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Abstract

We introduce the following general question: Let V be a complex
n-dimensional space and for m � k consider the GL�V �-module
V �n�m� k� � V �m defined by

V �n�m� k� � f v� � � � � � vm � V �m �

dimSpanfv�� � � � � vmg � k g �

We would like to determine dimV �n�m� k� for any choice of n�m � k.
This question appears in various disguises in computer vision prob-
lems where the constraints of a multi-linear problem occupy a low-
dimensional subspace. We discuss two such problems: analysis of con-
straints in single view indexing functions (the 8-point shape tensor), and
the analysis of the constraints in dynamic P n � Pn alignments, i.e.,
where the point sets are allowed to move within a k-dimensional sub-
space while the n-dimensional space is being multiply projected (multi-
ple views) onto copies of the m-dimensional space. We then derive the
solution to the general problem using tools from representation theory.

1 Introduction

Multilinear constraints in computer vision applications are of growing interest in Structure
for Motion (SFM), Indexing and Graphics. Many of the applications where multiple mea-

�The reference to this manuscript is “Technical Report 2002-44, Leibniz Center for Research,
School of Computer Science and Eng., the Hebrew University of Jerusalem.”



surements are involved — like multiple-view geometry of static and dynamic scenes, index-
ing functions into 3D data-sets, separation of various attribute/modalities such as “content”
and “style” — have a multilinear form. As a result, a growing amount of work has been
published on the various aspects of those algebraic functions and their applications — see
[10, 6] for the recent summary of various multi-linear maps and their associated tensors.

In this paper we raise a general question and demonstrate its relevance to the current
research in multilinearity in computer vision. The questions takes the following form:
Let V be a complex n-dimensional space and for m � k consider the GL�V �-module
V �n�m� k� � V �m defined by

V �n�m� k� � f v� � � � � � vm � V �m �

dimSpanfv�� � � � � vmg � k g �

We would like to determine dimV �n�m� k� for any choice of n�m � k. We will show that
this question appears in a one disguised form or another in a number of vision problems
and, for example, focus on two of those problems: (i) analysis of constraints in single view
indexing functions (the 8-point shape tensor), and (ii) the analysis of the constraints in
dynamic Pn � Pn mappings, i.e., where the point sets are allowed to move within a k-
dimensional subspace while the n-dimensional space is being multiply projected (multiple
views) onto copies of the m-dimensional space.

We then derive the solution to the general problem using tools from representation theory.
We will describe the general notations in the next section (and provide a brief primer on
representation theory in the appendix), followed by the detailed description of the two prob-
lems mentioned above and the way the are mapped to the question of dimV �n�m� k�, and
followed by the derivation of the structure and dimension of theGL�V � module V �n�m� k�
by counting irreducibles followed with examples of its application to some instances of dy-
namic Pn � Pn mappings.

2 Notations

We will describe below the notations and symbols we will be using later in the paper. A
brief account of the relevant facts concerning the representation theory of the general linear
group can be found in the Appendix.

Let V be a finite n-dimensional vector space over the complex numbers, and let the group of
automorphisms of V denoted by GL�V �. We denote the exterior powers of V by �mV and
the symmetric powers by SymmV . A partition of m is denoted by � � ���� ���� �k� such
that �� � ��� � �k � � and

P
�i � m. A partition is represented by its Young diagram (or

“shape”) which consists of k left aligned rows of boxes with � i boxes in row i. We denote
by �i the number of terms in � that are greater than or equal to i, and � � �� �� ���� �r� is
called the conjugate partition of �.

We denote by T� the set of standard tableaux on � and f� the number of standard tableaux
on �,

f� �
m�Q

�i�j� hij

where hij � �i ��j 	 i	 j�� is called the “hook length” of a box in position �i� j�, and
the product of the hook-lengths is over all boxes of the diagram. We denote by d ��n� the
number of semi-standard tableaux:

d��n� �
Y
�i�j�

n	 i� j

hij
�

Let t be a tableau on � (a numbering of the boxes of the diagram) and let P �t� denote the
group of all permutations � � Sm which permute only the rows of t. Similarly, let Q�t�



denote the group of permutations that preserve the columns of t. Let a t� bt be two elements
in the group algebra C Sm defined as:

at �
X

g�P �t�

g � bt �
X

g�Q�t�

sgn�g�g�

and we denote Schur’s Module by St�V � � V �m � at � bt.

3 The 8-point Shape Tensor Problem

In this section we will make the connection between the question of dim V �n�m� k� and a
riddle regarding the internal structure of the 8-point shape tensor. Shape tensors were first
introduced in [2, 16, 3] with the basic idea that single-view invariants of a 3D scene can
be obtained by algebraically eliminating the viewing position (camera) parameters given
a sufficient number of points. Later, the same analysis was conducted in a reduced (but
practical in vision applications) setting where a reference plane is identified in advance
[11, 12, 5, 4] — which is the case we will focus on here.

The problem setting is as follows. Let Pi � �Xi� Yi� Zi�Wi�
� � P�, i � �� ���� �,

denote 8 points in 3D projective space and let M be a 	 
 
 projection matrix, thus
pi �� MPi where pi � P� be the corresponding image points in the 2D projective
plane. We wish to algebraically eliminate the camera parameters (matrix M ) by hav-
ing a sufficient number of points. This could be done succinctly if we first make a
change of basis: Let the coplanar points be denoted by P �� ���� P� with the coordinates
��� �� �� ��� ��� �� �� ��� ��� �� �� ��� ��� �� �� �� which is appropriate when P�� ���� P� are in-
deed coplanar. Let the image undergo a projective change of coordinates such that the cor-
responding points p�� ���� p
 be assigned e� � ��� �� ��� e� � ��� �� ��� e� � ��� �� ��� e� �
��� �� ��, respectively. Given this setup the camera matrixM contains only 4 non-vanishing
entries:

M �

�
� � � �
� � � �
� � � 	

�

Let �M � ��� �� 	� �� � P� be a point (representing the camera) and let �Pi be the projection
matrix:

�P �

�
Wi � � Xi

� Wi � Yi
� � Wi Zi

�

And as in the general case we have the duality p i �� MPi � �Pi �M where the role of the
motion (the camera) and shape have been switched. Let l i� l�i be two distinct lines passing
through the image point pi, i.e., p�i li � � and p�i l

�
i � �, and therefore we have l�i �Pi �M � �

and l��i �Pi �M � �. For i � 
� ���� � we have therefore E �M � � where:

E �

�
�������

l��
�P�
�

l��
�P�

l���
�P�
�

l���
�P�

�
�������

(1)

Therefore the determinant of any 4 rows of E must vanish. The choice of the 4 rows can
include 2 points, 3 points, or 4 points (on top of the 4 basis points P �� ���� P�) and each
such choice determines a multilinear constraint whose coefficients are arranged in a tensor.
The 8-point tensor is when 4 points are chosen: by choosing one row from each point we



obtain a vanishing determinant involving 4 points which provides 16 constraints (per view)
l�i l

	
j l


kl
�
tQ

ijkt � � for the 81 coefficients of the tensor Qijkt. The indices i� j� k� l follow
the covariant-contravariant notations (upper index represents points, lower represent lines)
and follow the summation convention (contraction) u ivi � u�v� �u�v� � ���� unvn. The
tensor contains 81 coefficients, however, they satisfy internal (“synthetic” borrowing from
[10]) linear constraint. Exactly how many is an open problem which we will show boils
down to the question of dimV �n�m� k�.

Since P�� ���� P� are coplanar we have the constraint P �
i n � �, i � �� ���� 
 and, due to our

choice of coordinates,n � ��� �� �� ��T . Consider the family of camera matricesM � un�

for all choices of u � �u�� u�� u��
�. In other words, the 4’th column of M consists of the

arbitrary vector u and all other entries vanish. Thus we have that MP either vanishes or is
equal to u (up to scale) for all P . Let li� l�i be lines through u, therefore

l�i MjP � l�i
�P �Mj � �

l��i MjP � l��i
�P �Mj � �

for all points P , and dually for all projection matrices �P . Therefore the 

 
 determinants
of E vanish regardless of �Pi. We have a single 	 
 	 
 	 
 	 tensor Qijkt responsible
for the 16 quadlinear constraints l�i l

	
j l


kl
�
tQ

ijkt � � (we have a choice of 2 lines for each
point, thus 16 constraints). From the discussion above, the four lines contracted by the
tensor are all coincident with the arbitrary point u. Therefore, the question is what is the
dimension of the set of constraints l�i l

	
j l


kl
�
tQ

ijkt � � where the lines are arbitrary but form
a 2-dimensional subspace?

Recall the definition of V �n�m� k� and set n � 	�m � 
� k � �:

V �	� 
� �� � fv� � v� � v� � v�j dimSpanfv�� ���� v�g � �g

where v�� ���� v� are vectors in R�. Our question regarding the number of synthetic con-
straints is equivalent to the question of what is the dimension of V �	� 
� ��?

4 Dynamic Pn � Pn Mappings

Consider a configuration of points in Qi � Pn��, i � �� ���� q undergoing a projective
mapping Qi � Q�i. Then it is well known that Q�

i
�� AQi where A � GL�n� is some

invertible n
n matrix. However, consider the following “complication” where each point
Qi may change its position up to a k-dimensional subspace (k � � means that Q i is fixed,
k � � means that Qi may change its position along some line in P n, and so forth), and we
are given m 
 � observations Q�j�

i where j � �� ����m. In other words, the observations

Q
�j�
i are generated by a combination of “global” (unknown) transformations A i � GL�n�

and “local” (unknown) movements within (unknown) subspaces of dimension up to k � m.
The task is to recover the global transformationsA i from the observations.

The definition above is a generalization of particular cases which were introduced in the
past under the name of “dynamic” SFM, or SFM of multiply moving points, and the rele-
vant literature includes [1, 15, 19, 13, 17, 8, 14, 9, 18]. For instance, [15] consider the case
where n � 	 (points Qi belong to the 2D projective plane), m � 	 and k � �. In other
words, a configuration of coplanar points are viewed by a moving camera and the points
move along arbitrary straight lines (k � �) or stay fixed (“static”, k � �) while the camera
changes positions. It was shown there that the image observations (across three views) sat-
isfy a 	 
 	 
 	 tensorial constraint, where in the case where all points are moving along
along lines, 26 observations are sufficient for a unique solution to the tensor, when all points
are static (without being labeled as such) then those observations fill a 10 dimensional sub-
space (thus at least 16 points should be dynamic for a unique solution form observations).



In a later paper [19] the case of “dynamic 3D to 3D” alignment was introduced, where
n � 
�m � 	� k � �. In that case, the observations are governed by a 
 
 
 
 
 tensor,
where the observations from moving points fill a 60-dimensional space (thus there 4 tensors
satisfying the constraints), and static points fill a 20-dimensional space.

Among the various aspects of those tensors, one important aspect is the counting of nec-
essary constraints for a solution. Some of those counting issues, even in the particular
low dimension examples given above, are not obvious. The matter becomes fairly subtle
when dealing with the general dynamic P n � Pn mappings where the issue of counting
constraints is an open problem.

We observe that since tensor products commute with linear transformations, the issue of
dimension counting is independent of the matrices A i � GL�n�. Therefore, the general
problem of counting the constraints of a dynamic P n�� � Pn�� mapping is isomorphic
to the question of dimV �n�m� k�, where in this case n � m � k.

When we compute the constraints of dynamic mappings we have other limitations which
are not described in [15, 19] and can be also described in the V �n�m� k� framework. For
example, in the case of dynamic P � � P� alignment the collection of measurements
arising from triplets of matching points must span the 2D plane. We may ask what is
the largest number of collinear points allowed? (which beyond that the solution becomes
degenerate). In other words, the question is how many points moving on the same striaght
line path will generate linearly independent constraints. The answer is dimV ��� 	� �� —
note that n � � because the effective dimension of the vector space is 2 even though
the points are in defined in the 2D projective plane (i.e., n � 	). Likewise, in the case
of dynamic P � � P� alignment the maximal number of points allowed on a single line
is also dimV ��� 	� �� — and out of these points dim V ��� 	� �� static points will give us
linearly independent constraints (in both cases).

From the examples above we have that dimV �	� 	� �� � �� and dim V �
� 	� �� � �� (point
moving along straight line paths) and dimV �	� 	� �� � �� and dimV �
� 	� �� � �� (static
points) for the 2D and 3D cases, respectively.

In the following section we analyze the structure of V �n�m� k� and as a result determine
dimV �n�m� k� for any choice of n�m � k.

5 The Structure of V �n�m� k�

So far we have presented two (unrelated) Vision problems which are isomorphic to the
dimV �n�m� k� question. We will provide below the statement and proof about the struc-
ture of V �n�m� k�. The statement appears very similar to the classic result (see Appendix)
of decomposing of V �m into irreducible GL�V �-modules:

V �m �
M
��m

M
t�T�

St�V ��

with the difference that not all diagrams are included — only those diagrams � for which
�k�� � �.

Claim 1
V �n�m� k� �

M
�k���


S��V ��f� �

In particular

dimV �n�m� k� �
X

�k���


f�s��



Proof: suppose � � m and �k�� � �. Let t be the tableau given by t�i� j� �
Pi��

l�� �l � j.
Noting that V �n� r� �� � SymrV it follows that

V �m � at � Sym��V � � � � � Sym�kV

� V �n� ��� ��� � � � � V �n� �k� �� � V �n�m� k� �

Therefore,
St�V � � V �m � aT � bT � V �n�m� k� � bT � V �n�m� k�

hence, M
�k���


S��V ��f� � V �n�m� k��

To show the other direction let ��� �� be a hermitian form on V and let the induced form on
V �m be given by

�u� � � � � � um� v� � � � � � vm� �

mY
i��

�ui� vi� �

Note that

�u� � � � � � um� v� � � � � � vm�

�
�

m�
�u� � � � � � um� v� � � � � � vm�

�
�

m�
det��ui� vj��

m
i�j�� �

Let � � m with �k�� 
� �, then the conjugate partition � � ��� � �� � � � � � �t� satisfies
�� � k � �. Let lj �

Pj
r�� �r and let t be the tableau given by t�i� j� � lj�� � i. Then

St�V � � V �m � at � bt � V �m � bt

� ���V � � � � � ��lV �

Suppose now that v�� � � � � vm � V �m satisfy dimSpanfv�� � � � � vmg � k. Then v� � � � ��
v�� � � therefore for any u�� � � � � um � V

��u� � � � � � um� � bT � v� � � � � � vm� �

lY
r��

�

�r�
�

lr	
i�lr����

ui�

lr	
i�lr����

vi� � � �

It follows that V �n�m� k� is orthogonal toM
�k�� ��


S��V ��f�

hence,
dimV �n�m� k� � dim

M
�k���


S��V ��f� �

Claim 1 can be used to give explicit formulas for dimV �n�m� k� when either k or m	 k
are small. In the later case we write

dimV �n�m� k� � nm 	
X

�k�� ��


f�d��n�

and note that the partitions of m with �k�� 
� � correspond to all partitions of all numbers
up to m	 k 	 �.



5.1 Examples

To calculate dimV �n�m�m	 �� note that only � � ��m� must be excluded, thus:

f��m� � � � d��m��n� �



n

m

�

hence,

dim V �n�m�m	 �� � nm 	



n

m

�
�

To calculate dim V �n�m�m 	 �� we must exclude, in addition to the above, the partition
��� �m���, thus:

f����m��� � m	 � � d����m����n� � �m	 ��



n� �

m

�

hence,

dimV �n�m�m	 �� � nm 	 �



n

m

�
� �m	 ���



n� �

m

�
��

To calculate dimV �n�m�m	 	� we must exclude, in addition to the above, the partitions
�	� �m��� and ���� �m���, thus:

f����m��� �



m	 �

�

�
� d����m����n� �



m	 �

�

�

n� �

m

�

f�����m��� �
m�m	 	�

�
�

d�����m����n� �
�m	 	�n

�



n� �

m	 �

�
Hence,

dimV �n�m�m	 	� � nm 	 �



n

m

�
� �m	 ���



n� �

m

�
�



m	 �

�

��

n� �

m

�
�
m�m	 	��n






n� �

m	 �

�
��

With these in mind, we can easily resolve the first of the open problems which is the number
of synthetic constraints of the 8-point shape tensor with 4 coplanar points. We have seen
that the answer is dim V ��	� 
� ��:

dim V ��	� 
� �� �
X

������


f�d��

where � � ���� ���� ���, is a partition of 4, i.e., �� � �� � �� � �� and
P

i �i � 
. We
have therefore only three partitions which satisfy �� � �� � �: � � �
�� ��� ��� �	� �� to
consider. Thus, f��� � �� d��� � �
� f����� � �� d����� � �� f����� � 	 and d����� � �
.
Therefore, dimV �	� 
� �� � �
 � �� � 

 � ��.

We can also verify the special cases of dynamic P � � P� and P� � P� by substituting
the values of n�m� k in the formulas above. For example: dimV �	� 	� �� � �� 	 � �
�� and dimV �
� 	� �� � �
 	 
 � �� (point moving along straight line paths) and
dimV �	� 	� �� � ��	 ���
 � 
� � �� and dim V �
� 	� �� � �
	 �
�
 � ��� � �� (static
points). Also dimV ��� 	� �� � �	 � � � points moving along one line path out of which
up to dim V ��� 	� �� � � 	 �� � 
� � 
 are static points on this line will give us linearly
independent constraints.



6 Summary

We have shown that certain non-obvious counting problems exist in SFM literature such as
the number of synthetic constraints of the 8-point shape tensor with 4 coplanar points, and
the number of constraints necessary for the general dynamicP n � Pn alignment problem
— and in general in problems where the constraints of a multi-linear problem occupy a
low-dimensional subspace.

We have shown that a certain general question lies at the heart of those counting problems:
Let V be a complex n-dimensional space and for m � k consider the GL�V �-module
V �n�m� k� � V �m defined by

V �n�m� k� � f v� � � � � � vm � V �m �

dimSpanfv�� � � � � vmg � k g �

We would like to determine dimV �n�m� k� for any choice of n�m � k. Thus, for instance
we showed that dimV �	� 
� �� is the number of synthetic constraints of the 8-point shape
tensor with 4 coplanar points, and dim V �n�m� k� stands for the number of constraints of a
Pn�� � Pn�� alignment problem with m mappings and where the points move in a k	�
dimensional subspaces.

We have then shown that the questions of dimV �n�m� k� is naturally addressed in the
context of representation theory by counting the irreducibles of V �m over a subset of
diagrams of the partition of m.

It is worthwhile noting that representation theory tools have not been used so far in the
computer vision literature, thus the fact that such problems exist in the context of vision
tasks suggest that some familiarity with these kind of tools would bear fruits also in future
research.
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A A Representation Theory Digest

In this section we briefly recall some relevant facts concerning the representation theory of
the general linear group. For a thorough introduction see [7].

Let V be a finite n-dimensional vector space over the complex numbers. The collection
of invertible n 
 n matrices is denoted by GL�n� which is the group of automorphisms
of V denoted by GL�V �. The vector space V �m (m-fold tensor product) is spanned by
decomposable tensors of the form v� � � � � � vm, where the vectors vi are in V . Hence the
dimension of V �m is nm. The vector space V �m is the m-fold direct sum of V , thus is of
dimension nm.

The exterior powers �mV of V , n � m, is the vector space spanned by the m
m minors
of the n 
 m matrix �v�� ���� vm� where the vectors vi are in V . Hence the dimension of
�mV is

�
n
m



. The exterior powers are the images of the map V 	m � V �m given by

�v�� � � � � vm��
X
��Sm

sgn���v������ � � � � v��m�



where Sm denotes the symmetric group (of permutations of m letters).

The symmetric powers SymmV are the images of the map V 	m � V �m given by

�v�� � � � � vm��
X
��Sm

v������ � � � � v��m�

Hence the vector space SymmV is of dimension
�
n�m��

m



. Note that,

V � V � Sym�V ���V

with the appropriate dimension: n� �
�
n��
�



�
�
n
�



. This decomposition into irreducibles

(see later) is not true for V �m, m 
 �. The remainder of this section is devoted to the
necessary notation for representing V �m as a decomposition of irreducibles.

A representation of a group G on a complex finite dimensional space U is a homomor-
phism G to GL�U� - the group of linear automorphisms of U . The action of g � G on
u � U is denoted by g � u. The G	module U is irreducible if it contains no non-trivial
G	invariant subspaces. Any finite dimensional representation of a compact group G can
be decomposed as a direct sum of irreducible representations. This basic property called
complete reducibility also holds for all holomorphic representations of the general linear
group GL�V �.

The main focus of this paper is the space

V �n�m� k� � Spanfv� � � � � � vm � V �m �

dimSpanfv�� � � � � vmg � k g �

Since V �n�m� k� is invariant under the GL�V � action given by g �v��� � ��vm � g�v���
� � � � g�vm� it is natural to study its structure by decomposing it into irreducible GL�V �-
modules.
The description of the finite dimensional irreducible representations (irreps) of GL�V �
depends on the Combinatorics of partitions and Young diagrams which we now describe:
A partition of m is an ordered set � � ���� ���� �k� such that �� � ��� � �k � � andP

�i � m. A partition is represented by its Young diagram (also called shape) which
consists of k left aligned rows of boxes with �i boxes in row i. The conjugate partition
� � ���� ���� �r� to a partition � is defined by interchanging rows and columns in the
Young diagram — or without reference to the diagram, � i is the number of terms in � that
are greater than or equal to i.

An assignment of the numbers f�� ����mg to each of the boxes of the diagram of �, one
number to each box, is called a tableau. A tableau in which all the rows and columns of
the diagram are increasing is called a standard tableau. We denote by f � the number of
standard tableaux on �, i.e., the number of ways to fill the young diagram of � with the
numbers from 1 to m, such that all rows and columns are increasing. Let �i� j� denote the
coordinates of the boxes of the diagram where i � �� ��� k denotes the row number and j
denotes the column number, i.e., j � �� ���� � i in the i’th row. The hook length hij of a box
at position �i� j� in the diagram is the number of boxes directly below plus the number of
boxes to the right plus 1 (without reference to the diagram, h ij � �i � �j 	 i 	 j � �).
Then,

f� �
m�Q

�i�j� hij

where the product of the hook-lengths is over all boxes of the diagram. We denote by d ��n�
the number of semi-standard tableaux which is the number of ways to fill the diagram
with the numbers from 1 to n, such that all rows are non-decreasing and all columns are
increasing. We have:

d��n� �
Y
�i�j�

n	 i� j

hij
�



Let Sm denote the symmetric group on f�� � � � �mg. The group algebra C Sm is the algebra
spanned by the elements of Sm

CG � f
X
��Sm

��� j �� � C g

where addition and multiplication are defined as follows:

��
X
��Sm

���� � ��
X
��Sm

���� �
X
��Sm

���� � �����

and
�
X
��Sm

�����
X
��Sm

���� �
X
g�Sm

�
X
g���

���� �g

for �� �� �� � �� � C .

Let t be a tableau on � (a numbering of the boxes of the diagram) and let P �t� denote the
group of all permutations � � Sm which permute only the rows of t. Similarly, let Q�t�
denote the group of permutations that preserve the columns of t. Let a t� bt be two elements
in the group algebra C Sm defined as:

at �
X

g�P �t�

g � bt �
X

g�Q�t�

sgn�g�g�

The group algebra C Sm acts on V �m on the right by permuting factors, i.e., �v� � � � � �
vm� � � � v���� � � � � � v��m�. For a general shape � and a tableau t on � the image of a t,
V �m � at, is the subspace:

V �m � at � Sym��V � � � � � Sym�kV � V �m

and the image of bt is
V �m � bt � ���V � � � � � ��rV � V �m

where � is the conjugate partition to �. The Young symmetrizer is defined by c t � at � bt �
C Sm . The image of the Young symmetrizer

St�V � � V �m � ct
is the Schur Module associated to t and is an irreducible GL�V �- module. The isomor-
phism type of St�V � depends only on the shape � so we may write S t�V � � S��V �. It
turns out that all the polynomial irreps of GL�V � are of the form S��V � for some m and a
partition � � m.
Let T� denote the set of standard tableaux on � then the direct sum decomposition of V �m

into irreducible GL�V �-modules is given by

V �m �
M
��m

M
t�T�

St�V � ��

M
��m

S��V ��f� �

Since d��n� � dimS��V � it follows that

dimV �m � nm �
X
��m

d��n�f��

For example, consider n � m � 	, i.e., V � V � V where dimV � 	. There are three
possible partitions � of 3 — these are �	�� ��� �� �� and ��� ��. From the above, S ����V � �

Sym�V and S�������V � ��V . There are two, f����� � �, standard tableaux for � � ��� ��
and these are ��	 and �	� (numbering of boxes left to right and top to bottom). There are
eight, d������	� � �, semi-standard tableaux which are: ���� ��	� ���,��	� �	�� �		,��	
and �		. We have the decomposition:

V � V � V � Sym�V ���V � �S�����V ���

with the appropriate dimensions: �� � �� � � � �� � ��.


