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1MIT CSAIL 2Weizmann Institute
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Figure 1: Left: Image from a standard lens showing limited depth of field, with only the rightmost subject in focus. Center: Input from our
lattice-focal lens. The defocus kernel of this lens is designed to preserve high frequencies over a wide depth range. Right: An all-focused
image processed from the lattice-focal lens input. Since the defocus kernel preserves high frequencies, we achieve a good restoration over the
full depth range.

Abstract

Depth of field (DOF), the range of scene depths that appear sharp
in a photograph, poses a fundamental tradeoff in photography—
wide apertures are important to reduce imaging noise, but they also
increase defocus blur. Recent advances in computational imaging
modify the acquisition process to extend the DOF through decon-
volution. Because deconvolution quality is a tight function of the
frequency power spectrum of the defocus kernel, designs with high
spectra are desirable. In this paper we study how to design effective
extended-DOF systems, and show an upper bound on the maximal
power spectrum that can be achieved. We analyze defocus kernels
in the 4D light field space and show that in the frequency domain,
only a low-dimensional 3D manifold contributes to focus. Thus,
to maximize the defocus spectrum, imaging systems should con-
centrate their limited energy on this manifold. We review several
computational imaging systems and show either that they spend en-
ergy outside the focal manifold or do not achieve a high spectrum
over the DOF. Guided by this analysis we introduce the lattice-focal
lens, which concentrates energy at the low-dimensional focal man-
ifold and achieves a higher power spectrum than previous designs.
We have built a prototype lattice-focal lens and present extended
depth of field results.

Keywords: Computational camera, depth of field, light field,
Fourier analysis.

1 Introduction

Depth of field, the depth range over which objects in a photograph
appear acceptably sharp, presents an important tradeoff. Lenses
gather more light than a pinhole, which is critical to reducenoise,
but this comes at the expense of defocus outside the focal plane.
While some defocus can be removed computationally using decon-
volution, the results depend heavily on the information preserved
by the blur, as characterized by the frequency power spectrum
of the defocus kernel. Recent advances in computational imag-
ing [Dowski and Cathey 1995; Levin et al. 2007; Veeraraghavan
et al. 2007; Hausler 1972; Nagahara et al. 2008] modify the image
acquisition process to enable extended depth of field through such
a deconvolution approach.

Computational imaging systems can dramatically extend depth of
field, but little is known about the maximal frequency magnitude

response that can be achieved. In this paper, we use a standard
computational photography tool, the light field, e.g., [Levoy and
Hanrahan 1996; Ng 2005; Levin et al. 2008a], to address theseis-
sues. Using arguments of conservation of energy and taking into
account the finite size of the aperture, we present bounds on the
power spectrum of all defocus kernels.

Furthermore, a dimensionality gap has been observed between the
4D light field and the space of 2D images over the 1D set of depths
[Gu et al. 1997; Ng 2005]. In the frequency domain, only a 3D
manifold contributes to standard photographs, which corresponds
to focal optical conditions. Given the above bounds, we show that
it is desirable to avoid spending power in the otherafocal regions
of the light field spectrum. We review existing camera designs and
find that some spend significant power in these afocal regions, while
others do not achieve a high spectrum over the depth range.

Our analysis leads to the development of the lattice-focal lens—a
novel design which allows for improved image reconstruction. It
is designed to concentrate energy at the focal manifold of the light
field spectrum, and achieves defocus kernels with high spectra. The
design is a simple arrangement of lens patches with different focal
powers, but the patches’ size and powers are carefully derived. The
defocus kernels of a lattice-focal lens are high over a wide depth
range, but they are not depth invariant. This both requires and en-
ables coarse depth estimation. We have constructed a prototype and
demonstrate encouraging extended depth of field results.

1.1 Depth of field evaluation

To facilitate equal comparison across designs all systems are allo-
cated a fixed time budget and maximal aperture width, and hence
can collect an equal amount of photons. All systems are expected
to cover an equal depth ranged ∈ [dmin,dmax].

Similar to previous work, we focus on Lambertian scenes and as-
sume locally constant depth. The observed imageB of an ob-
ject at depthd is then described as a convolutionB = φd ⊗ I + N,
where I is the ideally sharp image,N is the imaging noise, and
φd is the defocus kernel, commonly referred to as the point spread
function (PSF). The defocus PSFφd is often analyzed in terms of
its Fourier transformφ̂d, known as the optical transfer function
(OTF). In the frequency domain, convolution is a multiplication
B̂(ω) = φ̂d(ω)Î(ω)+ N̂(ω) where hats denote Fourier transforms.
In a nutshell, deblurring divides every spatial frequency by the ker-



nel spectrum, so the information preserved at a spatial frequencyω
depends strongly on the kernel spectrum. If|φ̂d(ω)| is low, noise is
amplified and image reconstruction is degraded. To capture scenes
with a given depth ranged ∈ [dmin,dmax], we want PSFsφd whose
modulation transfer function (MTF)|φ̂d| is as high as possible for
every spatial frequencyω, over the full depth range. Noise is absent
from the equations in the rest of this paper, because whatever noise
is introduced by the sensor gets amplified as a monotonic function
of |φ̂d(ω)|.

In this paper, we focus on the stability of the deblurring process to
noise and evaluate imaging systems according to the spectrathey
achieve over a specified depth range. We note, however, that many
approaches such as coded apertures and our new lattice-focal lens
involve a depth-dependent PSFφd and require a challenging depth
identification stage. On the positive side, such systems output a
coarse depth map of the scene in addition to the all-focused image.
In contrast, designs like wavefront coding and focus sweep have an
important advantage: their blur kernel is invariant to depth.

While the tools derived here apply to many computational cameras,
our focus is on designs capturing only a single input image. In
appendix B we present one possible extension to multiple measure-
ment strategies like the focal stack and the plenoptic camera.

1.2 Related work

Depth of field is traditionally increased by reducing the aperture,
but this unfortunately lowers the light collected and increases noise.
Alternatively, a focal stack [Horn 1968; Hasinoff and Kutulakos
2008] captures a sequence of images with narrow depth of field
but varying focus, which can be merged for extended depth of field
[Ogden et al. 1985; Agarwala et al. 2004]. Our new lattice-focal
lens can be thought of as capturing all the images from a special
focal stack, shifted and summed together in a single photo.

New designs have achieved improved frequency response together
with a depth invariant PSFs, allowing for deconvolution without
depth estimation. Wavefront coding achieves this with a cubic op-
tical element [Dowski and Cathey 1995]. Others use a log asphere
[George and Chi 2003] and focus sweep approaches modify the fo-
cus configuration continuously during the exposure [Hausler 1972;
Nagahara et al. 2008].

In contrast, coded aperture approaches [Veeraraghavan et al. 2007;
Levin et al. 2007] make the defocus blur more discriminativeto
depth variations. Having identified the defocus diameter, blur can
be partially removed via deconvolution. One disadvantage of this
design is that some light rays are blocked. A more serious prob-
lem is that the lens is still focused only at one particular depth and
objects located away from the focus depth are still heavily blurred.

Other designs [Ben-Eliezer et al. 2005] divide the apertureinto sub-
squares consisting of standard lenses, similar to our lattice-focal
lens. But while these methods involve redundant focal lengths, our
analysis lets us optimize the combination of different focal powers
for improved depth of field.

We build on previous analysis of cameras and defocus in lightfield
space [Ng 2005; Adams and Levoy 2007; Levin et al. 2008a]. A
related representation in the Fourier optics literature isthe Ambi-
guity function [Rihaczek 1969; Papoulis 1974; Brenner et al. 1983;
FitzGerrell et al. 1997], allowing a simultaneous analysisof defo-
cus over a continuous depth range.

2 Background on defocus in light field space

Our main analysis is based on geometric optics and the light field,
but appendix C provides complementary derivations using wave op-
tics. We first review how the light field can be used to analyze cam-
eras [Ng 2005; Levin et al. 2008a]. It is a 4D functionℓ(x,y,u,v)
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Figure 2: Integration surfaces in flatland. Top: Ray mapping dia-
grams. Middle: The corresponding light field and integration sur-
face c(u). Bottom: The lens spectrum̂k. The blue/red slices rep-
resent OTF-slices of the blue/red objects respectively. The vertical
yellow slices representωx0 slices discussed in Sec. 3. Left: Stan-
dard lens focused at the blue object. Right: Wavefront coding.

u,v aperture plane coordinates
x,y spatial coordinates (at focus plane)
ωx,y spatial frequencies
Ω max spatial frequency
φ(x,y) point spread function (PSF)
φ̂(ωx,ωy) optical transfer function (OTF)
k(x,y,u,v) 4D lens kernel
k̂(ωx,ωy,ωu,ωv) 4D lens spectrum
A aperture width
εA hole/subsquare width
α(ωx,y), β (ωx,y) bounded multiplicative factors (Eqs. (43,11))

Table 1: Notation.

describing radiance for all rays in a scene, where a ray is param-
eterized by its intersections with two parallel planes, theuv-plane
and thexy-plane [Levoy and Hanrahan 1996]. Figure 2 shows a 2D
flatland scene and its corresponding 2D light field. We assumethe
camera aperture is positioned on theuv-plane, andxy is a plane in
the scene (e.g., the focal plane of a standard lens).x,y are spatial
coordinates and theu,v coordinates denote the viewpoint direction.

An important property is that the light rays emerging from a given
physical point correspond to a 2D plane in 4D of the form

x = su+(1−s)px, y = sv+(1−s)py , (1)

whose slopesencodes the object’s depth:

s= (d−do)/d , (2)

whered is the object depth anddo the distance between theuv, xy
planes. The offsetspx andpy characterize the location of the scene
point within the plane at depthd.

Each sensor element gathers light over its 2D area and the 2D aper-
ture. This is a 4D integral over a set of rays, and under first order



optics (paraxial optics), it can be modeled as a convolution[Ng
2005; Levin et al. 2008a]. A shift-invariant kernelk(x,y,u,v) deter-
mines which rays are summed for each element, as governed by the
lens. Before applying imaging noise, the value recorded at asensor
element is then:

B̃(x0,y0) =
∫∫∫∫

k(x0−x,y0−y,−u,−v)ℓ(x,y,u,v)dxdydudv.

(3)

For most designs, the 4D kernel is effectively non-zero onlyat a 2D
integration surface because the pixel area is small compared to the
aperture. That is, the 4D kernel is of the form

k(x,y,u,v) = δ (x−cx(u,v),y−cy(u,v))R(u/A)R(v/A) , (4)

whereR is a rect function,δ denotes a Dirac delta, andc(u,v) →
(x,y) is a 2D→2D surface describing the ray mapping at the lens’s
aperture, which we assume to be square and of sizeA×A. The
surfacec is shown in black in the middle row of Figure 2.

For example, a standard lens focuses rays emerging from a point
at the focus depth and the integration surfacec is linearc(u,v) =
(su,sv). The integration slopes corresponds to the slope of the fo-
cusing distance (Fig. 2, left). When integrating a light field with the
same slope (blue object in Fig. 2), all rays contributing to asensor
element come from the same 3D point. In contrast, when the object
is misfocused (e.g., red/green objects), values from multiple scene
points get averaged, causing defocus. Wavefront coding [Dowski
and Cathey 1995] involves a cubic lens. Since refraction is afunc-
tion of the surface normal, the kernel is a parabolic surface[Levin
et al. 2008b; Zhang and Levoy 2009] (Fig. 2, right) defined by

c(u,v) = (au2,av2) . (5)

Finally, the kernel of the focus sweep is not a 2D surface but the
integral of standard lens kernels with different slopes/depths.

Consider a Lambertian scene with locally constant depth. Ifthe lo-
cal scene depth, or slope, is known, the noise-free defocused image
B̃ can be expressed as a convolution of an ideal sharp imageI with
a PSFφs: B̃= φs⊗ I . As demonstrated in [Levin et al. 2008c], for a
given slopes this PSF is fully determined by projecting the 4D lens
kernelk along the slopes:

φs(x,y) =
∫∫

k(x,y,u+sx,v+sy)dudv. (6)

That is, we simply integrate over all rays(x,y,u+sx,v+sy) corre-
sponding to a given point in thexy-plane (see Eq. 1).

For example, we have seen that the 4D kernelk for a standard lens is
planar. If the slopes of an object and the orientation of this planar
k coincide, the object is in focus and the projected PSFφs is an
impulse. For a different slope the projected PSF is a box filter, and
the width of this box depends on the difference between the slopes
of the object and that ofk. For wavefront coding, the parabolic 4D
kernel has an equal projection in all directions, explaining why the
resulting PSF is invariant to object depth [Levin et al. 2008b; Zhang
and Levoy 2009].

Now that we have expressed defocus as a convolution, we can
analyze it in the frequency domain. Letk̂(ωx,ωy,ωu,ωv) denote
the 4D lens spectrum, the Fourier transform of the 4D lens kernel
k(x,y,u,v). Figure 2 visualizes lenses spectrak̂ in flatland for a
standard and wavefront coding lenses. As the PSFφs is obtained
from k by projection (Eq. (6)), by the Fourier slice theorem, the
OTF (optical transfer function)̂φs is a slice of the 4D lens spectrum
k̂ in the orthogonal direction [Ng 2005; Levin et al. 2008c]:

φ̂s(ωx,ωy) = k̂(ωx,ωy,−sωx,−sωy) . (7)
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Figure 3: Layout of the 4D lens spectrum, highlighting the focal
manifold. Each subplot represents aωx0,y0-slice, k̂ωx0,y0

(ωu,ωv).
The outer axes vary the spatial frequencyωx0,y0, i.e., the slicing
position. The inner axes of each subplot, i.e., of each slice, vary
ωu,v. The entries of̂k along each focal segment are color coded, so
that the 2D set of points sharing the same color corresponds to an
OTF with a given depth/slope (e.g., the red points define an OTF for
the slope s=−1). This illustrates the dimensionality gap: the set of
entries contributing to an OTF at any physical depth occupies only
a 1D segment in each 2Dωx0,y0-slice. In the flatland case (Fig. 2),
eachωx0,y0-slice corresponds to a vertical column.

Below we refer to slices of this form asOTF-slices, because they
directly provide the OTF, describing the frequency response due to
defocus at a given depth. OTF-slices in flatland are illustrated in
the last row of Figure 2 (dashed red/blue). These are slantedslices
whose slope is orthogonal to the object slope in the primal light field
domain. Low spectrum values in̂k leads to low magnitudes in the
OTF for the corresponding depth. In particular, for a standard lens,
only the OTF-slice corresponding to the focusing distance (dashed
blue, Fig. 2 left) has high values.

Notations and assumptions: All systems in this paper are allo-
cated a fixed exposure time, w.l.o.g. 1. The aperture size isA×A.
∆ denotes a pixel width back-projected onto the focalxy-plane.
In the frequency domain we deal with the range[−Ω,Ω], where
Ω = 1/(2∆). ωx,y,ωu,v are shortcuts for the 2D vectors(ωx,ωy),
(ωu,ωv). Table 1 summarizes notations.

We seek to capture a fixed depth range[dmin,dmax]. To simplify the
light field parameterization, we select the location of thexy plane
according to the harmonic meando = 2dmindmax

dmin+dmax
, corresponding to

the point at which one would focus a standard lens to equalizede-
focus diameter at both ends of the depth range, e.g., [Hasinoff and
Kutulakos 2008]. This maps the depth range to the symmetric slope

range[−S/2,S/2], whereS=
2(dmax−dmin)

dmax+dmin
(Eq. (2)). Under this pa-

rameterization the defocus diameter (on thexy-plane) of slopescan
be expressed simply asA|s|.
We also assume that scene radiance is fairly constant over the nar-
row solid angle subtended by the camera aperture. This assumption
is violated by highly specular objects or at occlusion boundaries.

3 Frequency analysis of depth of field

We now analyze the requirements, strategies, and limits of depth
of field extension. We show that a key factor for depth of field
optimization is the presence of adimensionality gapin the 4D light
field: only a manifold of the 4D spectrum, which we callfocal,



contributes to focusing at physical depths. Furthermore, we show
that the energy in a 4D lens spectrum is bounded. This suggests that
to optimize depth of field, most energy should be concentrated on
the focal manifold. We discuss existing lens designs and show that
many of them spend energy outside the focal manifold. In Sec.4 we
propose a novel design which significantly reduces this problem.

3.1 The dimensionality gap

As described above, scene depth corresponds to slopes in the light
field. It has, however, been observed that the 4D light field has
a dimensionality gap, in that most slopes do not correspond to a
physical depth [Gu et al. 1997; Ng 2005]. Indeed, the set of all 2D
planesx= suu+ px, y= svv+ py described by their slopesu,sv and
offset px, py is 4D. In contrast, the set corresponding to real depth,
i.e., wheres = su = sv, is only 3D, as described by Eq. (1). This
makes sense because scene points are 3D. The dimensionalitygap
is a property of the 4D light field, and does not exist for the 2D
light field in flatland. The other slopes wheresu 6= sv are afocal
and represent rays from astigmatic refractive or reflectivesurfaces,
which are surfaces with anisotropic curvature [Adams and Levoy
2007], e.g., the reflection from a cylindrical mirror. Sincewe con-
sider scenes which are sufficiently Lambertian over the aperture,
afocal light field orientations hold no interesting information.

The dimensionality gap is particularly clear in the Fourierdo-
main [Ng 2005]. Consider the 4D lens spectrumk̂, and examine
the 2D sliceŝkωx0,y0

(ωu,ωv), in which the the spatial frequencies
ωx0,ωy0 are held constant (Fig. 3). We call theseωx0,y0-slices. In
flatland,ωx0,y0-slices are vertical slices (yellow in Fig. 2). Follow-
ing Eq. (7), we note that the set of entries in eachk̂ωx0,y0

participat-
ing in the OTF for any depth is restricted to a 1D line:

k̂ωx0,y0
(−sωx0,−sωy0) , (8)

for which ωu = −sωx0, ωv = −sωy0. For a fixed slope ranges∈
[−S/2,S/2] the set of entries participating in any OTF̂φs is a 1D
segment. These segments, which we refer to asfocal segments,
are highlighted in Figure 3. The rest of the spectrum isafocal. This
property is especially important, because it implies thatmost entries
of k̂ do not contribute to an OTF at any depth.

As an example, Figure 4(b-e) shows the 2D families of 2Dωx0,y0-
slices for a variety of cameras. A standard lens has a high response
for an isolated point in each slice, corresponding to the focusing
distance. In contrast, wavefront coding (Fig. 4(e)) has a broader
response that spans more of the focal segment, but also over the
afocal region. While the spectrum of the focus sweep (Fig. 4(d)) is
on the focal segment, its magnitude is lower magnitude than that of
a standard lens.

3.2 Upper bound on the defocus MTF

In this section we derive a bound on the defocus MTF. As intro-
duced earlier, we pose depth of field extension as maximizingthe
MTFs |φ̂s(ωx,y)| over all slopess∈ [−S/2,S/2] and over all spatial
frequenciesωx,y. Since the OTFs are slices from the 4D lens spec-
trum k̂ (Eq. (7)), this is equivalent to maximizing the spectrum on
the focal segments ofk̂.

We first derive the available energy budget, using a direct extension
of the 1D case [FitzGerrell et al. 1997; Levin et al. 2008c].

Claim 1 For an aperture of size A×A and exposure length1, the
total energy in eachωx0,y0-slice is bounded by A2:

∫∫

|k̂ωx0,y0
(ωu,ωv)|2dωudωv ≤ A2 . (9)

The proof, provided in appendix A, follows from the finite amount
of light passing through a bounded aperture over a fixed exposure.
As a consequence of Parseval’s theorem, this energy budget then
applies to everyωx0,y0-slice k̂ωx0,y0

. While Claim 1 involves geo-
metric optics, similar bounds can be obtained with Fourier optics
using slices of the ambiguity function [Rihaczek 1969; FitzGerrell
et al. 1997]. In appendix C we derive an analogous bound under
Fourier optics, with a small difference—the budget is no longer
equal across spatial frequencies, but decreases with the diffraction-
limited MTF.

As in the 1D space-time case [Levin et al. 2008c], optimal worst-
case performance can be realized by spreading the energy budget
uniformly over the range of slopes. The key difference in this paper
is the dimensionality gap. As shown in Figure 3, the OTFsφ̂s cover
only a 1D line segment, and most entries in anωx0,y0-slice k̂ωx0,y0

do not contribute to any OTF. Therefore, the energy budget should
be spread evenly over the 1D focal segment only.

Given a power budget for eachωx0,y0-slice, the upper bound for
the defocus MTF concentrates this budget on the 1D focal segment
only. Distributing energy over the focal manifold requirescaution,
however, because the segment effectively has non-zero thickness
due to its finite support in the primal domain. If a 1D focal segment
had zero thickness, its spectrum values could be made infinite while
still obeying the norm constraints of Claim 1. As we show below,
since the primal support ofk is finite (k admits no light outside the
aperture), the spectrum must be finite as well, so the 1D focalseg-
ment must have non-zero thickness. Slices from this ideal spectrum
are visualized in Figure 4(a).

Claim 2 The worst-case defocus MTF for the range[−S/2,S/2] is
bounded. For every spatial frequencyωx,y:

min
s∈[−S/2,S/2]

|φ̂s(ωx,ωy)|2 ≤
β (ωx,y)A3

S|ωx,y|
, (10)

where the factor

β (ωx,y) =
|ωx,y|

max(|ωx|, |ωy|)

(

1− min(|ωx|, |ωy|)
3·max(|ωx|, |ωy|)

)

(11)

is in the range[ 5
√

5
12 ,1] ≈ [0.93,1].

Proof: For eachωx0,y0-slicek̂ωx0,y0
the 1D focal segment is of length

S|ωx0,y0|. We first show that the focal segment norm is bounded by
A3, and then the worst-case optimal strategy is to spread the budget
evenly over the segment.

To simplify notations, we consider the caseωy0 = 0 since the gen-
eral proof is similar after a basis change. For this case, the1D focal
segment is a horizontal line of the form̂kωx0,y0

(ωu,0), shown in the
central row of Figure 3. For a fixed value ofωx0, this line is the
Fourier transform of:

∫∫∫

k(x,y,u,v)e−2iπ(ωx0x+0y+0v)dxdydv. (12)

By showing that the total power of Eq. (12) is bounded byA3, Par-
seval’s theorem gives us the same bound for the focal segment.

Since the exposure time is assumed to be 1, we collect unit energy
through everyu,v point lying within the clear aperture1:

∫∫

k(x,y,u,v)dxdy=

{

1 |u| ≤ A/2, |v| ≤ A/2
0 otherwise . (13)

1If an amplitude mask is placed at the aperture (e.g., a coded aperture)
the energy will be reduced and the upper bound still holds.



Camera type Squared MTF

a. Upper bound |φ̂s(ωx,y)|2 ≤ A3

S|ωx,y|

b. Standard lens |φ̂s(ωx,y)|2 = A4sinc2(A(s−s0)ωx)sinc2(A(s−s0)ωy)

c. Coded aperture E[|φ̂s(ωx,y)|2] ≈ ε2A4

2 sinc2(εA(s−s0)ωx)sinc2(εA(s−s0)ωy)

d. Focus sweep |φ̂s(ωx,y)|2 ≈ A2α(ωx,y)2

S2|ωx,y|2

e. Wavefront coding |φ̂s(ωx,y)|2 ≈ A2

S2|ωx||ωy|

f. Lattice-focal E[|φ̂s(ωx,y)|2] ≈ A8/3β (ωx,y)

S4/3Ω1/3|ωx,y|

Table 2: Squared MTFs of computational imaging designs. See
Table 1 for notation. The optimal spectrum bound falls offlinearly
as a function of spatial frequency, yet existing designs such as the
focus sweep and wavefront coding fall offquadraticallyand do not
utilize the full budget. The new lattice-focal lens derivedin this
paper achieves a higher spectrum, closer to the upper bound.

A phase change to the integral in Eq. (13) does not increase its
magnitude, therefore, for every spatial frequencyωx0,y0,

∣

∣

∣

∣

∫∫

k(x,y,u,v)e−2iπ(ωx0x+ωy0y)dxdy

∣

∣

∣

∣

≤ 1 . (14)

Using Eq. (14) and the fact that the aperture is widthA along on the
v-axis, we obtain:

∣

∣

∣

∣

∫∫∫

k(x,y,u,v)e−2iπωx0 x+0y+0vdxdydv

∣

∣

∣

∣

2

≤ A2 . (15)

On theu-axis, the aperture has widthA as well. By integrating
Eq. (15) overu we see the power is bounded byA3:

∫

∣

∣

∣

∣

∫∫∫

k(x,y,u,v)e−2iπ(ωx0 x+ωy0y)dxdydv

∣

∣

∣

∣

2

du≤ A3 . (16)

Since the left-hand side of Eq. (15) is the power spectrum of
k̂ωx0,y0

(ωu,0), by applying Parseval’s theorem we see that the to-

tal power over the focal segment is bounded byA3 as well:
∫

|k̂ωx0,y0
(ωu,0)|2dωu ≤ A3 . (17)

Since the focal segment norm is bounded byA3, and since we aim
to maximize the worst-case magnitude, the best we can do is to
spread the budget uniformly over the lengthS|ωx0,y0| focal segment,
which bounds the worst MTF power byA3/S|ωx0|. In the general
case, Eq. (16) is bounded byβ (ωx,y)A3 rather thanA3, and Eq. (10)
follows.

3.3 Analysis of existing designs

We analyze the spectra of existing imaging designs with particular
attention paid to the spectrum on the focal manifold since itis the
portion of the spectrum that contributes to focus at physical depths.
Figure 4 visualizesωx0,y0-slices through a 4D lens spectrum|k̂| for
recent imaging systems. Figure 5 shows the corresponding MTFs
(OTF-slices) at a few depths. A low spectrum value at a point on
the focal segment leads to low spectrum content at the OTF of the
corresponding depth. Examining Figures 4 and 5, we see that some
designs spend a significant portion of the budget on afocal regions.

The MTFs for the previous designs shown in Figure 5 are lower than
the upper bound. We have analytically computed spectra for these
designs. The derivation is provided in appendix A and summarized
in Table 2. We observe that no existing spectrum reaches the upper
bound. Below we review the results in Table 2b-e and provide some
intuitive arguments. In the next section we introduce a new design
whose spectrum is higher than all known designs, but still does not
fully meet the bound.

Standard lens: For a standard lens focused at depths0 we see
in Figure 4(b) high frequency content near the isolated points
k̂ωx0,y0

(−s0ωx0 ,−s0ωy0), which correspond to the in-focus depth

φ̂s0. The spectrum falls off rapidly away from these points, with
a sinc whose width is inversely proportional to the aperture. When
the deviation between the focus slope and the object slope|s0− s|
is large, this sinc severely attenuates high frequencies.

Coded aperture: The coded aperture [Levin et al. 2007; Veer-
araghavan et al. 2007] incorporates a pattern blocking light rays.
The integration surface is linear, like that of a standard lens, but has
holes at the blocked areas. Compared to the sinc of a standardaper-
ture, the coded aperture camera has a broader spectrum (Fig.4(c)),
but is still far from the bound. To see why, assume w.l.o.g. that
the lens is focused ats0 = 0. The primal integration surface lies
on thex = 0,y = 0 plane and̂k is constant over allωx,y. Indeed,
all ωx0,y0-slices in Figure 4(c) are equal. Since the union of focal
segment orientations from allωx0,y0-slices covers the plane, to guar-
antee worst-case performance, the coded aperture spectrumshould
be spread over the entire 2D plane of eachωx0,y0-slice. This implies
significant energy away from focal segments.

Focus sweep: For a focus sweep camera [Hausler 1972; Naga-
hara et al. 2008], the focus distance is varied continuouslyduring
exposure and the 4D lens spectrum is the average of standard lenses
spectra over a range of slopess0 (Figs. 4(d) and 5(d)). In contrast to
the isolated points covered by a static lens, this spreads energy over
the entire focal segment, since the focus varies during exposure.
This design does not spend budget away from the focal segmentof
interest. However, as discussed in appendix A, since the lens kernel
describing a focus sweep camera is not a Dirac delta, phase cancel-
lation occurs between different focus settings and the magnitude is
lower than the upper bound (Fig. 4(a)).

Wavefront coding: The integration surface of a wavefront
coding lens [Dowski and Cathey 1995] is a separable 2D
parabola [Levin et al. 2008b; Zhang and Levoy 2009]. The spec-
trum is a separable extension of that of the 1D parabola [Levin et al.
2008c]. However, while the 1D parabola achieves an optimal worst-
case spectrum, this is no longer the case for a 2D parabola in 4D,
and the wavefront coding spectrum (Table 2e, Figs. 4(e) and 5(e))
is lower than the bound. Theωx0,y0-slices in Figure 4(e) reveal
why. Due to the separability, energy is spread uniformly within the
minimal rectangle bounding the focal segment. For another per-
spective, consider the wavefront coding integration surface in the
primal domain, which is a separable parabolac(u,v) = (au2,av2).
A local planar approximation to that surface around an aperture
point u0,v0 is of the formc(u,v) = (suu,svv), for su = ∂cx

∂u = 2au0,

sv =
∂cy

∂v = 2av0. For u0 6= v0 the lens is locally astigmatic, and
as discussed in Sec. 3.1, this is anafocal surface. Thus, the only
focal part of the wavefront coding lens is the narrow strip along its
diagonal, whereu0 = v0.

Still, the wavefront coding spectrum is superior to that of coded
apertures at low-to-mid frequencies. It spreads budget only within
the minimal rectangle bounding the focal segment, but not upto the
maximal cutoff spatial frequency. The wavefront coding spectrum
and that of a focus sweep are equal if|ωx| = |ωy|. However, the
wavefront coding spectrum is significantly improved for|ωx| → 0
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Figure 4: 4D lens spectrum for different optical designs. Each subplot is an ωx0,y0-slice as described in Figure 3. In the flatland case of
Figure 2, theseωx0,y0-slices correspond to vertical columns. An ideal design (a)should account for the dimensionality gap and spend energy
only on the focal segments. Yet, this bound is not reached by any existing design. A standard lens (b) devotes energy only to a point in
each subplot. A coded aperture (c) is more broadband, but itsspectrum is constant over allωx0,y0-slices, so it cannot cover only the focal
segment in eachωx0,y0-slice. The focus sweep camera (d) covers only the focal segments, but has reduced energy due to phase cancellations
and does not achieve the bound. A wavefront coding lens (e) isseparable in theωu,ωv directions and spends significant energy on afocal
areas. Our new lattice-focal lens (f) is an improvement overexisting designs, and spreads energy budget over the focal segments. Note that
all subplots show the numerical simulation of particular design instances, with parameters for each design tuned to thedepth range (see
Sec. 5.1), approximating the analytic spectra in Table 2. The intensity scale is constant for all subplots.
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Figure 5: Spectra of OTF-slices for different optical designs over
a set of depths. The subplots represent the MTF of a given imaging
system for slope s,|φ̂s(ωx,ωy)|, where the subplot axes areωx,y.
These OTF-slices are the 2D analog of the slanted red and blue
slices in Figure 2. Our new lattice-focal lens design best approxi-
mates the ideal spectrum upper bound. Note that all subplotsshow
the numerical simulation of particular design instances, with pa-
rameters for each design tuned to the depth range (see Sec. 5.1),
approximating the analytic spectra in Table 2.

or |ωy| → 0, because the rectangle becomes compact, as shown in
the central row and column of Figure 4(e).

In appendix B we also analyze the plenoptic camera and the fo-
cal stack imaging models. Note that despite all the sinc patterns
mentioned so far, the derivation in this section and the simulations
in Figures 4 and 5 model pure geometric optics. Diffraction and
wave optics effects are also discussed in appendix C. In mostcases
Fourier optics models lead to small adjustments to the spectra in
Table 2, and the spectra are scaled by the diffraction-limited OTF.

Having reviewed several previous computational imaging ap-
proaches to extending depth of field, we conclude that none ofthem
spends the energy budget in an optimal way. In a standard lensthe
entire aperture area is focal, but light is focused only froma sin-
gle depth. A wavefront coding lens attempts to cover a full depth
range, but at the expense that most aperture area is afocal. In the
next section we propose a new lens design, the lattice-focallens,
with the best attributes of both—all aperture area is focal,yet it
focuses light from multiple depths. This lets our new designget
closer to the upper bound compared to existing imaging systems.

4 The lattice-focal lens

Motivated by the previous discussion, we propose a new design,
which we call the lattice-focal lens. The spectrum it achieves is
higher than previous designs but still lower than the upper bound.
In this design, the aperture is divided into 1/ε2 subsquares of
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Figure 6: Left: Ray mapping for a lattice-focal lens in flatland. The
aperture is divided into three color-coded sections, each focused on
a different depth. Right: In the 2D light field the integration surface
is a set of slanted segments, shown with corresponding colors.

(a) Lattice-focal lens (b) PSFs

Figure 7: (a) Toy lattice-focal lens design with only 4 subsquares.
(b) The PSFsφs in the primal domain, at two different depths. Each
subsquare (color-coded) corresponds to a box in the PSF. Thewidth
of each box is a function of the deviation between the subsquare
focal depth and the object depth.

size εA× εA each (for 0< ε < 1). Each subsquare is a fo-
cal element cropped from a standard lens focused at some slope
sj ∈ [−S/2,S/2]. That is, the integration surface is defined as:

c(u,v) = (sju,sjv) for (u,v) ∈Wj , (18)

whereWj denotes the area of thej-th subsquare. Figure 6 visu-
alizes the integration surface of a lattice-focal lens, composed of
linear surfaces with different slopes (compare with Figure2, left).
Figure 7 illustrates a toy four-element lattice-focal lensand its PSF
for two different depths. In the primal domain, the PSF is a super-
position of scaled and shifted boxes corresponding to the various
aperture subsquares. For this example, one of the subsquares is fo-
cused at the correct depth for each scene depth, so the PSF consists
of an impulse plus three defocused boxes. The box width is a func-
tion of the deviation between the lens focal depth and the object
depth.

The OTFφ̂s(ωx,ωy) of a lattice-focal lens is a sum of sincs corre-
sponding to the different subsquares:

∑
j

ε2A2e2π i(γ j ,xωx+γ j ,yωy)sinc
(

εAωx(sj −s)
)

sinc
(

εAωy(sj −s)
)

.

(19)
For a subsquare centered at aperture point(u j ,v j), (γ j,x,γ j,y) =
(u j (sj −s),v j (sj −s)) denotes the phase shift of thej-th subsquare,
corresponding to its translated center. The 4D spectrum of asingle
aperture subsquare is a sinc around one point in the focal segment:
k̂ωx0,y0

(−sjωx0,−sj ωx0). However since each subsquare is focused
at a different slopesj the summed spectra cover the focal segment
(Figure 4(f)). In contrast to the spectrum for wavefront coding, the
lattice-focal spectrum does not spend much budget away fromthe
focal manifold. This follows from the fact that the subsquare slopes
in Eq. (18) are set to be equal inu andv, therefore the entire aperture
area isfocal.

The lattice-focal design resembles the focus sweep in that both
distribute focus over the DOF—focus sweep over time, and the
lattice-focal design over aperture area. The crucial difference is
that since each lattice-focal subsquare issmallerthan the full aper-

(a) Lattice-focal lens (b) Discrete focus sweep

Figure 8: Focus sweep vs. the lattice-focal lens. (a) Lattice-focal
lens whose aperture is divided into3 differently-focused bins. (b)
Discrete focus sweep, dividing the integration time into3 bins, each
focusing on a different depth (note that an actual focus sweep cam-
era varies focus continuously). Depth ranges with defocus diameter
below a threshold are colored. While in both cases each bin lets in
1/3 of the energy, the sub-apertures for the lattice-focal lensare
narrower than the full aperture used by the focus sweep, hence the
effective DOF for each of the lattice-focal bins is larger.

ture, its effective DOF is larger than the DOF for the full aper-
ture (Figure 8). As shown in Fig. 4(d,f) and Fig. 5(d,f), the
lattice-focal lens achieves significantly higher spectra than focus
sweep. Mathematically, by discretizing the exposure time into N
bins, each bin of the focus sweep (focused at slopesj ) contributes
A2

N sinc(A(s− sj)ωx)sinc(A(s− sj)ωy) to the OTF. By contrast, by
dividing the aperture intoN bins, each bin of the lattice-focal lens
contributesA2

N sinc(AN−1/2(s− sj )ωx)sinc(AN−1/2(s− sj )ωy). In
both cases each bin collects 1/N of the total energy (and the sincs’
height isA2/N), but the lattice-focal sinc is wider. While coin-
cidental phase alignments may narrow the sincs, these alignments
occur in isolation and do not persist across all depths and all spatial
frequencies. Therefore, the lattice-focal lens has a higher spectrum
when integrating oversj .

The ωx0,y0-slices in Figure 4(f), and the OTF-slices in Figure 5(f)
suggest that the lattice-focal lens achieves a higher spectrum com-
pared to previous designs. In the rest of this section we develop an
analytic, average-case approximation for the lattice-focal spectrum,
which enables order-of-magnitude comparison to other designs. We
then discuss the effect of window sizeε and show it is a critical pa-
rameter of the construction, and implies a major differencebetween
our design and previous multi-focus designs [George and Chi2003;
Ben-Eliezer et al. 2005].

Spectrum of the lattice-focal lens: The spectrum of a particu-
lar lattice focal lens can be computed numerically (Eq. (19)), and
Figures 4 and 5 plot such a numerical evaluation. However, to
allow an asymptotic order-of-magnitude comparison between lens
designs we compute the expected spectrum over random choices of
the slopessj and subsquare centers(u j ,v j ) in Eq. (18) (note that to
simplify the proof, the subsquares in a generic random lattice-focal
are allowed to overlap and to leave gaps in the aperture area). Given
sufficiently many subsquares, the law of large numbers applies and
a sample lattice-focal lens resembles the expected spectrum. While
this analysis confers insight, the expected spectrum should not be
confused with the spectrum of a particular lattice-focal lens. The
spectrum of any particular lattice-focal instance is not equal to the
expected one.

Claim 3 Consider a lattice-focal lens whose subsquare slopes
in Eq. (18) are sampled uniformly from the range[−S/2,S/2],
and subsquares centers sampled uniformly over the aperturearea



[−A/2,A/2]× [−A/2,A/2]. For |ωx|, |ωy|> (εSA)−1, the expected
power spectrum asymptotically approaches

E[|φ̂s(ωx,ωy)|2] ≈
εA3

S|ωx,y|
β (ωx,y) , (20)

whereβ is defined in Eq. (11).

Proof: Let s denote a particular scene depth of interest and letφ̂ j
s

denote the OTF of thej-th subsquare focused at slopesj , so that

the lattice-focal OTF iŝφs = ∑ j φ̂ j
s . For a subsquare size ofεA×

εA, the aperture area is covered bym = 1/ε2 subsquares. Since
them random variableŝφ j

s are drawn independently from the same
distribution, it follows that

E[|φ̂s|2] = mE[|φ̂ j
s |2]+m(m−1)|E[φ̂ j

s ]|2 . (21)

The second term in Eq. (21) is positive, and one can show it is
small relative to the first term. For simplicity we make the con-
servative approximation E[|φ̂s|2] ≈ mE[|φ̂ j

s |2], and show how to
compute E[|φ̂ j

s |2] below. Note that the exact lattice-focal spectrum
(Eq. (19), and the right-hand side of Eq. (21)) involves interference
from the phase of each subsquare. An advantage of our approxima-
tion mE[|φ̂ j

s |2] is that it bypasses the need to model phase precisely.

Recall that the PSF from each subsquare is a box filter and the OTF
is a sinc. If thej-th subsquare is focused atsj ,

|φ̂ j
s (ωx,y)|2 = ε4A4sinc2(εAωx(s−sj))sinc2(εAωy(s−sj)) . (22)

Since the subsquare slopes are drawn uniformly from[−S/2,S/2],
the expected spectrum is obtained by averaging Eq. (22) oversj .

E[|φ̂ j
s |2] =

ε4A4

S

∫ S/2

−S/2
sinc2(εAωx(sj −s)

)

sinc2(εAωy(sj −s)
)

dsj .

(23)

To compute this integral we make use of the following identity: for
a 2D vectorr = (r1, r2),

∫ ∞

−∞
sinc2(r1t)sinc2(r2t)dt =

β (|r|)
|r| . (24)

If −S/2< s< S/2 andSis large, we can assume that the integration
boundaries of Eq. (23) are sufficiently large2, and asymptotically
approximate Eq. (23) with the unbounded integration of Eq. (24):

E[|φ̂ j
s |2] =

ε4A4

S

∫ S/2

−S/2
sinc2

(

εAωx(sj −s)
)

sinc2
(

εAωy(sj −s)
)

dsj

=
ε4A4

S

∫ S/2+s

−S/2+s
sinc2

(

εAωxsj
)

sinc2
(

εAωysj
)

dsj

≈ ε3A3β (ωx,y)

S|ωx,y|
.

(25)

Eq. (20) now follows from Eq. (25), after multiplying by the num-
ber of subsquares,m= 1

ε2 .

2Note that the approximation in Eq. (25) is reasonable for|ωx|, |ωy| >
(SεA)−1. The approximation is crude at the low frequencies but becomes
accurate at higher frequencies, for which the MTF approaches the desired
fall off. Furthermore, note that at the exact integration boundaries (s =
±S/2) one gets only half of the contrast. Thus, in practice, one should setS
a bit higher than the actual depth range to be covered.
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Figure 9: The lattice-focal lens with varying window sizes. Left:
ωx0,y0-slice atωx = 0.9Ω,ωy = −0.9Ω, through theexpectedspec-
trum. Middle: ωx0,y0-slice from aparticular lattice-focal lens in-
stance. Right: The defocus diameter over the depth of field. The
expected spectrum improves when the windows number is reduced,
but every particular lattice-focal lens becomes undersampled and
does not cover the full depth range.

Optimal subsquare size: According to Claim 3, the expected
power spectrum of a lattice-focal lens increases with window size
ε (Fig. 9). For larger subsquares the sinc blur around the central
focal segment is narrower, so more energy is concentrated onthe
focal segment. However, it is clear that we cannot makeε arbitrar-
ily large. When the number of subsquares is small, the expected
power spectrum is high, but there are not enough samples to cover
the full focal segment (Figure 9(a)). On the other hand, whenthe
number of subsquares is too large, every subsquare has wide sup-
port around the main focal segment, leading to lower energy on the
focal segment (Fig. 9(c)).

Posed another way, each subsquare is focused at a different point
in the depth range, and provides reasonable coverage over the sub-
range of depths for which it achieves a defocus diameter of less
than 1 pixel (Fig. 9, rightmost column). The subsquares’ arrange-
ment is undersampled if the minimum defocus diameter for some
depth range is above 1 pixel, and redundant when the subsquares’
effective depth coverage overlap. In the optimal arrangement each
depth is covered by exactly one subsquare.

We derive the minimal number of windows providing full coverage
of the depth of field, resulting in an optimalε∗.

Claim 4 The maximal subsquare size which allows full spectrum
coverage is

ε∗ = (ASΩ)−1/3 . (26)

Proof: If the spacing between spatial samples is∆ the maxi-
mal frequency we need to be concerned with isΩS/2 = S/(4∆).
For window sizeε we obtain 1/ε2 subsquares. If the slopes of
the subsquares are equally spaced over the range[−S/2,S/2], the
spacing between samples in the frequency domain isτ = ΩSε2.
Using subsquares of widthεA, we convolve the samples with
sinc(εAωx)sinc(εAωy). For full coverage, we thus requireεA ≤
1/τ, implying:

SΩε2 ≤ 1
εA

⇒ ε ≤ (ASΩ)−1/3 . (27)



If we plug the optimalε∗ from Eq. (26) into Eq. (20) we conclude
that the expected power spectrum of a lattice-focal lens with opti-
mal window size is:

E[|φ̂s(ωx,ωy)|2] ≈
A8/3

S4/3Ω1/3|ωx,y|
β (ωx,y) . (28)

Discussion of lens spectra: The lattice-focal lens with an op-
timal window size achieves the highest power spectrum (i.e., clos-
est to the upper bound) among all computational imaging designs
listed in Table 2. While the squared MTFs for wavefront coding
and focus sweep fall offquadratically as a function ofωx,y, for
the lattice-focal lens the squared MTF only falls offlinearly. Fur-
thermore, while the squared MTFs for wavefront coding and focus
sweep scale withA2, for the lattice-focal lens the squared MTF
scales withA8/3. Still, there exists a gap of(ASΩ)1/3 between the
power spectrum of the lattice-focal lens and the upper bound. It
should be noted that the advantage of the lattice-focal lensis asymp-
totic and is most effective for large depth of field ranges. When the
depth range of interest is small the difference is less noticeable, as
demonstrated below.

Compact support in other designs: From the above discus-
sion, the aperture area should be divided more or less equally into
elements focused at different depths. However, beyond equal area
we also want the aperture regions focused at each depth to be
grouped together. Eq. (20) indicates that the expected power spec-
trum is higher if we use few wide windows, rather than many small
ones. This can shed some light on earlier multi-focus designs. For
example, [George and Chi 2003] use annular focus rings, and [Ben-
Eliezer et al. 2005] use multiplexed subsquares, but multiple non-
adjacent subsquares are assigned the same focal length. In both
cases, the support of the aperture area focused at each depthis not
at all compact, leading to sub-optimal MTFs.

5 Experiments

We first perform a synthetic comparison between extended depth of
field approaches. We then describe a prototype constructionof the
lattice-focal lens and demonstrate real extended-DOF images.

5.1 Simulation

We start with a synthetic simulation using spatially-invariant first
order (paraxial) optics. The OTFs in this simulation are computed
numerically with precision, and do not rely on the approximate for-
mulas in Table 2 .

Our simulation usesA = 1000∆ and considers two depth of field
ranges given byS = 2 and S = 0.1. Assuming a planar scene,
we synthetically convolved an image with the PSF of each design
adding i.i.d. Gaussian noise with standard deviationη = 0.004.
Non-blind deconvolution was performed using Wiener filtering and
the results are visualized in Figures 10 and 11. We set the free pa-
rameters of each design to best match the depth range—for exam-
ple, we adjust the parabola widtha (in Eq. (5)), and select the opti-
mal subsquare size of the lattice-focal lens. The standard and coded
lenses were focused at the middle of the depth range, ats0 = 0.

In Figure 10 we simulate the effect of varying the depth of theob-
ject. Using cameras tuned for depth rangeS= 2, we positioned
the planar object ats= 0 (Fig. 10, top row) ands= −0.9 (Fig. 10,
bottom row). As expected, higher spectra improve the visualqual-
ity of the deconvolution. Standard and coded lenses obtain excel-
lent reconstructions when the object is positioned at the focus slope
s= 0, but away from the focus depth the image deconvolution can-
not recover much information. Focus sweep, wavefront coding and
the lattice-focal lens achieve uniform reconstruction quality across
depth. The best reconstruction is obtained by our lattice-focal PSF,

Large depth range (S= 2) Small depth range (S= 0.1)
Wavefront coding Lattice-focal Wavefront coding Lattice-focal

Figure 12: ωx0,y0-slice (atωx0 = 0.9Ω,ωy0 =−0.9Ω) for two depth
ranges defined by slope bounds S= 2 (left) and S= 0.1 (right). For
the smaller range, the difference between the focal segmentand the
full bounding square is lower, and the spectra for wavefrontcoding
and the lattice-focal lens are more similar.

followed by wavefront coding, then focus sweep. Note that since
we use a square aperture, several imaging systems have more hori-
zontal and vertical frequency content. This leads to horizontal and
vertical structure in the reconstructions of Figure 10, particularly
noticeable in the standard lens and the wavefront coding results.

In Figure 11 we simulate the effect of varying the depth range. The
planar object was positioned ats= −0.5, and the camera parame-
ters were adjusted to cover a narrow depth rangeS= 0.1 (Fig. 11,
top row) and a wider rangeS= 2 (Fig. 11, second row). When the
focus sweep, wavefront coding and lattice-focal lens are adjusted
to a narrower depth range their performance significantly improves,
since they now distribute the same budget over a narrower range.

The difference between the designs becomes more critical when the
depth range is large. Figure 12 visualizes aωx0,y0-slice for bothS
values. ForS= 0.1, the length of the focal segment is so short
that there is little difference between the segment and its bounding
square. Thus, with a smaller depth range the wavefront coding lens
incurs less of penalty for spending its budget on afocal regions.

Mapping slope ranges to physical distances: Assume that the
camera has sensor resolution∆0 = 0.007mm, and that we use an
f = 85mm focal length lens focused at depthdo = 70cm. This
depth also specifies the location of thexy light field plane. The DOF
is defined by the range[dmin,dmax] corresponding to slopes±S/2.
From Eq. (2), the depth range can be expressed asdo/(1±S/2),
yielding a DOF of [35,∞]cm for S = 2 and [66.2,74.3]cm for
S = 0.1. The pixel size in the light field is∆ = ∆0/M, where
M = f /(do − f ) = 0.13 is the magnification. We set the effective
aperture sizeA to 1000∆ = 1000∆0/M = 50.6mm, which corre-
sponds tof /1.68. The subsquares number and focal lengths are
selected such that for each point in the depth range, there isex-
actly one subsquare achieving defocus diameter of less thanone
pixel. The subsquare number is given by Eq. (26), in this simu-
lation m = 100 aperture subsquares withS= 2, andm = 16 sub-
squares withS= 0.1. To set the focal lengths of each subsquare we
selectm equally spaced slopessj in the range[−S/2,S/2]. A slope
sj is mapped to a physical depthd j according to Eq. (2). To make
the j-th subsquare focus at depthd j we select its focal lengthf j ac-
cording to the Gaussian lens formula: 1/ f j = 1/d j + 1/ds (where
ds denotes the sensor-to-lens distance).

5.2 Implementation

Hardware construction: To demonstrate our design we have
built a prototype lattice-focal lens. Our construction provides a
proof of concept showing that a lattice-focal lens can be imple-
mented in practice and lead to reasonably good results, however
it is not an optimized or fully-characterized system.

As shown in Figure 13, our lattice-focal lens mounts to a main
lens using the standard threaded interface for a lens filter.The sub-
squares of the lattice-focal lens were cut from BK7 spherical plano-
convex lens elements using a computer-controlled saw. The squares
are of size 5.5× 5.5mm and thickness 3mm. By attaching our



Standard Lens Coded aperture Focus sweep Wavefront coding Lattice-focal

Figure 10: Synthetic comparison of image reconstruction at differentobject depths Top row: object depth s= 0, Bottom row: object depth
s= −0.9 Standard and coded lenses produce high quality reconstruction for an object at the focus depth, but a very poor one away from
the focus depth. Focus sweep, wavefront coding and the lattice focal lens perform equally across depth. The highest quality reconstruction
produced by our lattice-focal lens.

Standard Lens Coded aperture Focus sweep Wavefront coding Lattice-focal

Figure 11: Synthetic comparison of image reconstruction when camera parameters are adjusted for different depth ranges. Top row:narrow
depth range bounded by S= 0.1, Bottom row: wider range bounded by S= 2. Most designs improve when they attempt to cover a narrower
range. The difference between the designs is more drastic atlarge depth ranges.

lattice-focal lens to a high-quality main lens (Canon 85mm f1.2L),
we reduce aberrations. Since most of the focusing is achieved by
the main lens, our new elements require low focal powers, andcor-
respond to very low-curvature surfaces with limited aberrations (in
our prototype, the subsquare focal lengths varied from 1m to10m).

In theory the lattice-focal element should be placed in the plane of
the main lens aperture or at one of its images, e.g., the entrance or
exit pupils. To avoid disassembling the main lens to access these
planes, we note that a sufficiently narrow stop in front of themain
lens redefines a new aperture plane. This lets us attach our lattice-
focal lens at the front, where the stop required to define a newaper-
ture still let us use 60% of the lens diameter.

The minimal subsquare size is limited by diffraction. Sincea
normal lens starts being diffraction-limited around anf /12 aper-
ture [Goodman 1968], we can fit about 100 subsquares within an
f /1.2 aperture. To simplify the construction, however, our pro-
totype included only 12 subsquares. The DOF this allowed us to
cover was small and, as discussed in Sec. 5.1, in this range the
lattice-focal lens advantage over wavefront coding is limited. Still,
our prototype demonstrates the effectiveness of our approach.

Given a fixed budget ofm subsquares of a given width, we can
invert the arguments in Sec. 4 and determine the DOF it can
cover in the optimal way. As discussed at the end of Sec. 5.1
and illustrated in Figure 9(b), for every point in the optimal
DOF, there is exactly one subsquare achieving defocus diam-
eter of less than 1 pixel. This constraint also determines the
focal length for each of these subsquares. For our prototype
we focused the main lens at 180cm and chose subsquare focal
lengths covering a depth range of[60,180]cm. Given the limited
availability of commercial plano-convex elements, our subsquares’
coverage was not perfectly uniform, and we used focal lengths of
10000,5000,4000,3000,2500,2000,1750,1500,1300,1200,1000mm,
plus one flat subsquare (infinity focal length). However, fora
custom-manufactured lens this would not be a limitation.

Calibration: To calibrate the lattice-focal lens, we used a planar
white noise scene and captured a stack of 30 images for different
depths of the scene. Given a blurred and sharp pair of imagesBd, Id
at depthd, we solved for the kernelφd minimizing |φd ⊗ Id −Bd|.
We show the recovered PSF at 3 depths in Figure 13. As discussed
in Sec. 4, the PSF is a superposition of boxes of varying sizes, but
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Figure 14: Comparison between a lattice-focal lens and a standard lens, both for a narrow aperture ( f/16) and for the same aperture size
as our lattice-focal lens prototype ( f/4). All photos were captured with equal exposure time, so the f/16 image is very noisy. The standard
f /4 image is focused at the white book, but elsewhere produces a defocused image. The lattice-focal output is sharper over the entire scene.
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Figure 13: Our prototype lattice-focal lens and PSFs calibrated at
three depths. The prototype attaches to the main lens like a stan-
dard lens filter. The PSFs are a sum of box filters from the different
subsquares, where the exact box width is a function of the deviation
between the subsquare focal depth and the object depth.

the exact arrangement of boxes varies with depth. For comparison,
we did the same calibration using a standard lens as well.

Depth estimation: Given the calibrated per-depth PSFs, we de-
blur an image using sparse deconvolution [Levin et al. 2007]. This
algorithm computes the latent imageId as

Id = argmin
I

|φd ⊗ I −B|2 +λ ∑
i

[

ρ(gx,i(I))+ρ(gy,i (I))
]

, (29)

wheregx,i ,gy,i denote horizontal and vertical derivatives of thei-th
pixel, ρ is a robust function, andλ is a weighting coefficient.

Since the PSF varies over depth, rough depth estimation is required
for deblurring. If an image region is deconvolved with a PSF cor-
responding to the incorrect depth, the result will include ringing
artifacts. To estimate depth, we start by deconvolving the entire
image with the stack of all depth-varying PSFs, and obtain a stack
of candidate deconvolved images{Id}. Since deconvolution with

the wrong PSF leads to convolution error, we can locally score the
explanation provided by PSFφd around pixeli as:

Ei(d) = |Bi − B̃d,i |2 +λ
[

ρ(gx,i(Id))+ρ(gy,i (Id)
]

, (30)

whereB̃d = φd ⊗ Id3. We regularize the local depth scores using
a Markov random field (MRF), then generate an all-focus image
using the Photomontage algorithm of Agarwala et al. [2004].

Results: In Figure 14 we compare the reconstruction using our
lattice-focal lens with a standard lens focused at the middle of the
depth range (i.e., the white book). Using a narrow aperture (f /16),
the standard lens produces a very noisy image, since we held ex-
posure time constant over all conditions. Using the same aperture
size as our prototype (f /4), the standard lens resolves a sharp im-
age of the white book, but the rest of the scene is defocused. For
the purpose of comparison, we specified the depth layers manually
and deconvolved both the standard and lattice-focal imageswith
PSFs corresponding to the true depth. Because the spectrum of
the lattice-focal lens is higher than a standard lens acrossthe depth
range, greater detail can be resolved after deconvolution.

Figure 15 shows all-focus images and depth maps captured using
our lattice-focal lens. More results are available online4. Since
the MRF of Agarwala et al. [2004] seeks invisible seams, the layer
transitions usually happen at low-texture regions and not at the ac-
tual contours. Despite the MRF’s preference for piecewise-constant
depth structures we handle continuous depth variations, asshown in
the rightmost column of Figure 15.

The results in Figure 15 were obtained fully automatically.How-
ever, depth estimation can fail, especially next to occlusion bound-
aries, which present a general problem for all computational
extended-DOF systems [Dowski and Cathey 1995; Nagahara et al.
2008; Levin et al. 2007; Veeraraghavan et al. 2007]. While a princi-
pled solution to this problem is beyond the scope of this paper, most
artifacts can be eliminated with simple manual layer refinement.

3Note that despite the discussion in [Levin et al. 2009], we employ a
MAPx,k approach that scores a depthd based on the bestId explanation
alone. The reason this approach works here is that a delta explanation is ab-
sent from the search space, and there is a roughly equal volume of solutions
around all PSFsφd.

4www.wisdom.weizmann.ac.il/˜levina/papers/lattice



S
ta

nd
ar

d
le

ns
L

at
tic

e-
fo

ca
ll

en
s

Figure 15: Partially defocused images from a standard lens, compared with an all-focused image and depth map produced by the lattice-focal
lens.

Figure 16: Synthetic refocusing using the coarse depth map estimated with the lattice-focal lens.

Relying on depth estimation to decode an image from a lattice-focal
lens is a disadvantage compared to depth-invariant solutions, but it
also allows coarse depth recovery. In Figure 16 we used the rough
depth map to synthetically refocus a scene post exposure.

6 Discussion

This paper analyzes extended depth of field systems in light field
space. We show that while effective extended DOF systems seek
high spectrum content, the maximal possible spectrum is bounded.
The dimensionality gap between the 4D light field and the 3D focal
manifold is a key design factor, and to maximize spectrum content
lenses should concentrate their energy in the focal manifold of the
light field spectrum. We analyze existing computational imaging
designs and show that some do not follow this principle, while oth-
ers do not achieve a high spectrum over the depth range. Guided by
this analysis we propose the lattice-focal lens, accounting for the
dimensionality gap. This allows us to achieve defocus PSFs with
higher spectra compared to previous designs.

However, the lattice-focal lens does not fully achieve the upper
bound. One open question is whether better designs exist, whether
the upper bound could be tighter, or both. Our intuition is that the
upper bound could be tighter. The proof of Claim 2 is based on
the assumption that anA×A primal support is devoted to every fre-
quency point. However, the fact that the integration surface has to
“cover” a full family of slopes implies that the aperture area has
to be divided between all slopes. Thus the primal support of each
slope is much smaller thanA, which implies a wider frequency sup-

port around the focal segment, reducing the height of the spectrum
on the focal segment itself.

We have focused on spectra magnitude, which dominates the de-
convolution quality. However, the accuracy of depth estimation is
important as well. Wavefront coding and focus sweep camerashave
an important advantage that they bypass the need to estimatedepth.
On the other hand, the lattice-focal lens has the benefit of recovering
a rough depth map in addition to an all-focused image. One future
research question is whether the higher spectrum of the lattice-focal
lens can also be achieved with a depth-invariant design.
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Grant N00014-06-1-0734, NSF CAREER award 0447561. F. Du-
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PDF program.

Appendix A: Spectra derivations

Below we complete the budget and spectra derivation of Sec. 3.

Claim 5 For an aperture of size A×A and exposure length1, the
total energy in eachωx0,y0-slice is bounded by A2:

∫∫

|k̂ωx0,y0
(ωu,ωv)|2dωudωv ≤ A2 . (31)



Proof: The proof reviews the budget proof in [Levin et al. 2008c].
Note thatk̂ωx0,y0

(ωu,ωv) is the 2D Fourier transform of:

∫∫

k(x,y,u,v)e−2iπ(ωx0x+ωy0y)dxdy. (32)

For every clear aperture point|u| ≤ A/2, |v| ≤ A/2:

∣

∣

∣

∣

∫∫

k(x,y,u,v)e−2iπ(ωx0 x+ωy0y)dxdy

∣

∣

∣

∣

2

≤
∣

∣

∣

∣

∫∫

k(x,y,u,v)dxdy

∣

∣

∣

∣

2

≤ 1 .

(33)
Where the first inequality follows from the fact that a phase change
does not increase magnitude, and the second inequality follows
from the unit energy through every clear aperture point (seealso
Eqs. (13) and (14)).

Since the aperture size isA2, the total norm is bounded byA2:

∫∫

∣

∣

∣

∣

∫∫

k(x,y,u,v)e−2iπ(ωx0 x+ωy0y)dxdy

∣

∣

∣

∣

2

dudv≤ A2 . (34)

By Parseval’s theorem, the square integral is the same in thedual
and the primal domains, thus:

∫∫

|k̂ωx0,y0
(ωu,ωv)|2dωudωv ≤ A2 . (35)

Standard lens:

Claim 6 The power spectrum of a standard lens focused at depth
s0 with aperture A×A is

|φ̂s(ωx,ωy)|2 = A4sinc2(A(s−s0)ωx)sinc2(A(s−s0)ωy) . (36)

Proof: A lens focused at slopes0 is modeled by a linear integration
surfacec(u,v) = (s0u,s0v). If the surface were infinite, the Fourier
transform would be an impulse atωu =−s0ωx,ωv =−s0ωy. Given
the finite aperture we need to convolve that with a sinc, and thus

k̂(ωx,ωy,ωu,ωv) = A2sinc(A(ωu−s0ωx))sinc(A(ωv−s0ωy)) .
(37)

Eq. (36) follows by selecting an OTF-slice.

The ωx0,y0-slices in Figure 4(b) reveals a sinc around the point
ωu = −s0ωx,ωv = −s0ωy. Note that reducing the aperture size
A increases the sinc width and minimizes defocus blur. However,
given a fixed exposure length it also reduces the amount of light col-
lected, which reduces the MTF. Indeed, the sinc height in Eq.(36)
decreases for smallerA values.

Coded aperture: A coded aperture is constructed with a standard
lens, w.l.o.g. focused at slopes0 = 0. We construct a coded aperture
by dividing the aperture into squares of sizeεA× εA and randomly
blocking each subsquare with probability 1/2. The expected power
spectrum can then be computed analytically.

Claim 7 For a lens focused at s0 = 0, the expected power spectrum
of a random coded aperture with holes sizeεA× εA is

E[|φ̂s(ωx,y)|2] ≈
ε2A4

2
sinc2(εAsωx)sinc2(εAsωy) . (38)

Proof: We expresŝk = ∑ j k̂ j where k̂ j is the 4D spectrum of an
individual subsquare. For an unblocked hole centered atu0,v0 we
can expresŝk j analytically as the transform of a box times a phase

shift (resulting from the translation of the subsquare center):

k̂ j (ωx,ωy,ωu,ωv) = ε2A2e−2iπ(ωuu0+ωvv0)sinc(εAωu)sinc(εAωv) .
(39)

As in the proof of Claim 3, we note that E[k̂ j ] affects very low
frequencies only, so we use Eq. (21) to approximate

E[|k̂|2] ≈ 1
ε2 E[|k̂ j |2] (40)

=
ε2A4

2
sinc2(εAωu)sinc2(εAωv) , (41)

where the number of subsquares is 1/ε2 and the factor 1/2 repre-
sents the probability of a blocked subsquare. By selecting an OTF-
slice, Eq. (38) follows.

Eq. (41) suggests that, ignoring diffraction, the sensor spatial res-
olution implies a tradeoff in selecting the optimal hole size. If
we use small holes, the power spectrum of the aperture is wider,
and wider spectrum implies that more budget is spread away from
the main focal segment (indeed Eq. (38) shows that the expected
spectrum is multiplied byε and decreases whenε is small). On
the other hand, the expected power spectrum ofk̂ falls off like
sinc2(εAωu)sinc2(εAωv). That is, since the lens is focused only
at a single depth, to have spectral content at slopes corresponding
to other depths, the spectrum of the aperture must be sufficiently
wide, implying that a small hole sizeε is needed.

Focus sweep:

Claim 8 For |ωx|, |ωy| > (SA)−1, the power spectrum of the focus
sweep camera asymptotically approaches

|φ̂s|2 ≈
A2α(ωx,y)

2

S2|ωx,y|2
, (42)

where α(|ωx,y|) is a bounded multiplicative factor in the range
[1,

√
2]:

α(|ωx,y|) =
|ωx,y|

max(|ωx|, |ωy|)
. (43)

Proof: The spectrum of a standard lens focused at slopes0 is

A2sinc(Aωx(s0−s))sinc(Aωy(s0−s)) . (44)

The spectrum of a focus sweep is obtained by averaging Eq. (44)
over s0. To compute this integral we make use of the following
identity: for a 2D vectorr = [r1, r2],

∫ ∞

−∞
sinc(r1t)sinc(r2t)dt =

α(|r|)
|r| . (45)

If −S/2 < s< S/2 andS large enough5, we use Eq. (45) and get:

φ̂s(ωx,y) =
A2

S

∫ S/2

−S/2
sinc(Aωx(s0−s))sinc(Aωy(s0−s))ds0

=
A2

S

∫ S/2+s

−S/2+s
sinc(Aωxs0)sinc(Aωys0)ds0

→ Aα(ωx,y)

S|ωx,y|
. (46)

Taking the power of Eq. (46) provides Eq. (42).

5The approximation is reasonable for|ωx|, |ωy| > (SA)−1.



Figure 4(d) displaysωx0,y0-slices from the power spectrum of a
focus sweep camera. On one hand, this spectrum is concen-
trated around the main focal segment, with the same narrow width
achieved by the upper bound in Fig. 4(a). However, the magnitude
of the focus sweep is significantly lower. In fact, the total energy at
everyωx0,y0-slice is much lower than the budget of Claim 5, that is:

∫∫

|k̂ωx0,y0
(ωu,ωv)|2dωudωv ≪ A2 . (47)

To understand why, recall that the upper bound in Claim 5 is ob-
tained by noting that whenx,y are integrated, the magnitude of the
projection integral is bounded by 1 (Eq. (33)). And indeed, when
the 4D lens kernel is a delta function ofu,v, that integral is equal
to 1. By contrast, the effective 4D kernel for a focus sweep cam-
era is the average of standard-lens 4D kernels over all depths, and
therefore is not a delta function. When such a non-delta kernel is
multiplied by a wave of the forme−2iπ(ωxx+ωyy), interference and
phase cancelations significantly reduce the magnitude of the inte-
gral, and Eq. (33) is far below 1.

Wavefront coding:

Claim 9 For a slope s∈ [−S/2,S/2], the power spectrum of a
wavefront coding lens asymptotically approaches

|φ̂s(ωx,ωy)|2 ≈
A2

S2|ωx||ωy|
. (48)

Proof: A wavefront coding lens is a cubic refractive element (as
reported in [Dowski and Cathey 1995]). From Snell’s law, the
integration surface is determined by the lens normal. Therefore
the integration surface is a separable parabolac(u,v) = (au2,av2).
The parabola widtha can be set such that the parabola slope cov-
ers the slope range of interest[−S/2,S/2], implying a = S/(2A).
The power spectrum of a 1D parabola as computed in [Levin et al.
2008c] is

|k̂(ωx,ωu)|2 ≈
A

S|ωx|
δ |ωu|<S/2|ωx| . (49)

The 2D parabola case is a separable extension:

|k̂(ωx,ωy,ωu,ωv)|2 ≈
A2

S2|ωx||ωy|
δ |ωu|<S/2|ωx|δ |ωv|<S/2|ωy| . (50)

If s∈ [−S/2,S/2], we can slice Eq. (50) to get Eq. (48).

Appendix B: Cameras with multiple measure-
ments

Many imaging models in the literature, like a focal stack, ora
plenoptic camera involve multiple measurements per pixel.Analyz-
ing these cameras requires additional assumptions about the noise
model. One possible analysis is described below.

We consider additive Gaussian noise at the sensor and Wienerre-
construction, with a Gaussian zero-mean prior on the signal. That
is, we assumeN different measurements of each spatial image fre-
quency, and denote the measurementj as

B̂ j(ωx,y) = φ̂ j (ωx,y)Î(ωx,y)+n j . (51)

We denote the noise variance byη2, and the signal̂I(ωx,y) variance
with σ2

ωx,y
. TheN-measurement Wiener estimateÎest(ωx,y) is (see,

for example, [Levin et al. 2009]):

Îest(ωx,y) = argmin∑
j

1
η2 |φ̂ j(ωx,y)Î(ωx,y)− B̂ j (ωx,y)|2 +

|Î(ωx,y)|2
σ2

=

1
η2 ∑ j φ̂ j(ωx,y)

∗B̂ j(ωx,y)

1
η2 ∑ j |φ̂ j(ωx,y)|2 + 1

σ2

. (52)

One can also compute the expected reconstruction error (expecta-
tion over allÎ(ωx,y),n j samples from the prior):

E[|Îest(ωx,y)− Î(ωx,y)|2] =

(

1
η2 ∑

j
|φ̂ j(ωx,y)|2 +

1
σ2

)−1

. (53)

Eq. (53) states that the reconstruction error is a function of the sum
of power spectra of the individual OTFs. In the following analy-
sis we evaluate two multiple measurement configurations, the focal
stack and the plenoptic camera, by examining the summed power
spectrum∑ j |φ̂ j |2.

Note that this suggests how to merge multiple independent mea-
surements of thesamespatial frequency, and should not be con-
fused with summing multiple elements of a single measurement.
All other cameras considered in the main body of this paper have a
single measurement per spatial frequency.

Focal stack: With additive noise and Wiener filtering, the recon-
struction error for a focal stack depends on the summed powerspec-
tra of all images in the stack. Suppose we divide exposure time into
N bins and spread the focus setting of all time bins evenly overthe
depth range. The OTF of a time binj focused at slopesj is

φ̂s(ωx,y) =
A2

N
sinc

(

Aωx(sj −s)
)

sinc
(

Aωy(sj −s)
)

. (54)

By substitutingε = 1 into Eq. (25), and multiplying by 1/N2 to
account for the shorter exposure, the integration over all slopessj
provides

E[|φ̂s(ωx,y)|2] =
1

N2
A3

S|ωx,y|
. (55)

Since we haveN such bins, the total sum is

∑
j
|φ̂ j,s(ωx,y)|2 =

1
N

A3

S|ωx,y|
. (56)

Note that the number of binsN does not cancel out in the integra-
tion. By adjusting Claim 4, the minimal number of bins required
to cover the depth range without aliasing isN = ASΩ, resulting in
summed power spectrum of

∑
j
|φ̂ j,s(ωx,y)|2 =

A2

S2Ω|ωx,y|
. (57)

As we have seen in Eq. (53), the reconstruction error is a function
of the summed power spectrum. From Eq. (57) the summed power
spectrum of a focal stack is lower than the focus sweep spectrum
of A2/(S2|ωx,y|2), since|ωx,y| < Ω. Thus, under additive noise,
the reconstruction error of a focus sweep camera which measures
different focus depths simultaneously is better than the focal stack
approach which measures each focus depth separately.

Plenoptic camera: The MTF of a plenoptic camera cannot be
compared directly to the other cameras because the imaging model



is different and involves tradeoffs between spatial and angular res-
olution. As a result, assumptions about the sensor layout ofthe
plenoptic camera must also be made. One possible analysis is
described below, which concludes that reconstruction error for a
plenoptic camera is higher than for a lattice-focal lens. Intuitively,
the plenoptic camera captures the entire 4D light field and hence
spends energy away from the focal manifold.

Assume other cameras useN sensor elements. To keep the same
spatial resolution in the final image we assume the plenopticcamera
hasN lenslets and 1/ε2 elements below each lenslet, resulting in
N/ε2 sensor elements in total. We assume the lens is focused at the
middle of the depth range, at slopes0 = 0.

The OTF from thej-th directional view is:

φ̂ j
s (ωx,y) = e2π i(γ j ,xωx+γ j ,yωy)ε2A2sinc(εAsωx)sinc(εAsωy) , (58)

where(γ j,x,γ j,y) denotes the phase shift of thej-th view.

Recall that the reconstruction error in Eq. (53) is a function of the
sum of power spectra of the individual OTFs. For the case of a
plenoptic camera,

∑
j
|φ̂ j(ωx,y)|2 = ε2A4sinc2(εAsωx)sinc2(εAsωy) (59)

since there are 1/ε2 terms in the sum.

This suggests that there is a tradeoff in the number of directional
views: more directional views increase the noise contribution and
the reconstruction error. By contrast, if we do not divide the direc-
tional views finely enough we have defocus in the depth range.

To avoid defocus over the depth range, the worst-case slopeSand
the worst-case frequencyΩ should be included in the first sinc lobe,
hence

ε ≤ 1
ASΩ

. (60)

This implies that

∑
j
|φ̂ j(ωx,y)|2 ≤

A2

S2Ω2 (61)

at all spatial frequenciesωx,y, and the plenoptic camera will have
increased noise contribution compared to most single-measurement
cameras we have analyzed.

Appendix C: Fourier optics derivation

Our goal in this appendix is to derive an analogy to the light field
results, while modeling wave optics effects and not only geometric
optics. We use a traditional optics representation- the Wigner distri-
bution [Wigner 1932], and build on the tight relation between light
fields and Wigner distribution derived by Zhang and Levoy [2009].

We will show that an analogy to the budget bounds exist, but while
the geometric optics bound allocates an equal budget at all spa-
tial frequencies, Fourier optics implies that the bound drops as the
diffraction limited OTF. Yet, if the system dimensions are kept well
above the diffraction limit, the approximation provided bythe geo-
metric model is reasonable enough.

In our derivation we consider a lens with anA×Aaperture and focal
length f , we denote the distance from the lens to the camera sensor
by di and the focus depth bydo. By the Gaussian lens formula,

1
do

+
1
di

=
1
f
. (62)

This lens is then expressed as

R(Au)R(Av)e−iπ u2+v2

λ f (63)

whereR is a rect function andλ is the wavelength. A general re-
fractive element is expressed relative to this lens as

R(Au)R(Av)e−iπ u2+v2

λ f ϕ(u,v) (64)

whereϕ(u,v) is the aberration, or the deviation from a normal lens
behavior. We also denote byϕA(u,v) = R(Au)R(Av)ϕ(u,v) the
aberration multiplied by the aperture.

In our derivation we study the classical ambiguity function, the
Fourier dual of the Wigner distribution. The ambiguity function
of ϕA is defined as

A (u,v,su,sv) =
∫∫

ξu,v(t1,t2)e
i2π(sut1+svt2)dt1dt2. (65)

where

ξu,v(t1,t2) = ϕA(t1 +u/2,t2 +v/2)ϕ∗
A(t1−u/2,t2−v/2). (66)

We now define a 4D analog of the 4D lens spectrum as

˜̂k(ωx,ωy,ωu,ωv) = A (ρωx,ρωy,ωu,ωv) (67)

whereρ = λdo.

It is well known in optics that OTFs can be obtained as slices from
the ambiguity function [Brenner et al. 1983]. Below we provide a
revised derivation of this result adjusted to our notation.That is, we

show that the Fourier optics OTF is a slice through˜̂k exactly in the
same way that the geometric optics OTF is a slice throughk̂. We

later show that we can place upper bounds on the norm of˜̂k in the
same way we have specified bounds the norm ofk̂.

Claim 10 Consider an object at depth da and its light field slope
s = (da − do)/da. The Fourier optics OTFφ̂s(ωx,y) is a slice

through ˜̂k:

φ̂s(ωx,y) = ˜̂k(ωx,ωy,−sωx,−sωy). (68)

Proof: If we are imaging an on axis point at distanceda, the wave-
front reaching the lens is

ei2π da
λ eiπ u2+v2

λda (69)

The wavefront leaving the lens is a product of the lens with the wave
reaching the lens.

A wavefront reaching a point(x′,y′) on the image plane (the image
plane is located at distancedi from the lens) is thus the product of
the wave leaving the lens with a spherical wavefront centered at



(x′,y′,di), which reduces to

h(x′,y′)

=
∫∫

ϕA(u,v)e−iπ u2+v2

λ f ei2π da
λ eiπ u2+v2

λda ei2π di
λ eiπ (u−x′)2+(v−y′ )2

λdi dudv

= ei2π(di+da)/λ e
iπ x′2+y′2

λdi

∫∫

ϕA(u,v)eiπ(1/da+1/di−1/ f ) u2+v2

λ e−i2π x′u+y′v
λdi dudv

=1 ei2π(di+da)/λ eiπ x′2+y′2
λdi

∫∫

ϕA(u,v)e−iπsu2+v2

ρ e−i2π x′u+y′v
λdi dudv

(70)

where1 follows from the Gaussian lens formula 1/do+1/di = 1/ f ,
implying that the spherical wave coefficient above can be expressed
as 1/λ (1/da +1/di −1/ f ) = 1/λ (1/da −1/do) = −s/ρ.

Now let

ψs(u,v) = ϕA(u,v)e−iπsu2+v2

ρ , (71)

and letΨs denote its Fourier transform. Then

h(x′,y′) = Ψs

(

x′

λdi
,

y′

λdi

)

eiπ ·const. (72)

To mapx′ to the spatial coordinates in the rest of this document, we
note that we used coordinates on thexy-plane, and not on the image.
That is, we need to divide by the magnification factorM = di/do,
and transfer to the coordinate systemx = x′/M,y = y′/M. That is:

hs(x,y) = hs(x
′/M,y′/M) = Ψs

(

x
ρ

,
y
ρ

)

ei·const (73)

The incoherent PSF is now equal to

φs(x) = |hs(x)|2 = |Ψs(x/ρ)|2 (74)

The OTFφ̂s can thus be obtained from the auto correlation ofψ,

scaling the coordinates byρ, which reduces to the definition of˜̂k in
Eq. (67), since:

φ̂s(ωx,ωy)

=

∫∫

ψ(t1 +ρωx/2,t2 +ρωy/2)ψ∗(t1−ρωx/2,t2−ρωy/2)dt1dt2

=
∫∫

ξρωx,y(t1,t2)e
i2πs(ωxt1+ωyt2)dt1dt2

=

∫∫

ξρωx,y(t1,t2)e
i2π(ωut1+ωvt2)dt1dt2

= ˜̂k(ωx,ωy,ωu,ωv).
(75)

We now letH (ωx,ωy) denote the diffraction limited OTF of the
system

H (ωx,ωy) = ΛA/ρ (ωx)ΛA/ρ (ωy) (76)

whereΛ(ω/c) is a widthc tent function, and we use the shortcut
notationΛc(ω) = Λ(ω/c).

The previous claim states that the Fourier optics OTF is a slice
through the ambiguity function. The radars literature has also de-
rived the energy of slices via the ambiguity function [Rihaczek

1969], which can be translated to energy bounds on˜̂kωx0,y0
[FitzGer-

rell et al. 1997]. We provide a revised derivation of this result ad-
justed to our notation. In an analogy to the geometric opticsderiva-

tion, the norm of aωx0,y0-slice through˜̂k is bounded. However,
the more accurate Fourier optics bound is no longer equal across
spatial frequencies, it is falling off like the diffractionlimited OTF
H (ωx0,ωy0). This result also suggests that if the system dimen-
sions are kept well above the diffraction limit, the approximation
provided by the geometric model is reasonable enough.

Claim 11 For every spatial frequencyωx0,y0 the norm of aωx0,y0-

slice ˜̂kωx0,y0
is bounded by the aperture area times the diffraction

limited OTF:
∫∫

| ˜̂kωx0,y0
|2 ≤ A2

H (ωx0,ωy0). (77)

Proof: We have seen in the proof of Claim 10 that

˜̂kωx0,y0
(ωu,ωv) =

∫∫

ξωx0,y0
(t1,t2)e

i2π(ωut1+ωvt2)dt1dt2. (78)

That is,˜̂kωx0,y0
is the Fourier transform ofξωx0,y0

. Therefore we can

use Parseval’s theorem to bound the norm of˜̂kωx0,y0
:

∫∫

| ˜̂kωx0,y0
(ωu,ωv)|2dωudωv

=
∫∫

|ξωx0,y0
(t1,t2)|2dt1dt2

≤
∫∫

R(A(t1 +ρωx0/2))R(A(t1−ρωx0/2))

·R(A(t2 +ρωy0/2))R(A(t2−ρωy0/2))dt1dt2

= A2Λ A
ρ
(ωx0)Λ A

ρ
(ωy0)

= A2
H (ωx0,ωy0).

(79)

We have seen that using the Fourier optics model, the budget bound
is decreasing as the diffraction limited OTF. To understandhow spe-
cific computational imaging designs are affected, we brieflyreview
the spectrums derivation in the previous section and describe the
required adjustments for the Fourier optics model. In a nutshell, for
most cases Fourier optics implies that the results in Table 2should
be multiplied by the diffraction limit OTF andA→ AΛ

( ρωx
A

)

. For
designs with holes (coded aperture and lattice-focal lens), the hole
size reduces the diffraction limit andεA→ εAΛ

( ρωx
εA

)

. Therefore,
if the aperture and hole sizes are kept well above the diffraction
limit, the approximation provided by the geometric optics model is
good enough.

The simplest case is that of a standard lens. The diffractionlim-
ited OTF of a squared aperture is derived in many Fourier optics
textbooks, e.g., [Goodman 1968]. We briefly review this in the fol-
lowing claim.

Claim 12 The Fourier optics squared MTF of a standard lens fo-
cused at s0 is

|φ̂s(ωx,ωy)|2 = A4Λ2
A
ρ
(ωx)sinc2

(

AΛ A
ρ
(ωx)(s−s0)ωx

)

·Λ2
A
ρ
(ωy)sinc2

(

AΛ A
ρ
(ωy)(s−s0)ωy

)

. (80)

Proof: The derivation above considered a reference lens with focal
length f focused at depthdo, and with sensor to lens distancedi



such that 1/ f = 1/do + 1/di . We now consider another lens with
focal length fa. We maintain the lens to sensor distancedi . This
lens is then focused at depthda such that 1/ fa = 1/da + 1/di . If
s0 is the light field slope at that depth thens0 = do(1/do−1/da) =
do(1/ f −1/ fa). The aberrationϕ for this lens is

ϕ(u,v) = e−iπ u2+v2

λ (1/ fa−1/ f ) = e−iπs0
u2+v2

ρ (81)

andξu,v(t1,t2) = R(ΛA(u) t1
A)R(ΛA(v) t2

A )e−i2πs0(t1u+t2v). Taking the
Fourier transform ofξ and adjusting the coordinate system provides
˜̂k:

˜̂k(ωx,ωy,ωu,ωv) = A2Λ A
ρ
(ωx)sinc

(

AΛ A
ρ
(ωx)(ωu−s0ωx)

)

·Λ A
ρ
(ωy)sinc

(

AΛ A
ρ
(ωy)(ωv−s0ωy)

)

.(82)

Eq. (80) now follows by taking aωx0,y0-slice through̃̂k.

Claim 13 For a lens focused at s= 0, the expected Fourier optics
squared MTF of a random coded aperture with hole sizeεA×εA is

|φ̂s(ωx,ωy)|2 = ε2A4Λ2
εA
ρ

(ωx)sinc2
(

εAΛ εA
ρ

(ωx)(s−s0)ωx

)

·Λ2
εA
ρ

(ωy)sinc2
(

εAΛ εA
ρ

(ωy)(s−s0)ωy

)

. (83)

Proof: Referring to the notation in the proof of Claim 9, we need
to computeE|K̃ j |2. Based on Claim 12, the expected MTF of an
εA× εA aperture hole is

E[| ˜̂k
j
|2] =

1
2

ε4A4Λ2
εA
ρ

(ωx)sinc2
(

εAΛ εA
ρ

(ωx)(ωu−s0ωx)
)

·Λ2
εA
ρ

(ωy)sinc2
(

εAΛ εA
ρ

(ωy)(ωv−s0ωy)
)

. (84)

(the fact that the holes can be off-centered only affects thephase of
K̃ j but that phase cancels as we measure only the power spectrum).
We now multiply Eq. (84) by the windows number 1/ε2 and take
an OTF-slice, to get Eq. (83).

Claim 14 The Fourier optics squared MTF of a focus sweep cam-
era is

|φ̂s0(ωx,ωy)|2 ≈ A2Λ2
A
ρ
(ωx)Λ2

A
ρ
(ωy)

α2(ω ′
x,y)

S2|ω ′
x,y|2

(85)

where
ω ′

x,y = (Λ A
ρ
(ωx)ωx,Λ A

ρ
(ωy)ωy). (86)

Proof: Based on Claim 12, the OTF at slopes is

φ̂s(ωx,ωy) = A2Λ A
ρ
(ωx)sinc

(

AΛ A
ρ
(ωx)(s−s0)ωx

)

·Λ A
ρ
(ωy)sinc

(

AΛ A
ρ
(ωy)(s−s0)ωy

)

. (87)

The OTF of a focus sweep camera is obtained by averaging Eq. (87)
overs. Using Eq. (45), this conve2rges to

φ̂s0(ωx,ωy) → AΛ A
ρ
(ωx)Λ A

ρ
(ωy)

α(ω ′
x,y)

S|ω ′
x,y|

. (88)

Eq. (85) follows by taking the square of Eq. (88).

Claim 15 The expected Fourier optics squared MTF of a lattice-

focal lens with holes sizeεA× εA is

|φ̂s0(ωx,ωy)|2 ≈ εA3Λ2
εA
ρ

(ωx)Λ2
εA
ρ

(ωy)
β (ω ′

x,y)

S|ω ′
x,y|

. (89)

where
ω ′

x,y = (Λ εA
ρ

(ωx)ωx,Λ εA
ρ

(ωy)ωy). (90)

Proof: The squared MTF for a sublens focused at slopes is

|φ̂s0(ωx,ωy)|2 = ε4A4Λ2
εA
ρ

(ωx)sinc2
(

εAΛ εA
ρ

(ωx)(s−s0)ωx

)

·Λ2
εA
ρ

(ωy)sinc2
(

εAΛ εA
ρ

(ωy)(s−s0)ωy

)

.(91)

As in the proof of Claim 3, the expected squared MTF of a lattice-
focal lens is obtained by averaging Eq. (91) overs. Using Eq. (24),
this converges to

|φ̂s0(ωx,ωy)|2 ≈ ε3A3Λ2
εA
ρ

(ωx)Λ2
εA
ρ

(ωy)
β (ω ′

x,y)

S|ω ′
x,y|

. (92)

Multiplying Eq. (92) by the number of subsquares 1/ε2 produces
Eq. (89).

The Fourier optics OTF of a wavefront coding lens can be computed
as well, and we refer the reader to [Zhang and Levoy 2009; Dowski
and Cathey 1995] for derivation.
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