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Abstract We show that the minimal number of views necessary for
a factorization is 11 and the minimal number of points re-
We introduce new small-motion multi-frame equations quired for a recovery of camera motion, scene structure and
applicable to the reconstruction dfynamicscenes in which ~ point trajectories is 7. We also derive the solutions to re-
points are allowed to move along straight-line paths with duced situations such as when the trajectories are embedded
constant velocity. The motion equations apply to both staticin a coplanar or collinear configuration, and when the point
and dynamic points, thus prior segmentation is not neces-positions are coplanar.
sary. We present a reconstruction algorithm of camera mo-
tion, scene structure, and point trajectories embedded into a
multi-framefactorizationprinciple which requires the min-
imum of 11 images and 7 points (out of which at least 3 are
dynamic).

1.1 Related Work

Infinitesimal motion constraints for a static 3D scene
were first introduced in [6]. The first factorization-based al-
1 Introduction gorithm for recovering (static) scene structure and discrete

camera motion under the orthographic projection model

In this paper we analyze the structure and motion from Was introduced in [8]. This was followed by a multi-body
avideo image sequence of scenes Containing muitipie mov_factorization method [3] for reCOﬂStrUCting the motion and
ing points, each moving independently along some straightshape of several bodies (each consisting of multiple points
line path with constant velocity (for brevity, we will refer moving rigidly) simultaneously. Factorization-based algo-
to such a scene afynamid. Since the input consists of a rithms were also derived for multi-frame problems for re-
continuous video source, we will focus on deriving a small- covering homography matrices and for optic-flows arising
motion (infinitesimal) model which can treat the informa- from infinitesimal motion assumption of 3D scenes [5, 9].
tion arising from a dynamic scene in a uniform manner, i.e.,  Structure from Motion (SFM) of dynamic scenes, where
without the need for a prior segmentation of the scene into each point moves independently along some trajectory, is a
fixed (static) and moving points, and moreover, to be able torecent and growing topic. The topic was first introduced
handle scenes which consist solely of moving points (staticin [1] for 3D point configurations undergoing linear and
points simply have vanishing velocity). We therefore focus curved motion with known projection matrices. For 2D
on the following problem: point configurations across three views the motion con-

Given the optic-flow across an image sequence of a 3Dstraints have a form of 8 x 3 x 3 tensor from which
configuration of points consisting of a mixture of static and the appropriate homography matrices can be recovered [7].
dynamic points, including the case where all points are dy- The restriction to constant velocity (linear motion) and or-
namic, recover the 3D translational and rotational compo- thographic projection was introduced in [4] for 3D point
nents of camera motion, the 3D positions of the point con- configurations. The restriction carries a nice byproduct of
figuration with respect to the first view and the 3D point embedding the orthographic motion constraints within the
trajectories (velocity vector) of the dynamic points. scene structure and point trajectories (velocities), thus giv-

The algorithm we present for doing so embeds the de-ing rise to a factorization-based algorithm which requires a
rived motion constraints into a factorization-based method. minimum of 5 views and 7 points.



2 Infinitesimal Motion Constraints for Dy-

namic 3D Scenes

Let P, ---, P, be a configuration of pointsp;
(X, Y;, z;), where each point moves with constant velocity
along some straight-line path + jV; wherej =0, ---,m
representing a frame number. The frame numberay be
replaced by a scalar;, j = 0,---,m, (thea; are fixed to
all points of framej) which represents a weaker assumption
than constant velocity — nevertheless, for simplicity we
will restrict ourself to constant velocity although the equa-
tions and methodology apply in the weaker case as well.

The configuration is viewed by a camera whose coordi-
nate system at framg= 0 (the reference frame) is aligned
with the world coordinate system, i.ex; }XZ and
Yi = }YZ are the image coordinates at tinie= 0. At
framejl: 1 the camera has undergone a small-motion dis-
placement:

Pz'l:([“‘[w]x)(Pi‘*“/i)‘*‘t

wherew represents the rotational component of camera mo-
tion (direction ofw represents the screw-axis and | rep-
resents the rotation (infinitesimal) angle around the axis),
[w]. is the skew-symmetric matrix of vector products, thus
I + [w]x is the small-motion approximation of a rotation
matrix, andt is the translational component of camera mo-
tion. In a small-motion model; = £ P; ~ P} — P;, thus

Pi = [w]xpi + (I+ [w]x)Vz +t.

Letpi = (zi,y:,1)T = £ P, then the optic-flows; = %
andv; = 4 takes the following form:
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Using similar derivation fop; = ddyti we have:
1
v; =1} [w].p; + Z—riTt + Z—r;(IwL [w]:)Vi  (2)
i i

wheres; = (1,0,—=z;) andr; = (0,1, —y;). The optic-
flow equations 1 and 2 are the motion constraints bringing
together image measuremenitsv;, camera motionw, t,
scene depth (structure), and the velocitie§; — all but

the image measurements are unknown.

Note that there is a global translational ambiguity in de-
terminingt andV;: V;/ = V; + ¢ for some arbitrary, is
compensated by = t — (I + [w]x)q while leaving the
flow vectors(u;, v;) unchanged. Therefore, in the solution

of structure £;), motion ¢, w) and velocity ¥;) the trans-
lational component of the motion can be interchanged with
a global shiftg of the point velocitied/, ..., V,,. A single
known static point¥; is known to be zero) can resolve the
ambiguity, but that is for later.

3 Factorization

Because the optic flow equations are bilinear in the un-
knowns it is a simple matter to write down the estimation
problem as a factorization algorithm, as follows. Consider
m + 1 frames,j = 0,---,m and letw;, t; be the camera
motion from the reference frame to fragend letu;;, v;;
be the optic flow of point between the reference frame and
framej. Note thatm should not be “too large” otherwise
the infinitesimal assumption would breakdown in practical
settings (see later about real-image experiments). Because

s wlep=s"(wxp)=w'(sxp)

we have the following relation:
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Grouping all the image measurements together we obtain
the following matrix equation:
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whereU = (u;;) is then x m matrix whose entries are
u;; andV = (v;;). The matrixM is 10 x m where the
j'th column is the vectofw, t, j, jw) ", S;, S, aren x 10
matrices, where théth row of S,, consists of:
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and thei’th row of S, consists of:

1
[Ti X Pi, _TT
2

(2] [3
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2

1
= (r; x V)]
Thus the rank of the measurement matrix W is bounded
from above by 10, therefore using SVD we can find two
matricesKsy, «10,L10xm Such that’ = K L. The shape
matrix S and the motion matri¥(/ can be determined by

S = KAandM = A~'L for somel0 x 10 matrix A.
The unknown matrix4d must satisfy “structure” constraints
determined by the way the matric6sand M are built.



3.1 Solving for A

We Notice that when trying to recovet, to satisfy

determine the number of degrees of freedom in determining
A. Let
V;'I = G,V;' +q+ bZipi

S = KA, we obtain 3 separate linear systems, regarding,yhere the vector and the scalara, b are free variables.

3 different groups of columns:

S1-3 KA _3
Sice = KAi ¢
57710 = KA7710

where S;_; denotes the sub-matrix of consisting of
columnsi to j (inclusive). The first 3 columns of S are

known, so each tracked point gives 6 equations, and we have r 7

30 unknowns for columns — 3 of A, therefore we need at
least 5 points for a unique solution.

In columns 4-6 each point contributes 5 equations (af-
ter eliminating the one unknowf;), therefore we need at

least 6 points. Those columns can be recovered only up to

a global scale. The 5 constraints per point are as follows:

K, A5 = 0 4)
K,As = 0 (5)
K,Ay = KyAs (6)
(KeAg)i = xi(KyA4); (7)
(KyAe)i = wi(KyAs); (8)

wherekK,, K, are the upper and lower x m sub-matrices
of K andA; denotes thg'th columns ofA.

So far, the equation counting was straightforward. How-
ever, the determination of 40 unknowAs_ is more sub-
tle. Here we expect the global translational ambiguity to

have an effect, for example. For columns 7-10, each point

contributes 5 equations (after eliminating the 3 unknown
1

z:

The 5 constraints are:

v, Ay = KA 9)

yilKy Ay = KyAs (20)

Ky(yids + A1) = (yf + 1)K, Ay (11)
Ky(z;A3 — A1) = (27 + 1)K Ay (12)
(2 Ky +y: Kp)Ay = KpA3+KyAy  (13)

The question is what is the rank of the estimation matrix
for the 40 unknownst;_13? The rank is 35 as shown next.

Claim 1 The rank of the estimation matrix for the 40 un-
knowns ofd;_1q is bounded by 35.

Proof: Is it sufficient to considet/ = K, AA~! M where
we wish to findA that satisfiesS, = K,A. Ambiguity
arises if we can repladé with V;’ such thasS, (V) = S, B
for some matrixB. The number of free variables B will

V; from the 8 measurements) and there are 40 unknowns

By substitution we find that entriés— 10 the i'th row of
Sz(V7) has the following form:

1
(sis X q) +b(si X p;)

i

1 1 1
a—s,] Vi+—s] q, a—(si x Vi) +
Recall thats, p; = 0 (which is why this term dropped out
in the 7'th entry). We have thaB;_,o has the following
form:

0
0 bl
0

Br-10 = Z 0 [q(]JX 0
0
0 al
_O -

SinceB;_1o contains 5 free variables, the rank of the esti-
mation matrix for the 40 unknowns ift; _ ;¢ cannot exceed
35.[]

An immediate conclusion is that the minimal number of
points for the recovery ofl is 7. The free parametetsb
can be resolved by noticing that thigh column of B! M
has the following form:

Wi i
ti— (g
1 .
X
aJWj

B 'M; =

Consider for example the colump = 1. Denote
by ai,---,a19 the entries of the column. Let
(a1,as,a3)" andv = (ag, a9, a19) . Then,a = a% and
au — v = bu from which we can recove.

To summarize, we perform the following steps:

1. Given the optic-flow matriXx¥ (having at least 11
views), perform SVD to obtailV = KL. In this
process one can reduce measurement error by enforc-
ing the singular values from the 11'th position and up-
wards to vanish.

2. Recover A up some arbitrary element of the 5-
dimensional null space (in recoverind;_1o. Let

S'=KAandM' = A-'L.

. Recovera, b from M’. Construct the matrix3 with
the entriesl/a,1/b in the proper places. The®$, =
S'BandM = B~'M'. The recovered, M are the
structure and motion and velocities up to the global
translation/velocity ambiguity.



We have therefore shown that we can recover the com-Claim 2 Whendim Span{V;} = 2, the rank of the estima-
plete SFM and point trajectories uniquely (up to the intrinsic tion matrix for the 40 unknowns of;_1o is bounded by
ambiguity of global shift of velocities) with a factorization- 34.
based algorithm which requires the minimum of 11 views

and 7 points. Proof: As in Claim 1, ambiguity in the estimation of

from the equations, = K, A arises if we can replack;
with V; such thatS, (V;') = S, B for some matrixB. The
number of free variables iB will determine the number of
degrees of freedom in determiniag Let

3.2 Static Scene

A particular case of the above is when the scene is static,
i.e., V; vanishes for all points. This brings us back to V) = aV; + q + bzip; + (Vi x n)
the rank 6 observation of [5] of the optic-flow matrik,
whereas here we can extend this further into a SFM algo-where the vectog and the scalars, b, f are free variables.

rithm. Specifically, we have in this case Recall the following identities:
< Ugj > _ { Si X pi ZLS: ] < w; ) ax(bxc) = (a'¢)b—(a'b)c
Vij Ty X Pi Z%TT tj (axb)xec = (a"c¢)b—(c"b)a,

which when stacked together we obtain the form of eqn. 3 which are used for establishing the following identity:
where S, S, aren x 6 matrices and/ is a6 x m ma-

trix. Thus the rank of th&n x m measurement matri’ si x  (Vixn)=(s]n)Vi—(s{ Vi)n

is boundgd by 6. LetV = KL provided by an SVD de- = (s;n)V; — (5] Vi)n — (n"V;)s; + (n Vi)s;
composition ofi¥, then we seek & x 6 matrix A such that _ TV — (sTV: v s

S = KAandM = A~'L. The constraints onl follow = (Vi (S I = (0T Vi)si + Lsi

the constraints or; _s; andA4_ discussed in the previous = (si x Vi) xn— (s{ n)V; + s; (14)

section. We need therefore at least 6 points and 7 framesB bstituti find th irv 7 of thigh ts,
in order to use a factorization principle to recover structure bysu stituionwe hind the entry 70 row of S (V')
and motion from an image sequence of a static scene. cOmes:

! 1
- - —si Vit —sjq+ s (Vi
4 Reduced Configurations @i -5 g f s, (Vi x n)

o _ ) and entries$ — 10 become:
The situation we described so far wgeneralin the

sense that the point positiord , ..., P, and the veloci- al(s, < Vi) + l(s, % q) + b(si X pi)
ties V1,...,V,, live in a 3D space. Some practical sit- 2 2

. . o 1
uations arise, for example, when all the velocities are FF (s x Vi) = (57 Vim + 1sy)

coplanar {imSpan{V;} = 2) or along parallel lines Z;
(dim Span{V;} = 1), or when the point configuration
Py, ..., P, is coplanar at the starting stagg; (+ jV; may
not be coplanar), or any combination of the above.

We have thaB; 1, has the following form:

L . ' 0
We call these situations collectively esduced configu- 0 bl
rations unlike degenerate, because in fact as we will show 0
there are no degeneracies — we can achieve the full recon- B7 10 =
: I i : q [q)x + fUI
struction (up to the global velocity shift ambiguity) as in a T
the general case — but there are additional subtleties that
fn al + f[n]

require special handling.
SinceB;_1( contains 6 free variables (vectpand scalars

4.1 Coplanar Trajectories a,b, f), the rank of the estimation matrix for the 40 un-
knowns in4;_1o cannot exceed 3@
Assumedim Span{V;} = 2, i.e., there exist® = In order to solve for the free parameters we do the fol-

[n1,n2,n3]" andl such that every velocity; in the scene  lowing. Since the entire model can be recovered up to a
satisfiesn " V; = . This constraint affects the number of global translation of the velocitiel; we can translate the
degrees of freedom of;_1, which instead of having 5 de- coordinate system such that one arbitrarily chosen point,
grees of freedom will have now 6. We have the following sayp;, is static i.e.v; = 0, and the trajectory plane passes
claim: through the origin, i.e.] = 0. To see why this is so, note



that by setting: = 1, b = f = 0, andg = —V; we obtain
a matrixB, such thatS B, has all the velocities; replaced
by v;—V1 and hence the entri€s-10 of two of its rows van-

Note that sincé = 0, thena, b, fn, ¢ completely determine
B. In Summary, we have shown that we can recaver/
up to the global shift byy = —V; when the velocities span

ish. Itis therefore possible to add those 8 constraints on thea 2D space.

vanishing entries of the systekiA for solving for A7 _10.
The rank of the estimation matrix fot,_,, becomes 37
(instead of 34) as described below.

Claim 3 By setting an arbitrary point, say,, as static, the
additional 8 constraints that arise from it shift the coordi-

nate system such that the trajectory plane passes through?

the origin ( = 0) and the rank of the estimation matrix for
the40 unknowns ofd;_1q is bounded by 37.

Proof: Ambiguity in the estimation of A arises if we can
replaceV; with V;/, such thatS(V;) = SB. The number
of free variables i3 will determine the number of degrees
of freedom in determiningl. The 8 additional constraints
enforcel/ = 0, therefore:

0=V =aVi +q+bzip1 + f(Vi xn),

whereV; = 0 as well. Thusg is completely determined by
q = —bz1p1, and because

0=1s51 x (Vi xn)=(si x V1) xn—(s{ n)Vi +1s;

we have also thdt= 0. Therefore, only 3 degrees of free-
dom remain inB which area, b, f.[]

We can recover the scalatsb and the vectorfn as
follows. Recall that via SVD we have the factorization
W = KL and intunU = K,L andV = K,L. We
recoverA whereA; 1o is determined by choosing an ar-
bitrary solution from the 3-dimensional null space. Let
S = KAandM' = A-'L whereS' = SB where
B;_19 (where we have free variables) as above. Thus,
W = S'M' = SBB~'M andM = BM'. Consider the
j'th column of M’ and let the entries in the resulting vec-
tor be denoted aéni, m2, A\, m3) wherem, are vectors,

3 components each, ardis a scalar. IfB is chosen cor-
rectly then thej’th column of BM' should have the form
(wj,t5,4,jw;). We have:

my + bm3
ma + Ag + [qams
ax — fn'ms ’
fn-mg+ ams + f[n]xms

BM!

wherez -y denotes the vectdry y1 , x2y2, £3ys3). This pro-
vides the following linear constraints enb, fn:

j(my + bmg)

fn-mg+ ams + f[n]xms
aX — fnmsg j

J

Thus, using several columns aff’ we can solve for
a, b, fn,and given b, we can recovg(recallg = —bzyp,).

4.2 Coplanar Points at Starting Moment

Assumedim Span{P;} = 2, i.e., there exists) =
[n1,n2,n3]" such that every poinP; in the scene satisfies
P; = 1,0rn"p; = L. Just like in the coplanar tra-
jectories case, we have 6 degrees of freedom in recovering
7-10-

Claim 4 Whendim Span{P;} = 2, the rank of the estima-
tion matrix for the 40 unknowns of;_;, is bounded by
34.

Proof: Following the proof of Claim 2, let

Vi =aVi+q+bzip; + fzi(pi x n)

where the vectog and the scalars, b, f are free variables.
We can establish the following identity:

8i X (pi X n) = (si X pi) X n+s;

by following the derivation of eqn. 14. By substitution we
find the entry 7 of thé’'th row of S, (V') becomes:

1 1
a—siTVi + —s;q + fnT(si X D;)
Z Z
and entrie® — 10 become:
1 1
a—(s; X Vi) + —(s; x q) + b(s; X p;)
Zi Zi

1
+f(5ixpi)xn+fz_5i
.

We have thaB; 1, has the following form:

fn bl + f[n]x
q lqlx + fI
0 0 0
B7 10 = 8
0 al
0

SinceB;_1¢ contains 6 free variables (vectgand scalars
a,b, f), the rank of the estimation matrix for the 40 un-
knowns in4;_1, cannot exceed 34]

In order to determine the free variable$ and vectorfn
we do the following. LetV = KAA~'L = S'M’ where
K, L determined by SVD of#/ and A is determined by
choosing an arbitrary solution from the 6-dimensional null



space. Denote thgth column of M’ as(my, ma, A, m3),
thenBM; has the form:

m1 + Afn +bmg + f[n]xms
ma2 + Aqg + [q]l.ms3 + fmg
a\ ’
ams

r_
BM; =

This provides the following linear constraints erb, fn:

ax = J

1

—amg = my+ Afn+bms+ f[n]xms

from which we can solve fos, b, fn (via several columns
of M'"). In order to separatg andn we can either shift the
velocities byg = V; as was done in the previous section,
or alternatively, recovet; (up to a global scale) from be-

And:
— L ’Y_l -
S1XPp1 7851 St
1 ol
g — Sn XPn -850 LoSn
= 7
TLXPpL o TL LT
1 In
L Tn X Dn Zn Tn Zn Tn donxo

Note that the ranks of and M are bounded by, so also
rank(W) < 9. Since deptle; and the velocities;V are
defined only up to scale, we have two degrees of freedom
embodied into the matriB, of the form:

I3x3 0 0
BO = 0 0513X3 0
0 0 Blzxs

9%x9

cause the depth values are not affected by the ambiguity ing,ch thats’ = SBy and M’ = By M are indistinguish-

A7_19. Oncez; are recovered one can solve fgrand then

able from the original paiS, M. Using SVD we find

solve fora, b, f from the equations above. The recovery Konxo, and Lo, such that there is a matridg, o that

of z; is also useful for purposes distinguishingbetween

satisfies:S = KA, M = A~'L. We write estimation ma-

the rank 34 caused by coplanar trajectories and the rank 34yices forA, ¢ and A, o. Each point contributes 5 linear

caused by coplanar points. Onaeb, f,n are recovered,
one can substitute their values infBbabove (up to a global

constraints ond,_g and A;_g, those constraints have the
same form as in equations 4 - 8. Since we assume that the

shift ). In Summary, we have shown that we can recover st point is static, the last 3 columns in the first rows of

S, M up to the global shift when the point®; span a 2D
space.

4.3 Parallel Trajectories

Another case of interest, as it may often occur in practi-

cal situations, is the case wheten Span{V;} =1, i.e., all

Sz, Sy must be zero, thus providing 6 additional constraints
to the estimation matrix fod;_g.

Claim 5 Using only constraints on the shape mattikcan
be recovered only up to 3 degrees of freedom

Proof: Ambiguity in the solution ford,_¢ and A;_,
arises if we can replacg with z; and~; with ~/ such that
Sz (2L, ~}) = S, B for some matrixB. The number of free

the straight-line trajectories are parallel to each other. As invariables inB will determine the number of degrees of free-
Section 4.1, we can assume that some arbitrary point, saydom in determiningd. One can easily verify tha® has the

p1, is static, i.e.}; = 0. The implies that the all the (paral-
lel) line trajectories pass through the origin, i¥;,,= v,V
(and~; = 0) for some fixed vecto#’. The motion con-
straints for this special case are:

1 i
ui = s, [wl.pi + fs;t+ 7 s; (I + [wl],)V

2 Zi

Lo (1 + wl)V

(3

1
vi = [wlpi+ —rit+
(3

And the matricesS, M have the following form:

o= b -
(I = [w1]2)V (I = [wp]e)mV

IXm

following form:

{ Isxs 0 0 -|
B = 0 CLI3><3 0
L 0 blzxs clsxs ngg

containing three free variables — two for the columtis ¢
and one ford;_g). Note that because; = 0 we were
allowed only to scale columné;_,. []

One can solve for the scalatisb and the vectol” up
to a global scale as follows. Choose a solutiérfrom
the 3-parameter solution spacé,( ¢ from a 2-parameter
space, andd;_o up to global scale). Set’ = KA and
M' = A~'L and we are searching f@&, whose structure
is described above, such thgit= SB, M' = B~' M. De-
note M}, the;j’th column of M, by (my, ma,m3)". Then,



Figure 1. (a),(b),(c) 1st, 40th and 80th images of the traffic scene. (d) The tracked points and the road direction projected over the
reference frame. (e) Predicted locations of 3 of the tracked points.

BM; = (m1,amz,bms + ems) " which should have the Fig. 1(a-c) displays three images of a sequence of 80
form of M; = (w;,t;,jV — jw x V)T. We have therefore frames of a highway traffic situation. The sequence was
the constraint equation pgth column of M': taken by a hand-held video camera from a bridge over the
road. The constant velocity assumption in such a scene is

JV —jmi X V = bmy + cms fairly reasonable and because the vehicles were moving on

a straight section of the road, the parallel trajectory model

which provides 3 homogeneous equations per column for
is also reasonable.

the unknowns, ¢ and vectorl. The scalam is set arbi-
trarily, thus we have shown that we can reco$edi! up Using the KLT point tracking package [2] we tracked 28
to the intrinsic ambiguity (matrixBy) of global scale ot; points on static objects and on different moving cars, mov-
and global scale of; V. Note that the method does not de- ing at different speeds and along both lane directions. The
pend on whether the point configuratidh lie on a 2D or  vectorV representing the direction of vehicle travel was

3D space. computed as described in Section 4.3 and projected onto
the reference image (first image of the sequence) displayed
5 Experiments in Fig. 1d. The projected line appears accurately aligned

with the road direction including the pitch angle (lines meet

We have conducted a number of experiments of which &t the trué horizon). We then recovered the velocity mag-
two will be described below. The first experiment involves Nitude i of each point and made use of it for predicting
the parallel trajectoriesconfiguration (Section 4.3) taken the position of th_e veh|ple in subsequent frames (assuming
by a moving camera viewing a typical highway traffic scene & constant velocity motion).
with moving vehicles. The second experiment involves  We also recovered the private velocity (which is a scale
the coplanar trajectorieg(Section 4.1) configuration on a of the common velocity) for each of the tracked points. This
semi-synthetic setup. It is semi-synthetic in the sense thatenables us to predict the location of the point in another
the scene is constructed by computer graphics renderingrames (i.e. after: time intervals). In figure 1(e) we pro-
whereas the image measurements are taken with the samjected the expected movement of 3 of the points using the
image-processing tools of point tracking as with the real- frequency of6 time intervals. We can see that the truck
image sequence. on the right moved a little slower than the white van on its



Figure 2. (a),(b) 2 images from the chess sequence. (d) 3 of the tracked points and their velocities projected onto the reference

frame.

left. Fig. 1e displays the predicted position of three points
— the predicted positions remain on the vehicle thus indi-
cating good accuracy in the recovery of the model (motion, [2]
structure and velocities).

Fig. 2(a-c) displays three images, out of a sequence of
60 frames, of a coplanar trajectories configuration of chess[3]
pieces in motion (points span a 3D space while velocities
span a 2D space). The recovered velocitiesvere recov-
ered using the method in Section 4.1 and projected on the[4
reference image (Fig. 2d). The projected lines appear to
trace accurately the straight line motion of the chess pieces.

In both experiments fairly long sequences were taken [5]
covering image displacements of dozens of pixels in some
cases. The effect of discrete motion (instead of infinitesi-
mal) on the final results was minimal, thus suggesting ro-

bustness of the approach. [6]

6 Summary

We have introduced the small-motion equations for han-
dling multiple linearly moving points under constant veloc-
ity and a factorization-based algorithm for extracting the 8]
parameters of scene structure, camera motion and point tra-
jectories from the image-flow measurements. Our method
covered a majority of situations of interest starting from the [9]
general 3D point configuration and 3D line trajectories, to
combinations of 2D point configuration and 2D trajectories
up to 1D trajectories. In all those cases we have shown
that the information can be recovered (in a robust manner
as seen from the experiments) uniquely (up to an intrinsic
shift ambiguity).
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