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Abstract. When we take a picture through transparent glassthe image
we obtain is often a linear superposition of two images: the image of the
scenebeyond the glassplus the image of the scenere
ected by the glass.
Decomposing the single input image into two images is a massively ill-
posed problem: in the absenceof additional knowledge about the scene
being viewed there are an in�nite number of valid decompositions. In this
paper we focus on an easier problem: user assisted separation in which
the user interactiv ely labels a small number of gradients as belonging to
one of the layers.
Even given labels on part of the gradients, the problem is still ill-p osed
and additional prior knowledge is needed.Following recent results on the
statistics of natural imageswe usea sparsity prior over derivativ e �lters.
We �rst approximate this sparseprior with a Laplacian prior and obtain
a simple, convex optimization problem. We then usethe solution with the
Laplacian prior asan initialization for a simple, iterativ e optimization for
the sparsity prior. Our results show that using a prior derived from the
statistics of natural imagesgivesa far superior performance compared to
a Gaussian prior and it enables good separations from a small number
of labeled gradients.

1 In tro duction

Figure 1(a) shows the room in which Leonardo's Mona Lisa is displayed at
the Louvre. In order to protect the painting, the museum displays it behind a
transparent glass.While this enablesviewing of the painting, it posesa problem
for the many tourists who want to photograph the painting (see �gure 1(b)).
Figure 1(c) shows a typical picture taken by a tourist 1 : the wall acrossfrom
the painting is re
ected by the glass and the picture captures this re
ection
superimposedon the Mona-Lisa image.

A similar problem occurs in various similar settings: photographing window
dressings,jewels and archaeologicalitems protected by glass.Professionalpho-
tographersattempt to solve this problem by using a polarizing lens.By rotating

1 All three images are taken from www.studiolo.org/Mona/MONA09.htm



(a) (b) (c) (d)

Fig. 1. (a),(b) The scenenear the Mona Lisa in the Louvre. The painting is housed
behind glassto protect it from the many tourists. (c) A photograph taken by a tourist
at the Louvre. The photograph captures the painting as well as the re
ection of the
wall acrossthe room. (d) The user assistedre
ection problem. We assumethe user has
manually marked gradients as belonging to the painting layer or the re
ection layer
and wish to recover the two layers.

the polarizing lens appropriately, one can reduce(but not eliminate) the re
ec-
tion. As suggestedin [2,8] the separation can be improved by capturing two
imageswith two di�eren t rotations of the polarizing lens and taking an optimal
linear combination of the two images. An alternativ e solution is to use mul-
tiple input images [11,4] in which the re
ection and the non-re
ected images
have di�eren t motions. By analyzing the movie sequence,the two layers can be
recovered. In [13], a similar approach is applied to stereopairs.

While the approaches based on polarizing lensesor stereo images may be
useful for professionalphotographers, they seemlessappealing for a consumer-
level application. Viewing the imagein �gure 1(c), it seemsthat the information
for the separation is present in a single image. Can we use computer vision to
separatethe re
ections from a single image ?

Mathematically, the problem is massively ill-p osed.The input image I (x; y)
is a linear combination of two unknown imagesI 1(x; y); I 2(x; y):

I (x; y) = I 1(x; y) + I 2(x; y) (1)

Obviously, there are an in�nite number of solutions to equation 1: the num-
ber of unknowns is twice the number of equations. Additional assumptionsare
needed.On the related problem of separatingshadingand re
ectance, impressive
results have beenobtained using a single image [12,3]. Theseapproachesmake
useof the fact that edgesdue to shadingand edgesdue to re
ectance have di�er-
ent statistics (e.g. shading edgestend to be monochromatic). Unfortunately, in
the caseof re
ections, the two layers have the samestatistics, so the approaches
used for shading and re
ectance are not directly applicable. In [5], a method
was presented that used a prior on imagesto separatere
ections with no user
intervention. While impressive results were shown on simple images, the tech-
nique useda complicated optimization that often failed to convergeon complex
images.



In this paper, we present a technique that works on arbitrarily complex im-
agesbut we simplify the problem by allowing user assistance.We allow the user
to manually mark certain edges(or areas) in the image as belonging to one of
the two layers. Figure 1(d) shows the Mona Lisa image with manually marked
gradients: blue gradients are marked as belonging to the Mona Lisa layer and
red are marked as belonging to the re
ection layer. The user can either label
individual gradients or draw a polygon to indicate that all gradients inside the
polygon belong to one of the layers. This kind of user assistanceseemsquite
natural in the application we are considering: imagine a Photoshop plugin that
a tourist can use to post-processthe imagestaken with re
ections. As long as
the user needsonly to mark a small number of edges,this seemsa small price
to pay.

Even when the user marks a small number of edges,the problem is still ill-
posed. Consider an image with a million pixels and assumethe user marks a
hundred edges.Each marked edgegivesan additional constraint for the problem
in equation 1. However, with these additional equations, the total number of
equationsis a only million and a hundred, far lessthan the two million unknowns.
Unlessthe usermarks every singleedgein the image,additional prior knowledge
is needed.

Following recent studies on the statistics of natural scenes[7,9], we use a
prior on imagesthat is basedon the sparsity of derivative �lters. We �rst ap-
proximate this prior with a Laplacian prior and this approximation enablesus to
�nd the most likely decomposition using convex optimization. We then use the
Laplacian prior solution as an initial guessfor a simple, iterativ e optimization
of the sparsity prior. We show that by using a prior derived from the statistics
of natural scenes,one can obtain excellent separationsusing a small number of
labeled gradients.

2 Statistics of natural images

A remarkably robust property of natural imagesthat hasreceivedmuch attention
lately is the fact that when derivative �lters are applied to natural images,the
�lter outputs tend to be sparse[7,9,17]. Figure 2(a-d) illustrates this fact: the
histogram of the vertical derivative �lter is peaked at zero and fall o� much
faster than a Gaussian.Thesedistributions are often called \sparse" and there
are a number of ways to formulate this property mathematically , (e.g. in terms
of their tails or their kurtosis).

We will follow Mallat [6] and Simoncelli [10] in characterizing thesedistribu-
tions in terms of the shape of their logarithm. As shown in �gure 2(b,d), whenwe
look at the logarithm of the histogram the curve is always below the straight line
connecting the maximum and minimum values.This should be contrasted with
the Gaussiandistribution (that is always above the straight line) or the Lapla-
cian distribution (that is simply a straight line in the log domain) (�gure 2(e)).
In [5] it was shown that the fact that the log distribution is always below the
straight line, is crucial for obtaining transparency decompositions from a single
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Fig. 2. (a),(c) input images.(b),(d) log-histogram of dy derivativ e. A robust property of
natural imagesis that the log-histograms of derivativ e �lters lie below the straight line
connecting the minimal and maximal values. We refer to such distributions as sparse
(e) Log probabilities for distributions of the form e� x �

. The Gaussian distribution is
not sparse (it is always above the straight line) and distributions for which � < 1
are sparse. The Laplacian distribution is exactly at the border between sparse and
non sparse distributions. (f ) Matching a mixture model to a �lter output histogram.
The mixture parameters were selectedto maximize the lik elihood of the histogram. A
mixture of Laplacians is sparseeven though the individual components are not.

image. Distributions that are above the straight line will prefer to split an edge
of unit contrast into two edges(one in each layer) with half the contrast, while
distributions below the line will prefer decompositions in which the edgeonly
appears in one of the layers but not in the other. We will refer to distributions
that have this property in the log domain as being sparse.



Wainwright and Simoncelli [15] have suggesteddescribing the histograms
of natural images with an in�nite Gaussian mixture model. By adding many
Gaussians,each with a meanat zerobut with di�eren t variancesonecan obtain
sparsedistributions. This can alsobe achieved by mixing only two distributions:
a narrow distribution centered on zeroand a broad distribution centered on zero
will give a sparsedistribution. Figure 2(f) shows a mixture of two Laplacian
distributions:

Pr(x) =
� 1

2s1
e�j x j=s1 +

� 2

2s2
e�j x j=s2 (2)

Although the Laplacian distributions are not sparse based on our de�nition,
the mixture is. For the experiments in this paper, the mixture parameterswere
learned from real images.That is, the parameterswereselectedto maximize the
likelihood of the histogram of derivative �lters, as in Figure 2(f). The learned
valueswe found are s1 = 0:01; s2 = 0:05; � 1 = 0:4; � 2 = 0:6.

Given the histogramsover derivative �lters, we follow [16] in using it to de�ne
a distribution over imagesby assuming that derivative �lters are independent
over spaceand orientation so that our prior over imagesis given by:

Pr(I ) =
Y

i;k

Pr( f i;k � I ) (3)

where f � I denotesthe inner product betweena linear �lter f and an image I ,
and f i;k is the k'th derivative �lter centered on pixel i . The derivative �lters set
we use includes two orientations (horizontal and vertical) and two degrees(i.e.
�rst derivative �lters as well as secondderivative). The probabilit y of a single
derivative is given by equation 2.

Equation 3 gives the probabilit y of a single layer. We follow [5] in de�ning
the probabilit y of a decomposition I 1; I 2 as the product of the probabilities of
each layer (i.e. assumingthe two layers are independent).

3 Optimization

We are now ready to state the problem formally. We are given an input image
I and two setsof image locations S1; S2 so that gradients in location S1 belong
to layer 1 and gradients in location S2 belong to layer 2. We wish to �nd two
layers I 1; I 2 such that:

1. the two layers sum to form the input image I = I 1 + I 2
2. the gradients of I 1 at all locations in S1 agreewith the gradients of the input

image I and similarly the gradients of I 2 at all locations in S2 agreewith
the gradients of I .

Subject to thesetwo constraints we wish to maximize the probabilit y of the
layers Pr( I 1; I 2) = Pr( I 1) Pr(I 2) given by equation 3.

Our approximation proceedsin two steps. We �rst approximate the sparse
distribution with a Laplacian prior. This leadsto a convexoptimization problem
for which the global maximum can be found using linear programming. We then
use the solution with a Laplacian prior as an initial condition for a simple,
iterativ e maximization of the sparseprior.



3.1 Exactly maximizing a Laplacian prior using linear programming

Under the Laplacian approximation, we approximate Pr( I ) with an approximate
~Pr( I ) de�ned as:

~Pr (I ) =
Y

i;k

e�j f i;k � I j (4)

To �nd the best decomposition under the Laplacian approximation we need
to minimize:

J (I 1; I 2) =
X

i;k

jf i;k � I 1j + jf i;k � I 2j (5)

subject to the two constraints given above: that I 1 + I 2 = I and that the two
layers agreewith the labeled gradients. This is an L 1 minimization with linear
constraints. Wecan turn this into an unconstrainedminimization by substituting
in I 2 = I � I 1 so that we wish to �nd a single layer I 1 that minimizes:

J2(I 1) =
X

i;k

jf i;k � I 1j + jf i;k � (I � I 1)j (6)

+ �
X

i 2 S1 ;k

jf i;k � I 1 � f i;k � I j

+ �
X

i 2 S2 ;k

jf i;k � I 1j

where the last two terms enforcethe agreement with the labeled gradients.
This minimization can be performed exactly using linear programming. This

is due to the fact that the derivativesare linear functions of the unknown image.
To seethis, de�ne v to be a vectorized version of the image I 1 then we can
rewrite J2 as:

J2(v) = kAv � bk1 (7)

wherek k1 is the L 1 norm, the matrix A hasrows that correspond to the deriva-
tiv e �lters and the vector b either has input image derivatives or zero so that
equation 7 is equivalent to equation 6.

Minimization of equation 7 can be done by intro ducing slack variables and
solving:

M in :
P

i (z
+
i + z�

i )
Subject to :

Av + (z+ � z� ) = b
z+ � 0; z� � 0

The idea is that at the optimal solution one of the variables z+
i ; z�

i is zero,
and the over is equal to jA i ! v � bi j. The above problem is a standard linear
programming one and we use the LOQO [14] linear programming package to
solve it.



3.2 Optimization of the sparse prior using iterated linear
programming

To �nd the most likely decomposition under the sparseprior weneedto maximize
the probabilit y of the two layers as given by equation 3. Using the samealgebra
as in the previous section this is equivalent to �nding a vector v that minimizes:

J3(v) =
X

i

� (A i ! v � bi ) (8)

where � (x) is the log probabilit y shown in �gure 2. � (x) is similar to a robust
error measureand henceminimizing J3 is not a convex optimization problem.
Nevertheless,using EM we can iterativ ely solve convex problems.

Since we use a mixture model to describe the sparse prior, we can use
expectation-maximization (EM) [1] to iterativ ely improve the probabilit y of a
decomposition. We intro duce a binary hidden variable hi for every row of the
matrix A that denoteswhich Laplacian generatedthe measurement in bi . In the
E step we calculate the expectation of hi and in the M step we use this ex-
pectedvalue and optimize an expectedcompletedata log likelihood. A standard
derivation shows that the EM algorithm reducesto:

{ E step. calculate two weights w1; w2 for every row of the matrix A:

wj (i ) /
� j

sj
e�j A i ! v� bi j=sj (9)

the proportion constant is set so that w1(i ) + w2(i ) = 1 for all i .
{ M step: perform an L 1 minimization given by:

v�  argmin
v

kDAv � Dbk1 (10)

with D a diagonal matrix whoseelements are given by:

D(i; i ) = w1(i )=s1 + w2(i )=s2 (11)

At every iteration, we are provably decreasingthe cost function J3 in equa-
tion 8. The optimization in the M step was performed using the same linear
programming software as in the Laplacian approximation. 3 EM iterations are
usually su�cien t.

4 Results

We show results of our algorithm on �v e imagesof sceneswith re
ections. Four
of the imagesweredownloadedfrom the internet and we had no control over the
camera parameters or the compressionmethods used. For color imageswe ran
the algorithm separately on the R,G and B channels.

Figures 3, 4 and 5 show the input images with labeled gradients, and our
results. In Figures 4,5 we compare the Laplacian prior and the sparseprior,
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Fig. 3. Results: (a) input image. (b-c) decomposition.

versus the number of labeled points. The Laplacian prior gives good results
although some ghosting e�ects can still be seen(i.e. there are remainders of
layer 2 in the reconstructed layer 1). These ghosting e�ects are �xed by the
sparseprior. Good results can be obtained with a Laplacian prior when more
labeledgradients are provided. Figures 6, 7 comparesthe Laplacian prior with a
Gaussianprior (i.e. minimizing kAv � bk under the L 2 norm ) using both simple
and real images.The non sparsenature of the Gaussiandistribution is highly
noticeable,causingthe decomposition to split edgesinto two low contrast edges,
rather then putting the entire contrast in one of the layers.
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Fig. 4. Comparing Laplacian prior(�rst iteration results) with a sparseprior. When a
few gradients are labeled (left) the sparseprior gives noticeably better results. When
more gradients are labeled (righ t), the Laplacian prior results are similar to the sparse
prior. (a-b) labeled input images. (c-d) decomposition with Laplacian prior. (e-f) de-
composition using a sparseprior.

The images in �gure 5 were separatedautomatically in [11] using multiple
images.An advantage of using multiple imagesis that they can deal better with
saturated regions (e.g. the cheekbone of the man in the image that is superim-
posedon the white shirt of the woman) sincethe saturated region location varies
along the sequence.However, working with a single image, we cannot recover
structure in saturated regions.

In Fig 8 the technique was applied for removing shading artifacts. For this
problem, the samealgorithm was applied in the log-domain.

5 Discussion

Separatingre
ections from a singleimageis a massively ill-p osedproblem. In this
paper we have focusedon slightly easierproblem in which the usermarks a small
number of gradients as belonging to one of the layers. This is still an ill-p osed
problem and we have useda prior derived from the statistics of natural scenes:
that derivative �lters have sparsedistributions. Weshowedhow to e�cien tly �nd
the most probable decompositions under this prior using linear programming.
Our results show the clear advantage of a technique that is based on natural
scenestatistics rather than simply assuminga Gaussiandistribution.
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Fig. 5. Comparing Laplacian prior(�rst iteration results) with a sparseprior. When a
few gradients are labeled (left) the sparseprior gives noticeably better results. When
more gradients are labeled (righ t), the Laplacian prior results are similar to the sparse
prior. (a-b) labeled input images. (c-d) decomposition with Laplacian prior. (e-f) de-
composition using a sparseprior.

(a) (b) (c) (d) (e)

Fig. 6. (a) A very simple image with two labeled points. (b-c) The Laplacian prior
gives the correct results for this image while the Gaussian prior (c-d) does not. The
Gaussian prior prefers to split edgesinto two low contrast edges.

Since we are using an o�-the-shelf linear programming package, we are not
taking advantage of the spatial properties of the optimization problem. The cur-
rent run time of the linear programming for images of size 240x320 is a few
minutes on a standard PC. We have not performed an extensive comparisonof
linear programming packagesso that with other packagesthe run times may
be signi�cantly faster. We are currently working on deriving speci�c algorithms
for minimizing L 1 cost functions on image derivatives. Since this is a convex



(a) (b)

Fig. 7. Gaussian prior results: (a) results on the secondcolumn of �g4. (b) results on
the secondcolumn of �g5.

(a) (b) (c) (d)

Fig. 8. Removing shading artifacts (a) original image. (b) labeled image. (c-d) decom-
position

problem, local minima are not an issue and so a wide range of iterativ e algo-
rithms may be used.In preliminary experiments, we have found that a multigrid
algorithm can minimize such cost functions signi�cently faster. We are also in-
vestigating using a mixture of Gaussiansrather than a mixture of Laplacians to
describe sparsedistributions. This leads to M steps in which L 2 minimizations
need to be performed, and there are a wide range of e�cien t solvers for such
minimizations.

We are also investigating the use of other features other than derivatives
to describe the statistics of natural images. Our experience shows that when
stronger statistical models are used, we need less labeled points to achieve a
good separation. We hope that using more complex statistical models will still
enableus to perform optimization e�cien tly . This may lead to algorithms that
separatere
ections from a single image, without any user intervention.
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