duratior{tf,t’;] C [1,T] for k = 1,..., K where K is an unknown
integer. The volume ofR is V' and it is scanned periodically by a single sensor having pesiod 7

normalized to one time unit. The notati¢f, ¢;] should be interpreted &g;,¢; + 1,...,¢;}.

B. Target Model

In this subsection we describe the target modeling commasid in the target tracking literature
(see e.g. [13]). Each targétstarts at a random position iR at time t¥, moves arouncR until t’; and
disappears. An existing target may disappear at each sagrpiie with probabilityp, and persists with
probability 1 — p,. The number of new targets arising at each timeéRins modeled to have a Poisson
distribution with a parametek,V’, where ), is the birth rate of new targets per unit time and volume.
The initial position of a new target is uniformly distribdt®verR. We describe the motion of a target
by the discrete-time dynamids : R? — R¢, whered is the dimension of the state variable, ande R?
is the state at time. The targetk moves according tar,; = F(af,wf), ¢ = t;,...,t§ — 1 where
wf € R? are white noise processes. In this work, we consider the $iamer dynamical model for each

target, namely, if a target is observédmes att;, i = 1, ..., ¢, its dynamic model may be expressed as:
Tty = Altivr, ti) e, + Gtivr, t)we, 1)

wherew;, is a white Gaussian noise with covariance matgix A and G are matrices of appropriate

sizes, with entries determined by the sampling intefvalt; 1) for eachs.
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C. Sensor and Measurement Models

We assume that a single sensor scans the surveillance rpgi@mdically with scan timel; of one
time unit. Noisy observations of the position of each tamet obtained with detection probabilify;.

In addition, the sensor generates false alarms, whose musibssumed to have a Poisson distribution
with parametern\ (1, where )\, is the false alarm rate per unit time per unit volume. Theior@ each
observation (i.e. target or false alarm) is not a-priori\wngsince each observation is assumed to carry
only the cartesian position and the corresponding time tag.

Let n; be the number of observations at timeéncluding both noisy observations and false alarms. Let
y{ € R™ denote thej-th observation at time for j = 1,...,n;, wherem is the dimensionality of each
observation vector. Each target generates a unique oltieenat each sampling time if it is detected.
We assume a linear observation model, namely, an arbitlaggreation at time;, y{ is generated as

follows:

C(ti)xs, +v,, i is object originated
yti = ’ (2)
Uy, otherwise

wherev;, € R™ is a white Gaussian noise independent@f with covariance matrixk, C' is a matrix
of appropriate size, and; ~ Unif(R) is the random process of false alarms, assumed to be unyforml

distributed in space.

D. Solution Space and Optimization Criteria

Dealing with hard (as opposed to soft) data association wk && a partition of the measurements
into disjoint sets. One of these sets is the collection ddefadlarms and the others are collections of
measurements originating from the same target — one setpgtt LetY; = {yi cji=1,... ,nt} be
the set of observations at timeandYi.; = Ute{l,...,T} Y; be the set of all observationQ.is defined to
be the set of partitions of7.; such that, forw € Q:

1) w={m,7m,.--,7K}

2) UkK:O 7, = Yi.p andr; N7 = 0 for ¢ # j, i.e., each measurement belongs to at most one target,

or is classified as a false alarm.

3) 7y is considered as the set of false alarms apdk > 1 is considered as thkth track — a set of
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measurements that are attributed to kitle target

o= {yiyl ol ET <t <. <t}

i.e. each track is comprised of a subset of measurementsedr@decording to their time tags in

an increasing order.

4) Iz NY <1lfork=1,...,K andt=1,...,T. That is, each measurement belongs to one track
at most.
5) || > 2 for k =1,...,K, where|r;| denotes the cardinality of,. That is, a track must contain

at least two measurements.
We make two additional assumptions as part of the problemutation.

A. The maximal velocity of any target is bounded by a knownstantv,,.

B. The number of consecutive missing observations of amkti@bounded by a known constafif ..
This assumption may be used as a criterion to distinguishvanteof a new targets appearance
from an event of a continuation of an existing track.

For further discussion of the last two restrictions the exad referred to [9].

Any partition w in  is said to be valid or feasible. Once a partitione 2 is chosen, the tracks
T1,...,TK € w and the set of false alarmg € w are completely determined. We thus face a problem
of choosing the best (in some appropriate sense) partitfogiven the set of observationt§.. This is
the so-called measurement oriented approach to data associ

A natural criterion for this approach is the Maximum a-Pdsté probability [3], [9], [13]. That is,

looking for the optimal partitiono™ in the MAP sense:

w* =argmaxP{w | Yi.7}. (3)
wen

E. The Posterior Probability

Expressions for the posterior probability{w | Y7.7} are commonly used in the target tracking literature
[1], [3], [9], [13]. The expression (5) below can be obtairfexin that of [13] and the complete derivation
is available in [14]. For each partitian let m; denote the number of targets at time:; be the number of

new targets at time, z; — the number of targets terminated at time; — the number of target detections

IWe shall refer to the above set of measurements as a trabkugh usually a track is the estimated trajectory, that tisr af

filtering (or smoothing) out the measurement noise.
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at time ¢, u; — be number of undetected targets at tim@according tow i.e. missing measurements
within a path), andf; be number of false alarms at tinie Bearing in mind that:; is the total number

of measurements obtained at timet may be easily verified that the following relations hold:
my = mg—1 + ag — 2¢ (4)
U = My — dt
Jt=mn¢ — dy.

The final expression reads,

I7|

PlolVirk =5 T[TV (60 (7). Bu () (5)

rea\{ro} i=2
T

Iz —pa)me 7 Pl (1= Py XA,
t=1

where 7 is a constant that does not dependwnV (z; i, 3) is the Gaussian density with meanand
covarianceX evaluated atr, 7(¢;) is the i-th measurement associated with tracky,, (7) is the i-th
predicted measurement obtained from the standard Kalmpliedgo the measurements associated with

track 7, and By, (7) is the corresponding innovation covariance.

I1l. BACKGROUND ONCEAND PME

A. The CE Method for Combinatorial Optimization

Let X be a finite set of elements ar{-) be a performance function defined @h Our goal is to

find the maximum ofS(-) over X. Namely,

S(x*)=~"= max S(x). (6)

A convenient way to introduce the CE method is from the patamestimation perspective. When solving
optimization problems using the CE method, one searches ffwobability distribution concentrated near
the global extremum of the objective function. Assume we dgime a parameterized probability density
function f(x;v) on the setx € X. The goal is to construct a sequence of parameter veetors,, ....

such thatf(x;v;) becomes concentrated around the global optimtimas ¢ increases. This goal is

2Note that the variable below is not related to the state variahle defined in section Il. We use this notation to comply

with conventions.
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achieved by sampling fronf(x; v;) and constructing the next parameter veotgr; as the Maximum

Likelihood estimate of the distribution parameter basedhenelite samples. Namely,
Vi1 = argmaxIn f(Xy, .., Xnpi v), (7)
v

where Xl,...,XNp are the Np elite samples, achieving the best performance in the cusety and
f(X1, ..., Xnp; v) is the joint density evaluated &;, ..., X v,. The new parameter vector defines a new
distribution from which we can sample again and repeat tbequture. Instead of updating the parameter
vectorv; directly via the solution of (7) one may use the smoothed tguddich reduces the probability

that some components of will become degenerate at early stages,
\A/t = Oé\th + (1 - O[)\A/t_l, 0 S (0% § 1, (8)

wherev, is the solution obtained from (7). The whole procedure ismanized in Alg. 1. The stopping

Algorithm 1 The CE Algorithm for Optimization.
1. Definevg = u. Sett = 1 (level counter)
2: GenerateXy,..., Xy from f(-;v;—1) and compute the samplg — p)-quantile 4, of the perfor-
mances.
3: Find the MLE of the new parameter, based on the set of the elite samples. Namely, solve (7).
4: Smooth the estimate via (8).
5: If stopping criteria are met - stop, otherwise set ¢ + 1 and reiterate from step 2.

criteria in step 5 of Alg. 1 may be lack of significant improvemn for several iterations, or convergence
to a degenerate distribution.

Assume now thaK = (X, ..., X,,) is a random vector such that ea&h is a discrete random variable
that can assume a finite number of valdes, ..., a,,}. The important observation that makes the CE
method very easy to apply to various optimization probleswgh as the Traveling Salesperson and
MaxCut [5], [10], is that in this case there is a simple comguwise analytical solution to (7) that reads

[10]

st L=y Lsxo240)
it Lis(x)z)

where X;; is the j-th element of the-th sampleX; drawn from f(x,v;_;) and Liay is the indicator

; (9)

Vg =

function of A. Namely, the updated value of each parameter is the relgriency of the appearance

of the corresponding value in the current elite sample.
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B. The PME Method for Combinatorial Optimization
Recall that the goal of the CEM was to find a “good” samplinggiignconcentrated near the global
optimum of the problem at hand. Another option is to consttier(single constrained) Minimum Cross

Entropy (MinxEnt) program that reads

. 0 s ax — g, [ S
pin (P = [ 0= [ .
subject to the first moment constraint:

where f and h are n-dimensional pdf’s,S(x) is the known performance functiox, € R™, and~ is

a performance close to the optimat in (6). Assumingh(-) is a known pdf that incorporates all the
available prior information, the problem is to find the clsis® h(x) density f(-) in the Kullback-Leibler
sense subject to the moment constraint. If no prior infoiomais available s (x) is taken to be uniform.
We shall restrict ourselves to the discrete distributifss) andh(x) parameterized by parameter vectors

v, u respectively —f(x,v) andh(x,u). The solution of the MinxEnt program is [15]
h(x,u)exp {—S(x)\}

x,v') = , 12
PO = o -SR] 12
where )\ is a constant (temperature) obtained from the followingatign
Eu [S(X) exp {—=S5(X)A}]
=", 13
Eufop {-SOON] -
andX ~ h(x,u). Fory = ~*, the optimal temperature i8* = —oco and the optimal density*(x) is

a Dirac delta function located at*. Given a successful choice af and obtaining the corresponding
value of A we could, in principle approximate the optimel by generating samples from (12). However,
sampling from such distribution is not a trivial task. In faco efficient methods are known to exist [16].
Thus, we shall approximate the distribution (12) as a proaddanarginal densities which will allow
easy sampling similarly to the basic CE method. Note thdt(i, u) is a discrete (multidimensional)
distribution with finite support, then so j§x, v*) and, consequently, all its marginal distributions. Thus,
all these distributions are completely determined by thanameters which may be calculated as follows.
Assuming as before, th& = (X1, ..., X,,) is a random vector such that eadh is a discrete random

variable that can assume a finite number of valjes ..., a,, }, then the PME estimator of
Ujk é P{Xj = ak} = Ev []]'{X]‘:ak}]
is [11]

S Lgx,—a exp {—S (XA}

14
SN exp {—S(Xi)A} 4

By =
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It is readily seen that (14) is essentially the same as (9) wmdicators1qx,)>4,1 being replaced by
exponentials:xp {—S(X;)\}. The optimal “temperature” parametgris obtained from the (numerical)
solution of the stochastic version of (13) such that the Isimgnstraint in (11) is satisfied:
SN S(Xs) exp {—S(Xi)A}
ity exp {=S(Xi)A}
Similarly to the CE method, we invoke a multi-stage proceduhere a sequence of reference parameters

(15)

{vi,t > 0}, a sequence of levelsy,,t > 1} and a sequence of temperatufes, ¢ > 1} are generated. As
before, we shall use the latest available information fer phior density. Namely, at stageh(x,u) =

f(x,v¢). The whole optimization procedure is summarized in Aldont2. For both CE and PME

Algorithm 2 The PME Algorithm for Optimization.

1: Definevg = u. Sett = 1 (level counter).
GenerateX, ..., Xy from f(:;v;—;) and compute the performance mean frgm= E;,  S(X).
Use the same samplé,, ..., Xy and solve the stochastic program (15). Denote the solutjok, b
Updatev; componentwise via (14).
If stopping criteria are met - stop, otherwise set ¢t + 1 and reiterate from step 2.

optimization routines we expect the parameter vectors toverge to degenerate ones, such that by
sampling from the final distribution we shall always obtaptimal or near-optimal solutions. Unlike CE,
all samples are used to update the parameters in the PME dnéthilbough modifications are possible)
and the solution for\ in (15) requires a line-search procedure and usually cabeatone analytically.
We thus expect each iteration of the PME method to be slowar its CE counterpart. All “tuning”

methods used for CE, such as smoothing and stopping rulesliractly applicable here as well.

IV. CE BASED DATA ASSOCIATION

In this section we develop a family of CE-based algorithmsdive the multi-scan multi-target tracking
problem. Since the only difference between the CE and PMEhaalst for combinatorial optimization
is the updating scheme of the parameters, we shall descatie rhethods together and explain the
differences when needed. In order to apply the CE and PME odstto our problem we must specify
the parameterized family of pdf§f(;v)}, as well as the parameter vectorwith respect to the data
association problem, and the procedure for sampling thetisok from it. We describe these in the
following subsections. To this end, we encode the optinomaproblem as a graph and introduce the

randomization on the graph’s edges or nodes [10].
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A. The Connectivity Graph

Let n = Zthl |Y:| = |Y1.r| be the total number of observations (both noisy detectiors false
alarms). We defin& = (V, E) to be thebasic connectivity grapbf the problem, where the set of nodes

V =Yj.r is the set of all measurements as defined above, and the gigels are

E= {(yt17yt2) | Yty Yt, € K tl < t27 Hyt2 - ytlH S (t2 - tl)'UmaX, t2 - tl S dmax}- (16)

This graph connects every node (measurement) with any ottty that can be an immediate successor in
a feasible track, subject to speed and separation cortstraifieasible track, which is a set of observations

with increasing time tags, is represented gmthin G, that is
r={yhi=12....|WyHeE i=1,...,j-1}.

The nodes of the graph represent measurements (both ndisstidas and false alarms), and the edges
represent the possible event that their endpoints are ssigeaneasurements from the same target. Note
that a nodey that has no incoming and outgoing edges is a false alarm aullednd may be removed
from the graph and permanently added to the set of false atarnHenceforth, we shall assume that all
such nodes have been removed from the graph. We identify\edichpartition of the measurements with
the corresponding partition of the graph nodes. Thus, tlaigdo find a partition of the the graph nodes
into a set of vertex-disjoint pathisr;,i > 1} (which will represent tracks) and a set of isolated nodes
(which will represent false alarms) such that the postefi¢w | Y1.7}, defined in (5), is maximized. Let
S(w) =P{w | Y1.7} denote the cost of a partitian € Q.

In the discussion below we shall denote the graph nodes;.as = 1,...,|V|. When no confusion
occurs we shall use the notatieni = 1,...,|V] to refer ton,. We shall assume that the nodes are
ordered according to the time stamps of the correspondirasutements. Namely, if;, andn;, belong
to scanst; andts respectively, such that > tq, theniy > ;. The ordering of the nodes representing
measurements within the same scan is arbitrary. An edgeckeetwode:; and noden; (or, equivalently,

betweeni and j) will be denoted(i, j). An example of the connectivity graph is shown in Fig. 1(a).

B. Distribution of Feasible Partitions

Recall that we need to define a probability distribution amdbt of feasible partitior@, parameterized

by a parameter vector. This vector will comprise of the following elements:

e (i), © € V: The probability that measurementor equivalently node in the connectivity graph

G = (V,E), is an initial node in some path (including a single-nodéhpatimely a false alarm).
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« ps(i), © € V. The probability that a path that reaches nederminates at it.
 pij, (1,7) € E: The probability that nodg follows nodei in a path that goes through

All probabilities are naturally required to be |f, 1]. In addition, we require that
pf(i)+ Z Pij =1,VieV.
j:(i,4)EE
This means that a path going through nedes probability 1 of either continuing to a neighboring node
J or terminating ini. The probabilities{p((i), i € V'} and{p;;, (i,j) € E} define a stochastic matrix

P which reads

0 pi2 pi3 ... pr(l)
0 0 P23 ... pf(Q)
P=1: © i : (17)
00 0 ... p(V]
0 0 0o ... 1

(the last line corresponds to an absorbing final sfatehich terminates each path). The probability of a
single pathr = (iy,...,iy) in G will thus be proportional to

m—1
Ppain (1) = py(in) <H Pz‘l,z‘M) pf(im).- (18)

=1
Denoting byB the set of initial nodes of the patHsy, ..., 7x} in a partitionw = {79, 71, ..., 7 }, the

probability of afeasiblepartition w can now be specified as

K
flov) = o T Aot T =6 (19)
where Z; is a normalization constant that does not depend oihe probability of infeasible partitions
is identically set to zero.

The probability distribution (19) on the set of feasibletgamms (2 is best interpreted through the fol-
lowing sampling process (the actual sampling process wevilsbe described later in subsection I1V-D).
For each node = 1,...,|V|, an independent Bernoulli random variable with successabibity p; (i)
is drawn and determines whether that node is a first node intta gait is, we start a random walk
from ¢ according to the transition probabiliti€p;;} in (17), until the terminal stat¢ is reached. These
paths correspond to thE tracks{r, ..., 7x }. All nodes that were not visited in any of these paths are
classified as false alarms and allocatedfoThe resulting partitionv is a valid sample itv € Q. If w
is not a feasible partition (i.e., it has intersecting paihgaths below the minimal required length), it is

rejected and the above procedure is repeated until a fegsdstition is reached.
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(a) The Connectivity Graph (b) The Augmented Connectivity Graph

Figure 1. An example of the connectivity graph (a) and of ti@&GA(b). Solid circles represent the actual measurementde No
1 is denoted as;. Dashed circles are the nodes added to the connectivitthdgmpbtain the ACG.

C. The Augmented Connectivity Graph

It will be convenient for illustration and implementatiorunposes to incorporate in a single graph
all the relevant options (and their probabilities), inéhgl track initiation and termination. This will
be done by augmenting the basic connectivity graph by intod) new nodes and edges. In order to
incorporate the possibility of termination of a target, waréduce an additional “sink” nod¢ that
represents termination of a track. Each other nagén the basic connectivity graph is connected to
f by a directed edge represents the event thatorresponds to the last detection of the target prior
to termination. In order to handle target initiation in aréiy time and place, we introduce additional
n ‘start’ nodes into the graph — one for each original node ef Ilasic graph. These will be labeled
s1,52, ..., S, EAcCh new node; has an outgoing edge leading to the corresponding mede V. The
event represented by this edge is that nagés the first detection of a track. A path that represents
a track with j measurements now contairis+ 2 nodes as follows {s,,,n1,...,n;, f}. We call the
extended graph aaugmented connectivity graptACG), denotedG4 = (Va, E4), and refer to the
original nodes in the basic connectivity graph (represgntihe actual measurements) as inner nodes. An
example of an ACG is shown in Fig. 1(b). For notational comeoe, denote a generic node in the ACG

asn;, i =1,...,|V4|. We order these nodes as follows:

(ﬁb "'7’FL\VA|) = (317 sy Sy MLy eeey Mo f) (20)

Let G4 = (V4, E4) be the ACG of the problem. The parameter veataris now defined to comprise
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of the following transition probabilities
VA= {pé, (Zvj) S EA}>
wherep;‘; is the probability that nod@; follows noden; in a path that goes through in G 4. We set
Dij if n; = n;, 7_”Lj =n;
Py = \mli), i i=s;, 0% f (21)
ps(i), if ny=mn; nj=f
where{p;;, (7). ps(i)} were defined in subsection IV-B. In addition, defing: = 1 (as before), and
piy =1—py(k) if ;= sy, 0y = f,

which simply complement to 1 the outgoing probabilitiesnfrmodes({s; }.
The augmented paramet@r;% define a stochastic matrik,, which has the following form (under the

assumed ordering of the nodes in (20))

m(°B>, 22)
0 P

where P is defined in (17), and

) 0 - 0 1-—pp(1)
B 0 pb@) 0 1 _I.7b(2)
0 0 < pp(n) 1 —pp(n)

The two 0 matrices have: columns that correspond to the start nodes. .., s,).
Note that P4 may be interpreted as a one-step transition matrix of a widecandom walk on the

augmented grapty 4.

D. Sampling of Candidate Solutions

We now describe how to sample a partitianfrom the distribution defined through the augmented
connectivity graphGG4 and the corresponding transition mati¥;. Our goal is to sample efficiently,
in the sense that the number of infeasible partitions thadrie be rejected should be minimized. We
describe the sampling procedure in three stages. First,egeribe sampling a single path @&,. We
then proceed with sampling multipteon-intersectingpaths. We finally describe how to handle paths that

fall below the minimal required length.
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1) Sampling a Single PathSampling a single random path from the graph is performed by
picking uniformly at random (u.a.rz) from {1,...,n} and generating a random walk @y starting at
s;, according to the transition matri®, until hitting f. Note that since~ 4 is a directed acyclic graph —
after at mostl’ steps the sink nod¢ will be reached and the process will terminate. The resyltiath
isT = {Sil,nil, Mgy frJ 2> 1}, or {s;,, f}. In the latter case we declare the path as void. Otherwise,
the path represents a track through the nofles, ..., n;, }.

2) Sampling Non-intersecting Path3o sample a partition that avoids intersecting paths, weigda
n potential paths as described above, starting from the nfsles. ., s,} in random order. To avoid
track intersection, we invoke an elimination principle ganto the one used in [10] in relation with
the Travelling Salesperson Problem. After each single gafampled, we mark each of its nodes (save
for the sink nodef) as occupied and eliminate all incoming edges to these nodes, namelifyntile
probabilities on these edges. We then re-normalize theitiam probabilities of the remaining outgoing
edges to 1. This elimination step is equivalent to elimimgathe corresponding nodes from the augmented
transition matrixP,4 in (22), and re-normalizing each row sum to 1. Afterrajpaths have been generated,
the remaining internal nodes (that is, those measuremeaithiive not been selected as part of any path)
are allocated to the set of false alarms

3) Dealing with Short PathsThe partitionw = {79, ..., 75} obtained in the previous stage may still
be non-feasible, as some of the tracks. .., 7x may be too short (recall that we require each feasible
track to contain some minimal number of measurements).déRdlfan rejecting these partitions, which
could still lead to a high rejection rate, we redefine measergs contained in short tracks as false
alarms, and append them tg. We note that this step entails some modification to our d&fimif the
probability distribution in (19); however the precise exgsion is not required as part of the algorithm.

Upon completion of these steps we are left with a feasibléditjper w. The sampling procedure is

formally summarized in Algorithm 3.

E. Parameter Update

In order to obtain the new parameter vector that will define the updated probability distribution,
we estimate its components using the best samples that vata@ed in the previous iteration. Recall
that our goal is maximization of the posterior probabilig).(Parameter update is performed by taking
the elite samples, according to the cost function (5), arcutating the Maximum Likelihood estimate

of v4. As is well known (e.g. [10, p. 139]), the MLE for each paraen@t{} is given by

Nij
N;’

~A o
pi; =
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Algorithm 3 Basic Sampling Procedure.
Input: The augmented connectivity grajghy and transition matrix?, defined in (22).

1: Initialize: SetS = {s1,...,s,} (remaining start nodes), = 1 (path counter)P = Pj4.

2: Start k-th path: Let j = 1 (node counter). Pick uniformly at random fromS. SetS = S\ {s}.
Define vy; = s to be the first node of thé-th path. Setu = v, ; (current node indicator). Set
T = {u}.

3: Modify transition matrix: Eliminate nodeu from P by setting theu-th column of P to 0 and
normalizing the rows to sum up to 1.

4: Sample next node: Generatey, ;. from the distribution formed by the-th row of P. If v ;| = f
go to 5. Otherwise set = vy, j+1, 7w = 7, Uu, j = j + 1 and reiterate from 3.

5: Proceed to next path: If S = go to 6. Otherwise, séi = k + 1 and repeat from step 2.

6: Generate the FA set: Setr, to the set of all inner nodes ifry, ..., 7 }. Further, remove all single-
node paths from{r, ..., 7, }, and append them tq,. Let K be the number of remaining paths.

Output: w = {70, 71, ..., T }

where N;; is the number of times the edde j) was used in the elite sample and is the number
of times noden; was visited in that sample. The PME updating is performed Bingilar manner as
explained in section lll. In addition, in our experiments Wwave used the smoothed update (equation

(8)) as described in section lIl.

F. Basic Initialization Scheme

To invoke the CE-based algorithm one should introduce drimprobability distribution on the set of
solutions, parameterized by the vector. In typical applications such as TSP or MaxCut, where norprio
information is available, the vector, is often chosen to induce a uniform distribution on the sofut
space [10]. Our first initialization scheme takes a similppraach, with some required modifications

related to track initialization:

1) For internal nodes;, : = 1,...,n, we assignp,, the termination probability of a track, to the
edge connecting; with f and equal probabilities to all outgoing edges fram In case the only
outgoing edge is the one leading foit is assigned a probability 1.

2) For start nodes;, i = 1,...,n, we setp,(i) (the probability that node; starts a path) te,, a
chosen initial probability which is equal for all nodes. Tpe@rametep, may be empirically tuned,
and is related to the known birth rates of the new targgtsThe choice ofp, = 0.3 was found to

work well in our initial experiments.
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This simple initialization method works well in small prelohs, but is inefficient in large instances. A

more effective method, which utilizes the dynamical natfrthe problem is described in subsection V-C.

V. IMPROVEMENTS TO THEBASIC ALGORITHM

The algorithm described in section IV provides a basic wersif cross-entropy based data association.
However, the performance of this algorithm may be greatljagiced by adding certain key improve-
ments to the sampling scheme, that make use of the specitidepnocharacteristics. In the next three
subsections we discuss (a) history-based sampling thes @a&count of the target's dynamic model, (b)
bidirectional sampling that helps in sampling completgettories rather than their tails, (c) an improved
initializations scheme for the sampling distribution, af elimination technique for unlikely tracks.
These modifications define our final algorithm as used in timellsition experiments. We end this section

by discussing the computational complexity of the modifiggbathm.

A. History-Based Sampling

Recall that our basic sampling scheme is based the conitgaiaph where each inner node cor-
responds to a single measurement, and the next node in asatmpled according to a probability
distribution thatdepends only on the present nodessume that measurements contain position estimates
only (but not velocity estimates), as is often the case. €bgentially implies that the choice of next node
may depend only on the current target position, but not oerothotion parameters such as the target
velocity (direction and speed), which may be estimated ftbenpath sampled so far. To the contrary, the
dynamic target model assumed in this work (see equatior@]1jmplies that other components of the
state vector; should be useful in estimating the next target position.seh@mponents typically include
the target velocity (direction and speed), and possibihéigposition derivatives. For concreteness, let
us focus the discussion on target velocity.

To integrate target velocity into our sampling scheme, twtoms may be considered. One is to add
a (discretized) velocity variable to each node, which isnestied based on the sampled path so far, and
allow the next-node sampling distribution to depend on tkgable as well. A simpler option, which
we pursue here, is to allow the next-node sampling disiobuto depend on the recent two (or more)
nodes in the current path, rather than on the last node altlearly, the position data in two sequential
nodes encodes the target velocity, position data from thogles can encode the target acceleration, etc.

Thus, we modify the parametric distribution that undertless CE and PME algorithms in the following
way. Instead of sampling the next node in each path based erittrent node alone, we allow the

sampling probability to depend on the lastecent nodes (witlr = 2 used in our simulations). To keep
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our previous algorithms, it is useful to note that the abowification can be easily translated to an
expansion of the connectivity graph, where each possilujaesece ofr nodes in the original graph now
forms a node in the new graph. The actual sampling, iniaéittmn and updating schemes described in
sections IV-D, IV-F, and IV-E remain the same accept thay thiee applied to this extended graph.

Clearly, the proposed extension increases the number ahyers to be estimated by the CE and
Parametric MinxEnt methods. Fer= 2, the increase is proportional to the average out-degrdeediasic
connectivity graph representing the problem. While the benof parameters increases proportionally,
the performance improvement is dramatic.

The preceding extension may also be motivated by consigléniea sequential sampling schemes used
in CE based algorithms as a useful approximation to the frdbability distribution. The following
discussion may be related to some recent ideas found in (@jsider for example the solution for
the MinxEnt program (12), which specifies some probabilignsity f*(x) over the components of

x = (x1,x9,...,x,). INn general, one may writ¢g*(x) in sequential form:

FH(x) = falznlzt™h) - fal@alrr) - fi(z), (23)

where we have used the shorthand notabi:@)n: (xi, %iy1,...,xj). The idea behind CE and Parametric
MinxEnt is to approximate each element in this product by mpeterized distribution, with simplified
dependence on past component. The simplest approximassumees that the components »ofare
independent. The next approximation, which is commonlyduse path-sampling ( [10], [17]), employs

the (first-order) Markov chain structure:

f1(x) & hn(@p|en-1) - bn1(@n—1]@n—2) - - - ha(w2]z1) - Pa(21), (24)
where theith component depends on the corresponding parametérhis is the approximation used
in our basic scheme, where the componentgorrespond to the nodes in the connectivity graph, and
transitions on that graph are sampled via conditional fiitias of the formp,, (z;+1|z;). Alternatively,
we may use a less crude approximation by allowing the digidh of the next node in the path to
depend on two (or more) previous nodes (second-order Machain structure), as follows

T (%) = hp(@p|Tn—1,Tn-2) - hn1(Tn-1]Tn—2,Tn—3) - - - h3(@3|w2, 21) - ha(w2|x1) - h(21).

This representation translates to the two-node based sayrgtheme as proposed above.
B. Bidirectional Path Sampling

Recall that we sample paths by picking at randomsanode and generating a random walk forward

in time, starting ats; and ending aff. If the nodes; (or n;) happen to fall in the middle of an actual
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path, we will clearly miss the first part of this path. Thus,shof the paths sampled in such manner will
be “truncated” since only their tails will be sampled. In ettwords, in order to obtain good solutions
with tracks beginning at the actual appearance times of dlgets, we might need sufficiently many
samples and many iterations of the algorithms. This lingitamay be efficiently resolved by allowing
bidirectional sampling from the starting nodg. That is, in additional to sampling a forward path in the
usual manner, we also samplackwardin time from s;. The two sampled halves are joined to form one
complete path.

Sampling backward paths is carried out using a separatetstey which is composed of a backward
connectivity graph with suitable sampling parameters. Bdekward connectivity graph is simply obtained
from the connectivity graph by reversing the direction af tiraph edges. We augment this graph with a
new final nodef’ (see Fig. 2). However, the start nodes nodgsdre shared with the forward connectivity
graph. The relevant sampling parameters for the revergehgrare as usual the transition probabilities
between adjacent edges.

Sampling a complete path now starts, as before, by pickimgratom a start node. From that node,

a forward path is sampled over the forward connectivity gragnd a backward path is sampled using
the reverse graph. Finally, the two halves are concateratedo create the complete path. The rest of
the algorithm proceeds essentially as before: Paths auateal according to the cost function (5), and
the parameters are updated independently for the forwaddoankward graphs.

The improved initialization scheme of the next subsectisesuthe dynamical model of the target state
evolution. For the reverse connectivity graph, we use tlieviing "backward” version of the dynamical
model (1), namely

zy, = A7 (i1, t) e, — A7 (tig, £) Gt 1wy, (25)

Here we assume that the dynamics matti%;,¢;) is invertible (which valid in our simulation models,

in particular).

C. Likelihood-Based Initialization

We next present an improvement on the basic initializationeme introduced in subsection IV-F.
Recall that a uniform initial distribution may be used whem prior information is available. In our
case, however, prior information on possible target pattsmbedded in the dynamical and measurement
models (1)-(2).

For example, if all targets are assumed to obey the (neadgytant velocity model [18] and the

measurement model is accurate, high probability shoulddseggaed to edges that connect nodes rep-
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Figure 2.  An example of the bi-directional sampling schemg.ss, ..., s¢ are shared by the original and the backward
connectivity graphs. The sampled forward pathsis— n3 — n4a — ns — f. The sampled backward path é§ — ns —
na — f'. The resulting path is comprised of the nodes— n3 — ny — ns.

resenting co-linear measurements. Initialization of toees{si,...,s,} that was described in subsec-
tion IV-F remains unaltered, and the proposed modificatiefiers to the inner nodes of the graph —
n;, ¢ = 1,...,n, wheren is the number of the inner nodes representing the actualurerasnts. We
describe the initialization procedure for these nodes wapect to the history-based sampling described
in subsection V-A.

To initialize the nodes representing the actual measurememapply a Kalman Filter to every three (or
possibly more — depending on the target model) neighbortes ofG 4 that represent three consecutive
measurements. The filter is initialized with the first two s@@ments using the two-point differencing
technique [18]. Namely, we initialize the position as thhthe first measurement and the velocity as the
difference between the two measurements divided by therdifce in their time tags. We can now use
the Kalman filter equations to obtain the expected posititth @variance of the third measurement. The
corresponding probabilityof} of each edge of the graph is set proportional to the likelihfwnction of
the corresponding measurements relative to that predictio

To illustrate, consider the situation depicted in Fig. 3sé®e that we have initialized a KF using
andy- that were obtained at two consecutive sampling times geaadhe resulting predicted measurement
to the next sampling time. Assume that the neighborsofrepresenting the measuremen) in the
connectivity graph areis, ny andns (representing the measuremepts y4, andys respectively), that
carry the same time tag ds The probabilities on the edges connectingto ng, ng, andns, arepg‘g,
pdy, and p‘245. These are determined on the basis of the distance betiveen i3, y4, y5 respectively,

using the assumption that the true measurement deviatestfre® predicted one according to a Gaussian
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ok

(a) The actual measurements (b) The corresponding graph nodes

Figure 3. Example of the initialization scheme. (a) Solictleis represent measurements, dashed circle represedlistpd
measurement. (b) The corresponding part of the connectiviaph is shown.

distribution. Mathematically, this reads,

where B is the innovation covariance obtained fiar Clearly, some edges cannot be initialized in such
manner, e.g., the edges — ns andn; — ng in the above example sineg has no possible predecessor.
We assign those a uniform distribution. In our exampfe = p7i; = 0.5.

As in the basic initialization scheme, the probabilitiestba edges linking the inner nodes foare
initialized to the termination probability,, which was introduced in section Il. The probabilities oe th
other edges calculated via the above procedure are thearmeatized to sum to 1. In case the only

outgoing edge is the one leading foit is assigned a probability 1.

D. Elimination of Unlikely Tracks

The basic procedure of section IV together with the improeets described above produce a feasible
solution to the multi-scan data association problem haviigh posterior probability. However, it is
possible that among the actual tracks found by the algoritbeweral false tracks, or ghosts, will be
generated. These tracks are patterns of consecutive fassurements that constitute feasible tracks
according to the definition of subsection II-D.

To reduce the number of such false tracks we apply additibkelihood-based test as follows. For
each trackr in the final partitionw we compute its likelihood(r), and als/y(7) which is the likelihood
of all measurements in classified as false alarms. 4f7) exceedd(7) we excluder from the tracks
{n,...,7x } of w and add its measurements to the set of false alarms-of,. This procedure may only

increase the posterior probability of the partitionthus resulting in a better score of the final solution.
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E. Computation Complexity

We now evaluate briefly the running time of the proposed dlgms. The total running time is
determined by the number of iterations (sampling-evatmatipdating cycles) until convergencensg.
Each iteration is determined by the number of sampled catelidolutions -V, the time required to
generate each solution, the time required to evaluate tse afosolution, and the time to update the
parameters for the following CE or PME iteration. Recalltthais the number of inner graph nodes
representing the actual measurements of the problem7a@edhe duration of the surveillance scenario,
namely the number of scans to be assigned (see subsecfdniti-the following we summarize the time
complexity (in terms of the number of elementary operafiafsvarious procedures. First, we provide
the computational requirements of the basic algorithm ofise IV and then proceed with the improved
scheme of section V.

1) Computational Complexity of the Basic Algorithm:

« The complexity of sampling a candidate solution$7n?).

« The complexity of evaluation of the cost of a solution(¥n7?).

« The complexity of updating the distribution &(Nn?).

« The complexity of calculation of the initial distributios O(n?).

The overall procedure time requirements are summarize@(ag:z(NTn? + NnT? + Nn?) + n?).

2) Computational Complexity of the Improved Algorithithe improved scheme differs from the basic
one by an increased number of graph nodes and an increasdstnafrparameters to be estimated. The
increase is proportional to the average out-degree of tBe lbannectivity graph. Denoting this quantity
by 1, we obtain the following worst case complexity.

« The complexity of sampling a candidate solution($1'n?).

« The complexity of evaluation of the cost of a solution(¥n7?).

« The complexity of updating the distribution @&(Nnn?).

« The complexity of calculation of the initial distributios O (nn?).

Note that the time required for sampling a single candidalatisn and evaluating its cost remain
unchanged since the path maximal length is not affected byiniproved sampling scheme, nor is the
maximal number of the paths in the augmented connectivigplyr The complexity of updating the
distribution at each iteration, however, increases dudoiricreased number of parameters and nodes.

The overall procedure time requirements are summarized as

O(ncp(NTn? + NnT? + Nnn?) + nn?). (27)
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(a) A single scan (b) All scans

Figure 4. An example of a typical scenario. Target detestiand FAs from all 10 scans are shown (a), FAs from a single
scan are shown (b).

For dense scenarios, whee= O(n) andT' < n the above time complexity becoméyncpNn?).
Although n¢c g, the number of iterations of CE-based algorithms, canndvdended in advance, in all
our experiments convergence has been obtained within 7 tied&tions. A similarly low number of

iteration till convergence seems to be typical of other CRliaptions as well [10].

VI. SIMULATION RESULTS
A. General Simulation Setup
We consider a similar simulation setup to that in [9]. A rexfalar region on a plan& = [0, 1000] x
[0,1000] C R? is taken to be the surveillance region (to be specific, lengtits can be taken as meter
and time units as seconds). Each target has a 4-componenistdor with position and velocity in the
x andy directions, that ist; = [pm,vm,pyt,vyt]T. We have used the Discrete White Noise Acceleration

(DWNA) model [18] for the targets dynamics. Namely,
21 = Az + Guy,

where
T

0 1

A:diag[F17F1]7 F1:

In addition, the vector process noiseuis = [w,; w,:|7 with covariance = diag(c?2,,02), and
o

cov(Gur) = o, - ding(@1, Q). Q= | 11 2
§Ts Ts
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The measurement equation is

DPat Vgt
w=|" " |+| 7 | =Ca+tu,
Pyt Uyt
where
1 0 0 O
C =
00 1 0

and the (vector) measurement noisevis= [v,: vy]? with covariance matrixk = diag(o?, 02). We
have used a surveillance duration’Bf= 10 scans. Targets appear at a uniformly chosen position from
the left bottom or right bottom quadrants &f respectively. They all move diagonally (in straight lines)
with constant velocity randomly chosen betwe&fv,,., and 0.9v,,.. Each target’s appearance and
disappearance times are chosen uniformly from the first astl duarters of the surveillance interval

respectively. An example of a typical scenario is shown ig. Bi

B. Performance Measures

To the best of our knowledge, a standard definition of peréoroe measures for evaluation of MTT
algorithms is an open question. Performance evaluatioringiestarget tracking algorithms (both with
and without measurement origin uncertainty) may be quadtiiy means of the Mean Square Error
(MSE). Such criteria are problematic when dealing with asgmn algorithms, since the MSE may
provide meaningful insight on the performance only prodidee data association is perfect. We thus
adopt the following, rather intuitive, measures for periance evaluation suggested in [9].

1) The normalized correct associations (NCA), that is, thelper of correct associations made by

the algorithm divided by the true number of associations.

2) The incorrect-to-correct association ratio (ICAR) whimeasures the ratio of incorrect to correct

associations.
An associationhere means two consecutive measurements on the same tratherivatically, for each

partitionw € 2, the set of all associations in is represented as
SA(w) = {(rt,tT1) ri=1,....|r| - 1,7 € w}

wheret] is the time of thei-th observation in track. The set ofcorrect associations inv relative to

w*, which is the true partition, is

CA(w) ={(7,t,s) € SAlw) : 7(t) = 7*(t), 7(s) = 7(s), for somer* € w*}, (28)
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wherer(t) is the measurement at tinteassociated with track. The above measures now read:
[CA)] [SAW)| — |CA(w)]
NCA(w) = -~————=-, ICAR(w) = ,

[SA(w)] [CA(W)]

where|A| is the cardinality of the sed. From the definition, NCA varies betweérand1 and it provides

(29)

a measure of the number of correct associations. In caserfd@cp@associations, NCA= 1. NCA does
not account, however, for false tracks. On the other handRIG a positive measure not bounded from
above and, informally, it counts false associations — batkef tracks and false continuations of true
tracks. When no incorrect associations are made, IGAR These performance measures are illustrated

in Fig. 5. In addition, we record the number of tracks estedaby the algorithms. For the CEDA and

7 7
/A True detection
0 False Alarm
6| — — — Association VZREEE 6 : ]
/ /
/ /
5 VAN 1 5¢ A
/ /
/ /
/ /
4 A 4 A
/ /
/ A/
3 A 3 A
/ /
/ /
/ /
2 AN 1 2 A
/ /
/ /
1p A | SEVLN
0 0
0 2 4 6 0 2 4 6

Figure 5. An example of performance measures. NEA, ICAR = i (left), NCA = % ICAR = g (right)

PMEDA algorithms we split this number into true and falseclisa

C. Compared Algorithms

The performance of the CE based algorithms was comparee timllbwing data association schemes.
First, is the Multiple Hypotheses Tracker (MHT) for whictsudts have been reported in [9]. The authors
have used the implementation from [19], [20], which implersepruning, gating, clusteringy-scan-
back logic andk-best hypotheses (see [19] for details on these technigBesdnd, is the greedy tracker
proposed in [9]. It is a batch-mode nearest neighbor meHigiget tracking algorithm. It generates
candidate tracks by picking measurements nearest to trdicfgd states until there are no unused

measurements left. Finally is the Markov Chain Monte Car&teDAssociation (MCMCDA) also proposed
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in [9]. The MCMCDA algorithm allows sampling from complexstiibution by simulating an ergodic
Markov chain which converges to the desired limiting digttion. In [9] the authors constructed a Markov
chain on the set of all feasible partitions of the measurésn@ee subsection 1I-D) with the posterior (5)
as the limiting distribution. Using a small set of elementaroves (e.g. track birth, track termination,
track splitting etc.) sampling from the posterior was pblesiafter a few thousands of moves. Then, a
sample with the highest posterior was returned as the ealutihe initial state of the Markov chain was
provided by the output of the Greedy algorithm. For the penfnce comparison we have reconstructed

the results for the MCMCDA and the greedy algorithms and ukedesults reported in [9] for the MHT.

D. Experiments and Results

In this section we test the performance of the proposed idhgos by comparing them with the
performance of the methods mentioned in the previous stibeedhe algorithms are compared to each
other using the performance measures NCA, ICAR and the astdmumber of targets described above.

Several options exist to challenge a data association itligor The first is by increasing the false
alarm rate\ (V. In addition, one can decrease the detection probabflityand increase the density of
tracks K. Closely moving targets, low detection probabilities aightfalse alarm rate make the problem
more difficult. In the following we perform three differergst sequences in which we modify different
parameters to evaluate the performance of the algorithrhe fatse alarm rate s, the density of tracks
K, and the detection probability?;. Additional simulation tests including the influence of thecess
and measurement noises, the segment length and robustnigxestarget model are available in [21]. In
all simulations presented below the results are averaged ®vepeated runs with new measurements
generated independently at each run.

1) Number of Targetsin this sequence we modify the track density. The numberrgeta K in the
scenario is varied betwedf and75, while keeping the clutter rate low and the detection prdhginigh.
Each target moves at constant velocity uniformly chosewéetn 30 and 120 m/s. All other parameters
are fixed as well, namely A,V =1, P; = 0.999 and vy = 140 m/s,p, = 1072, and A,V = 1 such
that, on average, there is a single new target at each scanavidrage NCAs, ICARs and number of
tracks are presented in Fig. 6. It is readily seen that batkscentropy based algorithms score higher
than Greedy and MCMCDA in NCA and better in ICAR, introducing significant difference between
CEDA and PMEDA. Note that MCMCDA improves only slightly thengformance achieved by the greedy
algorithm. All algorithms outperform the MHT.
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Figure 6. Simulation results for various valuesiof the number of targets.

2) False Alarms Rate:Here we keep a constant number &f = 10 tracks, with targets moving
at constant velocity each uniformly chosen between 30 arlri. The clutter rate varies between
AV =T and AV = 100. Py = 0.999, vyax = 140 m/s, p, = 1072, and \,V = 1. Namely, in this
experiment we test our algorithms in heavily cluttered emvinent, keeping the detection probability high
and the number of targets low. The results are depicted in7#i§uperiority of PMEDA may be noticed
in the NCA parameter with nearly 90% of correct associatidiiie CEDA algorithm behaves similarly
at low and moderate clutter rates, but degrades in NCA padace at high clutter rates. However, false
tracks are not produced keeping the ICAR relatively low. Wayraonclude that, in this application, the
updating rule of the PMEDA algorithm, which uses all the sksmbtained at a given iteration rather

than the elite samples used by CEDA, is preferable. It is lwarentioning, however, that the slightly
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Figure 7. Simulation results for various values)afV. The actual number of targets 19.

increased rate of false tracks produced by PMEDA, while kinabsolute terms, reflects that the two
algorithms are operating at different points on the NCA-FC#ade-off curve and there is no clear overall
superiority of either of the two.

As reported in [9], the MHT algorithm does not make any assamns when\ ;1 > 80 resulting in
zero NCA and unreported ICAR. This is due to various hewsstised in the specific implementation
of the MHT which are necessary for finite running times. Al discussion of the behavior of the
MHT in the discussed experiments is provided below. The MTMClgorithm being initialized with
the output of the greedy algorithm, removes many of the fatseks found at the initialization stage,
thus improving the ICAR, but at the same time it degrades t@& performance by changing some of

the correct associations. As a result, the obtained NCAvieidhan that of the greedy algorithm by a
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Figure 8. Simulation results for various values Rf.

few percent. The greedy algorithm achieves reasonablerpeshce in terms of the NCA with more than
80% of correct associations, but results in unacceptabyie8CAR due to generation of high number
of false tracks which also increase the ICAR.

3) Detection Probability: There is a constant number & = 10 tracks, which move at constant
velocity each uniformly chosen between 30 and 120 m/s. Thteclrate is kept constant at V' = 1.
The probability of detection varies betwe&p = 0.3 to P; = 0.9. Due to lower detection probabilities we
have setl,,.x = 5 since many consecutive missed detections may occur (itheal,, ., is the maximum
number of consecutive missing observations of any trackwiaa defined in section Il). The probability
of track termination ig. = 0.01 and the appearance of new tracks is modeled}iy = 1. The results
are depicted in Fig. 8. Both cross entropy based algorithatgeoform all other algorithms with some
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superiority of the PMEDA over CEDA. Unlike the previous wsihe greedy algorithm performs poorly
with less than 50% of correct associations. MCMCDA scoresebéhan MHT, but much worse than

cross entropy based algorithms especially at very low tieteprobabilities.

E. Discussion

It it noticeable in the first and second experiments that M@MCdoes not introduce significant
improvement in terms of the NCA in comparison to the greedgker with which it has been initialized.
This occurs when the greedy algorithm finds a solution that $¢rong local maximum of the problem,
and MCMC, being a local search method, needs many steps apedom this strong local extremum.
Although in theory the MCMC method is considered a globairoation method, it turns out in this
experiment that at this level of problem complexity it quickot trapped in local minima, from which
it could not get out in any reasonable computation time. TMGMC effectively reduces here to local
search, while CE based algorithms maintain a more globabiflag withessed by their performance.

Another interesting phenomenon is the relatively poorgremtince of the MHT algorithm as reported
in [9]. Although in theory MHT is an optimal solution in the MAsense it performs poorly when the
detection probability is low or the false alarm rate is higihedo the necessary heuristics used in the
algorithm. These heuristics are required as part of alltacimplementations of MHT since without
them the number of hypotheses grows exponentially fast. M such heuristics may work well when
a few hypotheses carry most of the weight. However, when étection probability is low or the false
alarm rate is high, there are many hypotheses with low wedgltthere is set of dominating hypotheses,
so MHT cannot perform well. This explains the poor behaviothe method when tested in the extreme
cases illustrated in Fig. 7 and Fig. 8. Similarly, for higHues of K the specific implementation of the
MHT encounters difficulty in finding tracks, and the most oé tleturned ones are false. Thus, the total
number of tracks in Fig. 6 becomes low and plateau for Highwith the corresponding NCA being low
and ICAR being high.

F. Computation Times

All algorithms proposed in this paper were implemented irtld#R) without any code optimizations
and ran on a PC with 2.8GHz Intel processor. Recall that trerativperformance is determined by
the time required to obtain and evaluate a single sampleanCle/PME procedures in addition to the
initialization and updating procedures. For dense scesahiowever, the time to obtain a single sample,
which requiresO(T'n?) calculations, dominates the overall computation time. \Wesent in Fig. 9 this

empirically found time versus the clutter rate which is prdjmnal to the average number of observations
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in the problem at hand. It is readily seen that this empir@matience strongly supports the calculated

complexity needed to obtain a single sample.

25

T T
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Quadratic interpolation

=
&) N
T T

[
T

Time to obtain a sample (sec)

0.5

i i i i
0 20 40 60 80 100
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Figure 9. Time required to obtain a single sample.

We note that, as reported in [9], the running times of MHT (iempented in C++) are comparable to the
running times of our algorithms (implemented in Matlab)eTnning times of the MCMCDA algorithm
as reported in [9] are much shorter than ours (although actaimparison is hard since MCMCDA was
implemented in C++ as opposed to the Matlab implementatiayuoalgorithms). However, the point in
our algorithms is that better performance is attained. éddéhe performance curves of MCMCDA tend
to flatten after the initial improvement period, so that liert improvement should be hard to attain (this

point is further discussed in Section VI-E).
VIl. SEQUENTIAL MULTI-SCAN TRACKING

In typical (off-line or on-line) applications, the numbef sequential measurements (or scans) is too
large to be handled simultaneously by existing multi-scatagssociation algorithms. In that case, the
overall scenario may be divided into shorter segments, rajtte suitable for the application of a multi-
scan association algorithm. Still, it is desirable to maimtontinuity of paths between adjacent segments,
as well as some interchange of relevant data.

We extend our algorithm to handle long scenarios by dividimg whole surveillance duration into
overlapping segments of lengify,; each. In each segment we execute the basic CEDA algorithmg usi
the observations which belong to that segment. The oveelgiom allows to correct associations obtained
at the final scans of the previous segment using measurefemdthe next segment, and vice versa, to

initialize the next segment with existing tracks. The idedllustrated in Fig. 10.
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In more detail, suppose the CEDA algorithm has been appliegegment. Associations obtained in
the first part of that segment (before the overlap regionfigeel and cannot be changed. To initialize the
algorithm in segment + 1, we assign probability to the edges; — y; for nodesy; that belong to the
first scan of segmerit + 1 and were associated with tracks in segmienthus, these nodes are bound
to be starting nodes of paths in the new segment. All othebabhilities in that segment are initialized

as in the single segment case according to the scheme dabanilsubsection V-C.

‘ Segment k -
x Y1 x Y3 xY7 xY13 T1
xY2 Y5 x Yg X Y11 %
o Y10
x Y4 x Y6 x Y12 xY15 T
XY X Y14 -

Segment k + 1

Figure 10. Sequential multi-scam data association. Therighgn is invoked on two overlapping windows. Measuremepts
and yo associated withr; in window k1 are used to initialize the track in window+ 1. Measurementg12, y14, andyis
associated with- in window k + 1 improve the associations obtained in windévby classifyingy:o as a false alarm.

The extent of overlap between two adjacent segments is grdesirameter which should be chosen
using the following considerations. On the one hand, therlapeshould be large enough, so that
misassociations at the later scans of segnierdn be corrected while solving in segmént 1. On the
other hand, large overlaps increase the number of segmedthence the computation time. However,
we have found, via simulation, that performance is not &f@significantly when the overlapping length
is increased beyond a certain point, and satisfactory teeané obtained for small overlaps. The results
supporting this statement are summarized in Table | for allsseanario with 20 targets, 45 scans

surveillance duration, and segment length of 15 scans. &élsethe worst performance is achieved for

Overlap size 0 3 6 9
NCA 0.89 094 0.93 0.95

Table |
THE OVERLAP INFLUENCE ON THE PERFORMANCE

non-overlapping windows, large overlaps do not introduiggmicant changes. Further testing of the
proposed sequential CEDA algorithm was done as follows. e lused the following parameters. The
surveillance region is increased ® = [0, 10000] x [0,10000] c R2, and the surveillance duration is

increased tdl' = 90 scans. Segment size 1§y = 15, and the length of the overlap between adjacent
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windows is 4 scans. Targets appear and disappear at randwes @nd positions and clutter rate is
AV =10. Py = 0.9, dnax = 3 and maximum velocity is set to,,,x = 230 m/s. All other parameters

remain unchanged. Three test cases are generated witmtotdder of 50 tracks, 100 tracks and 150
tracks. Typical results for the overall NCA and ICAR for thaoae test cases are summarized in Table .

These results indicate that the proposed algorithm is thdapable of initiating, tracking and terminating

Number of targets NCA ICAR

50 0.95 0.04

100 0.94 0.04

150 0.92 0.06
Table Il

SEQUENTIAL TRACKER PERFORMANCE

tracks for long scenarios.

VIIl. CONCLUSION

We have proposed two related methods for the multi-scanitandfet data association problem based
on the CE and PME heuristics. These schemes have been tessthulation and show improved
performance relative to the state-of-the-art algorithAsnajor issue in the proposed algorithms is their
computation time. Although polynomial in the problem paedens, the computation time is still consid-
erable in challenging scenarios which involve a large nundfieneasurements (ranging from minutes
to hours for the more complex scenarios using unoptimizetladacode as described in section VI). In
these cases the proposed algorithms are more suitableffaretiata analysis. Future research directions
should address further reduction of the computation timéewkteeping the advantages of the proposed
approach. Furthermore, various extensions to the modellghe of interest, including non-linear target

dynamics and multisensor measurements.
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