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When viewed under coherent illumination, scattering materials such as tissue exhibit highly
varying speckle patterns. Despite their noise-like appearance, the temporal and spatial variations
of these speckles, resulting from internal tissue dynamics and/or external perturbation of the
illumination, carry strong statistical information that is highly valuable for tissue analysis. The
full practical applicability of these statistics is still hindered by the difficulty of simulating
these speckles and their statistics. This paper proposes an efficient Monte Carlo framework that
can efficiently sample physically-correct speckles and estimate their covariances. While Monte
Carlo algorithms were originally derived for incoherent illumination, our approach simulates
complex-valued speckle fields. We compare the statistics of our speckle fields against those
produced by an exact numerical wave solver and show a precise agreement, while our simulator
is a few orders of magnitude faster and scales to much larger scenes. We also show that the
simulator predictions accurately align with existing analytical models and simulation strategies,
which currently address various partial settings of the general problem. © 2023 Optical Society
of America under the terms of the OSA Open Access Publishing Agreement
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1. INTRODUCTION1

When a camera images a scattering volume illuminated by coher-2

ent light, captured images are characterized by pseudo-random3

patterns called speckle. Despite their noise- like appearance,4

speckle patterns have strong statistical properties that provide5

rich information about the scattering material that is being im-6

aged. These statistical properties have been studied extensively7

in optics [1–11], and form the basis for many imaging techniques8

in application areas where scattering is important, such as medi-9

cal imaging and remote sensing.10

In the past, speckle statistics has been studied in two dis-11

jointed contexts: spatial and temporal. Temporal speckle statis-12

tics [12, 13] are mostly used for imaging liquid dispersions [14,13

15] or temporally varying blood vessels [16] deep inside tissue,14

in techniques like diffuse correlation spectroscopy [17–22], laser15

speckle contrast imaging [12, 23, 24], and dynamic light scatter-16

ing [25, 26]. The study of these statistics attempts to analyze mo-17

tion in the volume. The idea is based on a set of theoretical results18

relating the temporal variation of speckle intensity to the particle19

(blood-cell) motion speed inside the tissue, and on a diffusion20

relation connecting the speed of Brownian motion to particle21

properties. At the same time, speckles exhibit important spatial22

correlations. For example, speckle images are approximately23

shift-invariant with respect to small perturbations of illumina-24

tion, a property known as the memory effect (ME). This property25

has been exploited in a variety of applications, including seeing26

through a scattering layer and behind corners [27–36], measur-27

ing intrinsic material parameters [37], as well as adaptive-optics28

focusing of light through highly-aberrated materials [10, 11, 38].29

Despite much research on temporal or spatial statistics, there30

is little usage of joint spatio-temporal statistics, in part due to31

limited understanding of such statistics, and due to the lack of32

good simulation tools. While the most accurate way to com-33

pute such statistics would involve exact solutions to the wave34

equations [39–41], such solvers are computationally prohibitive35

and can only handle toy scenes. One popular large-scale ap-36

proach [42] exploits Monte Carlo (MC) algorithms for the sim-37

ulation of positive temporal-only correlations, at a fixed sensor38

https://doi.org/10.1364/OA_License_v1
http://dx.doi.org/10.1364/optica.XX.XXXXXX


Research Article Vol. X, No. X / X 2023 / Optica 2

location and under fixed illumination conditions. However, the39

simulation of spatio-temporal correlations between measure-40

ments at different positions was not addressed.41

This paper offers two main contributions. First, we develop42

MC algorithms for the evaluation of complex spatio-temporal cor-43

relations. Second, beyond computing statistics, we can sam-44

ple complex-valued speckle fields with physically-correct statistics.45

These fields can be thought of as realizations of spatio-temporal46

transmission matrices whose second order statistics are indistin-47

guishable from those produced by an exact solution to the wave48

equation. As we show below, this new ability is highly valuable49

in the design of tissue imaging algorithms, and in particular in50

the training of machine-learning systems [43, 44].51

To this end we build on our recent MC rendering framework52

[45, 46], computing the spatial correlations between speckle fields53

measured at different sensor positions and under varying illu-54

mination conditions. We extend this for the evaluation of spatio-55

temporal correlations. Beyond computing pairwise correlations,56

the approach can realize complex speckle fields with accurate57

covariance statistics.58

We compare our approach against a previous MC toolbox [42]59

for computing temporal-only speckle correlations, and we also60

validate the spatio-temporal correlations against an exact wave61

solver in flatland.62

We demonstrate two possible applications of such spatio-63

temporal correlations. The first application scenario has to do64

with motion tracking. It is usually believed that blood motion is65

a combination of Brownian motion in a random direction and a66

directional flow along the vessel direction. However, the tempo-67

ral speckle literature evaluates mostly the Brownian component.68

While there is evidence that in certain applications the Brown-69

ian component is indeed dominant, there are fewer attempts to70

study application scenarios with dominant directional motion,71

in part due to the difficulty in simulating such correlations. This72

is due to the fact that the directional motion is manifested as a73

spatio-temporal correlation rather than a temporal-only effect,74

since a cell that is imaged at pixel x and time t would be imaged75

at a neighboring spatial pixel x + ∆x at a successive time frame.76

With our approach, we show for the first time how to simulate77

this effect and how to disentangle the directional and Brownian78

motion components.79

In a second application, we revisit a recent empirical study on80

dynamic wavefront shaping [47], where different approaches for81

computing a wavefront correction are compared in a medium82

consisting of a combination of static and dynamic scattering83

layers. It has been suggested that iterative wavefront shaping84

algorithms effectively correct mostly the static aberrations and85

thus they are more stable over time. While the results in [47] are86

based on an experimental setup, our approach can synthesize87

spatio-temporal transmission matrices with the correct statistics.88

With such transmission matrices, we can simulate the setup89

of [47] and re-validate their observation in a simple numerical90

simulation, which can be more easily generalized to a large class91

of scenes and materials.92

Our simulator will be made publicly available on Github.93

2. MODELING SPECKLE STATISTICS94

Setting and notation. We denote three-dimensional vectors (e.g.,95

points o, i, v) with bold letters, and denote unit vectors with a96

circumflex (e.g., directions ω̂, î, v̂). We denote the unit vector97

from y to o as ŷo. We assume the illumination is fully-coherent98

and unpolarized. Our sources and sensors can be either points99

i, v or directions î, v̂. We often use point notation i, v for both100

cases, except where context requires otherwise.101

We consider scattering volumes V ∈ R3 satisfying a few102

common assumptions [48]: First, the average distance between103

scatterers is an order of magnitude larger than the wavelength.104

Second, the locations of scatterers are statistically independent.105

Third, the motions of different scatterers are statistically indepen-106

dent, and their average displacement is an order of magnitude107

smaller than the distance between scatterers. Finally, we ignore108

refraction and reflection events at the interface of volume V .109

Bulk material properties. The optical properties of scattering110

materials can be summarized by a few statistical parameters.111

The extinction coefficient σt of the material governs the density112

of scatterers in the volume. It can be decomposed as σt = σs +113

σa, where the scattering and absorption coefficients σs and σa114

model the portion of energy that is scattered and absorbed upon115

interaction with a scatterer. The mean free path is the average116

distance in the volume that light travels between two scattering117

events, and it can be shown to be inversely proportional to118

the extinction coefficient MFP = 1/σt. The complex scattering119

amplitude function s(cos θ) describes how a field interacts with120

a scatterer: if a scatterer is illuminated from direction î, the121

scattered field u at direction v̂ is proportional to s(î · v̂). The122

phase function is defined as ρ(cos θ) ≡ |s(cos θ)|2.123

Motion parameterization. Scatterers are moving independently124

with displacements following a distribution T (∆t). We model it125

as a Brownian motion with a drift, so that126

∆t = t · U + w
√

2D|t|, (1)

where w is sampled from a 3-dimensional unit normal distribu-127

tion, and the scalar t is the time interval of the displacement. The128

above motion has two components: an isotropic Brownian mo-129

tion with a diffusion coefficient D with the dimensions cm2/s,130

corresponding to fluctuations of the particles in all directions,131

and a mean direction U which encodes the constant velocity132

flow along the vessel direction. The corresponding mean and133

variance of the 3D temporal displacement are134

E [∆t] = t · U, E
[
∥∆t − E [∆t]∥2

]
= 6D|t|. (2)

In thick tissue where the light crosses multiple vessels with135

varying orientations, the flow direction often reduces into an136

isotropic perturbation known as “random motion” [16, 49],137

whose variance scales as a function of t2 rather than as a func-138

tion of t as the Brownian component. For accuracy we chose to139

model this random motion with a mean displacement U, where140

the direction of U is spatially varying (different U vectors in141

different volumetric positions).142

For ease of notation, the derivation below assumes that scat-143

tering volumes are spatially homogeneous, meaning that scat-144

terers are uniformly distributed, or equivalently, that the bulk145

parameters as well as the motion parameters are the same ev-146

erywhere inside a volume. In practice this assumption can be147

easily removed and our implementation does take into account148

heterogeneous spatial variation (and in particular, varying U149

vectors).150

Speckle statistics. We now consider a volume with multiple151

scatterers as in Fig. 1(a): We denote the time-dependent position152

of scatterers in the volume as O(t) = {o1(t), o2(t), . . .}. The posi-153

tion ob(0) of each scatterer at time 0 is sampled independently154
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from other scatterers, from the bulk material density. Then,155

scatterer displacements are sampled independently from T (∆t).156

Scatterer position at time t is:157

ob(t) = ob (0) + ∆tb. (3)

Scatterers are illuminated from a source i, and imaged with158

a sensor v. Knowing the exact scatterer locations at every time159

step, we can solve the wave equation to obtain the complex-160

valued scattered field ui,O
v (t), which typically contains large fluc-161

tuations with a semi-random noise structure known as speckles162

(see flatland speckles in Fig. 1(b,c)). A camera usually only163

measures the intensity of these fields Ii,O
v (t) = |ui,O

v (t)|2.164

To capture speckle statistics, we can begin with the speckle165

mean,166

mi
v(t) = EO(t)

[
ui,O

v (t)
]

. (4)

Assuming scatterer density is stationary, the speckle mean is167

time-invariant and we shorten notation and denote it as mi
v.168

We can similarly define higher-order statistics of speckles. Of169

particular importance will be the speckle covariance,170

Ci1,i2
v1,v2

(t1, t2) = EO(t1,t2)

[
ui1,O

v1
(t1) · ui2,O

v2
(t2)

∗]− mi1
v1
· mi2

v2

∗
,
(5)

where (·)∗ denotes complex conjugation. In this case,171

ui1,O
v1 (t1) , ui2,O

v2 (t2) are two speckle fields generated by the same172

scatterer configuration at two time instances. The scatterer in-173

stantiations are illuminated by two incident waves from i1, i2,174

and measured at two sensors v1, v2.175

As we discuss in supplement, the speckle mean can be176

computed using a closed-form expression; in fact, because the177

speckle mean is the aggregate of complex numbers of essentially178

randomly-varying phase, it is typically zero (unless ballistic light179

is present). Therefore, when characterizing speckle statistics, the180

most challenging part is computing the covariance.181

Note that our goal in this paper is to compute covariances
between complex speckle fields. Such covariances can be easily
translated to covariances of positive intensity images. Assuming
the speckles follow a zero-mean multi-variate Gaussian distribu-
tion, the Siegert relation can be used:

EO(t1,t2)

[
Ii1,O
v1 (t1)· Ii2,O

v2 (t2)
]
− EO(t1)

[
Ii1,O
v1 (t1)

]
· EO(t2)

[
Ii2,O
v2 (t2)

]
= |Ci1,i2

v1,v2
(t1, t2) |2. (6)

Computing speckle statistics. A straightforward approach for
computing the speckle covariance is to sample N different scat-
terer configurations O1(t), . . . ON(t), solve the wave equation for
each configuration at each time instance , and then compute the
empirical covariance:

Ci1,i2
v1,v2

(t1, t2) ≈
1
N

N

∑
n=1

ui1,On

v1
(t1) · ui2,On

v2
(t2)

∗ − mi1
v1
· mi2

v2

∗
. (7)

Fig. 1(d-f) shows speckle covariances evaluated with this pro-182

cedure. However, solving the wave equation is only tractable183

for a very small number of particles (a few thousands), and this184

computational cost is further exacerbated by the need to repeat185

this process multiple times. Our goal is to devise Monte Carlo186

algorithms that can compute the same speckle covariance much187

more efficiently.188
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Fig. 1. Speckle correlations: (a)Flatland geometry illustration:
we consider a volume with moving scatterers, under two illu-
mination directions, and measure the resulting field on a planar
sensor. (b-c) Given a statistical description of bulk material pa-
rameters, we can sample multiple scatterer instantiations, and
(b,c) illustrate two such instantiations. Below each scatterer in-
stantiation we plot the speckle field obtained by solving the
wave equation under two incident illuminations and at two time
instances. (d-f) illustrate some correlations in the data. (d) Spa-

tial covariance c(v1, v2) = E
[
ui1

v1 (to) · ui2
v2 (to)

∗]
, note the strong

correlation along a diagonal shifted from the center. This is the
memory effect correlation, as speckles generated under nearby
illuminations are correlated but shifted. (e) Temporal-only co-
variance for a fixed illumination io and a fixed sensor point

vo: c(t1, t2) = E
[
uio

vo (t1) · uio
vo (t2)

∗]
. At the same time instance

the speckle fields are most similar, which is manifested by a
strong diagonal in the correlation matrix. As the time difference
increases, the speckles start to change. (f) Spatio- temporal co-
variance, where one wave is fixed and the other varies at both
space and time: c(v, t) = E

[
uio

vo (to) · uio
v (t)

∗]
. The correlation is

strongest at the central spot t = to, v = vo where the two waves
are identical, but it has a strong elongated diagonal correspond-
ing to a non-zero constant velocity component U in the scatterer
motion.

3. PATH-INTEGRAL FORMULATION189

The basis for a Monte Carlo evaluation of speckle covariance190

is expressing it as an integral of paths through the scattering191

volume, and then approximating this integral by importance-192

sampling many such paths, summing their contributions. These193

path integrals can be justified by the Twersky approxima-194

tion [50, 51] and the correlation-transfer equation (CTE) [52],195

which extends the well known radiative-transfer equation (RTE)196

describing intensity propagation in a scattering media, to de-197

scribe the covariance of complex fields. To simplify the flow of198
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Fig. 2. Path pairs for speckle covariance: (a) A naive approach for computing speckle covariance should integrate path contributions
over all pairs of paths from i1 to v1 and from i2 to v2. However most such paths have random phases and do not contribute to
the correlation. (b) Covariance estimate can be reduced by considering only path pairs sharing all their nodes. Note that if we are
computing correlations at two different time instances t1, t2, the path x⃗1 traces the position of the scatterer at time instance t1 and the
path x⃗2 traces its position at time t2. (c) We can further simplify the covariance estimate and consider only the mean paths. Around
each node in the path we analytically integrate the contribution of all possible motions.

the main text we provide the full derivation in supplement and199

only summarize here the main results.200

For ease of notation, w.l.o.g we consider covariances between201

two time instances of the form t1 = −t/2, t2 = t/2. We denote202

the mean particle position by203

ō =
1
2
(o (t1) + o (t2)) , (8)

so that o (t1) = ō − 1/2∆t, o (t2) = ō + 1/2∆t.204

We start by defining a mean path through the volume as an205

ordered sequence206

x⃗s = ō1→. . .→ōB, ō1, . . . , ōB ∈ V , (9)

where B ∈ {1, . . . , ∞} and we consider a pair of paths from î1207

to v1 and from î2 to v2 that share all their intermediate nodes,208

and differ only in the start/end segments connecting them to209

the source/sensor, see Fig. 2(c):210

x⃗1 = i1→⃗xs→v1, x⃗2 = i2→⃗xs→v2, (10)

Our main result, proven in supplementary, is in showing that211

the covariance can be expressed as the integral over the space of212

such joint path pairs213

Ci1,i2
v1,v2

(
- t

2 , t
2
)
=
∫

P
c⃗xs
(
- t

2 , t
2
)

d⃗xs, (11)

where each path has a contribution that can be expressed as a214

Markovian product of its segments215

c⃗xs
(
- t

2 , t
2
)
=

B

∏
b=0

f I
b . (12)

The contribution of central segments is identical to the contribu-
tion considered by classical Monte Carlo algorithms for evaluat-
ing temporal-only correlations [42]:

f I
b =γ( ̂ōb, ōb+1 − ̂ōb−1, ōb) · ρ( ¯̂ob−1ōb · ¯̂obōb+1) (13)

·α̃(ōb, ōb+1)
2 · σs(ōb+1) for 2 ≤ b ≤ B − 1,

and the formula for the start end/segments (the b = 1, b = B
cases) is provided in supplement. Here ρ(·) is the phase function
of the material denoting the probability of turning from one

direction to the next one upon interacting with a scatterer, and α̃
is the exponential attenuation along paths in the volume times its
redial decay: α̃(o1, o2) = 1/|o2−o1| · exp(− 1

2 σt|o2 − o1|). Finally

γ( ¯̂obōb+1 − ¯̂ob−1ōb) =

e−k2D|t|∥ ¯̂ob ōb+1− ¯̂ob−1 ōb∥2+ikt( ¯̂ob ōb+1− ¯̂ob−1 ōb)·U, (14)

is the integral of phase variations over all possible motions that216

the node ōb could have taken. It can be seen that γ is lower217

when the time difference |t| or the diffusion coefficient D, and218

thus when larger motion is present the correlation decays. This219

term is similar to the momentum accumulated by common MC220

algorithms computing temporal-only correlations [42, 49]. Intu-221

itively this term is smaller when the diffusion coefficient D is222

larger, since for faster motion the phase variations of the two223

paths are larger and correlation is lower.224

The main difference between our derivation and the classi-225

cal temporal-only correlation is that we evaluate covariances226

between two different source-sensor pairs, and therefore the con-227

tribution f I
b of the first/end segments is different. To keep the228

manuscript concise the exact formula is provided in supplement,229

however, these are complex-valued terms taking into account the230

phase accumulated along the start/end segments of the paths.231

For the special case where the two illumination and viewing232

directions are identical i1 = i2, v1 = v2, the contribution of the233

start/end segments in our derivation collapse to the contribution234

of the central segments in Eq. (13).235

In Sec. 4 below we use Monte Carlo path sampling to approx-236

imate the covariance integral of Eq. (11). The full justification237

of this result is provided in supplement. However it can be238

justified by the two insights illustrated in Fig. 2(a-b).239

Naively, to define the field propagating from i to v at any240

time instance one needs to sum the throughput contributions241

over many paths of the form242

i→⃗xs (t)→v. (15)

The throughput is a complex number with a phase ξ propor-243

tional to the path length ℓ(⃗x):244

ξ (⃗x(t)) = eikℓ(⃗x), (16)

where k = 2π/λ is the wavenumber at wavelength λ.245
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As a result, the covariance between two speckle fields can be246

expressed as an integral over many pairs of paths: x⃗1 from i1 to247

v1 at time −t/2; and path x⃗2 from i2 to v2 at time t/2. Each path248

has a contribution whose phase is proportional to the difference249

between the two path lengths:250

c⃗x1 ,⃗x2

(
- t

2 , t
2
)

∝ ξ (⃗x1 (- t
2
)
) · ξ (⃗x2 ( t

2
)
)∗. (17)

If the two paths are sampled independently, they have very251

different lengths, and hence their contributions would have252

rather random phases. As complex numbers with random phase253

average to zero, such pairs do not contribute to the covariance.254

The first insight in simplifying the covariance path-integral is a255

central result from the literature [50, 53], detailed in supplement,256

stating that the covariance integral can be computed by only257

considering joint pairs of paths that share their central segments258

x⃗1 (- t
2
)
= i1→⃗xs−1/2∆⃗t→v1, x⃗2 ( t

2
)
= i2→⃗xs+1/2∆⃗t→v2, (18)

where we denote the displacement sequence of the path as259

∆⃗t = ∆t1, . . . , ∆tB. Note that in the above equation we use260

the same central sequence, but at two different time instances.261

Such joint path sequences are illustrated in Fig. 2(b). With this262

restriction the phases of the two paths are more consistent since263

their central segment has roughly the same length. However, as264

the particles are moving and the paths are traced in two different265

time instances, their length can still vary.266

By considering the space sub-paths x⃗s and displacement267

paths ∆⃗t, we can evaluate the covariance as the integral of con-268

tributions from joint path pairs:269

Ci1,i2
v1,v2

(
- t

2 , t
2
)
=
∫∫

c⃗xs ,∆⃗t

(
- t

2 , t
2
)

d∆⃗t d⃗xs. (19)

Unfortunately, the path integral in Eq. (19) cannot be evaluated270

in closed-form. The second central insight in the simplification271

of the path-integral is as follows. As the displacement of each272

node is sampled independently from a Gaussian distribution,273

at least the integration over displacements can be evaluated in274

closed-form. In supplement we derive the following analytical275

expression for the path contribution:276

c⃗xs
(
- t

2 , t
2
)
=
∫

c⃗xs ,∆⃗t

(
- t

2 , t
2
)

d∆⃗t =
B

∏
b=0

f I
b , (20)

with the f I
b defined in Eq. (13). This implies that we can evaluate277

the covariance by only integrating static paths, as illustrated278

in Fig. 2(c) and outlined in the beginning of this section using279

Eq. (11). The phase variations resulting from particle motion280

around each node, are integrated into the momentum γ(·).281

4. ESTIMATING SPATIO-TEMPORAL SPECKLE COVARI-282

ANCES283

Our goal is to compute the spatio-temporal covariance of Eq. (11).284

Given the absence of analytical solution, we want to approximate285

the integral using importance sampling. For that we sample N286

paths from a distribution q(⃗xs) of choice, and approximate the287

covariance as288

Ci1,i2
v1,v2

(
- t

2 , t
2
)
≈ 1

N

N

∑
n=1

c⃗xs,n
(
- t

2 , t
2
)

q(⃗xs,n)
. (21)

While any distribution q(⃗xs) would provide an unbiased esti-289

mate in Eq. (21), the variance of this estimator can be largely290

reduced using importance sampling rather than naive uniform291

sampling. The estimation largely improves when we can define292

a sampling strategy for which q is a good approximation of c⃗xs,n .293

We review below two sampling strategies for the temporal-only294

case, which are defined by different choices of q. We then adapt295

them to the case of spatio-temporal covariance.296

Computing temporal-only covariance. Previous approaches com-297

pute temporal correlation alone without spatial variation of298

the source and/or sensor position. In this case i1 = i2 and299

v1 = v2, and the paths x⃗1, x⃗2 in the derivation of the pre-300

vious section share all their segments. In particular, the for-301

mula for f I
b (Eq. (13)) is equivalent for all b values, including302

the first and end segments. We also note that apart from the303

γ( ̂ōb, ōb+1 − ̂ōb−1, ōb) component, the terms f I
b essentially de-304

fine a Markovian path distribution. Thus one way to evaluate305

Eq. (21) is to use a path-tracing algorithm, sampling N paths x⃗s,n
306

in the following scheme:307

1. Sample the first ray ω̂0 emerging from i.308

2. While not hitting the volume boundary, repeat for every suc-309

cessive segment:310

2.1 Sample the next point ōb from a distribution311

q(ōb) = α̃(ōb−1, ōb)
2 · σs(ōb). (22)

2.2 Sample the next direction ω̂b from the distribution312

q(ω̂b|ōb) = ρ(ω̂b−1 · ω̂b). (23)

3. If the last node on path ōB is on sensor v, update using313

Eq. (20)314

Ci,i
v,v
(
- t

2 , t
2
)
+=

1
N

c⃗xs,n
(
- t

2 , t
2
)

q(⃗xs,n)
. (24)

Overall a path in this approach is sampled from a distribution315

q(⃗xs,n) = q(ω̂0|ō0)
B

∏
b=1

q(ōb)q(ω̂b|ōb). (25)

The contribution of the path c⃗xs,n is non zero, only if it reaches316

the area of the sensor v, for such cases we note that the ratio317

f I
b /(q(ōb)q(ω̂b|ōb)) is only the γ(·) terms. Thus the estimate318

can be expressed as319

Ci,i
v,v
(
- t

2 , t
2
)
≈ 1

N ∑
n|⃗xs,n

ends in v

B

∏
b=1

γ( ¯̂on
b ōn

b+1 − ¯̂on
b−1ōn

b ). (26)

Below, we refer to this approach as basic path-tracing. Its main320

drawback is that if the sensor area is small, the vast majority of321

paths do not reach the sensor and a lot of computation power322

is wasted without contributing to the estimate of Eq. (26), see323

Fig. 3(a).324

A more efficient sampling strategy that is commonly used325

in computer graphics is based on path tracing with next-event326

estimation [54–56], or variance reduction. Rather than waiting327

for the path to hit the sensor, we explicitly connect the last node328

to the sensor. As we sample only the first B segments, unlike329

Eq. (25), the path sampling probability does not include the last330

segment and can be expressed as331

q(⃗xs,n) = q(ōB)q(ω̂0|ō0)
B−1

∏
b=1

q(ōb)q(ω̂b|ōb). (27)
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(a) Path tracing w/o next-event (b) Path tracing with next-event (c) Pairwise next event estimation

i v i v 1i 1v2v2i

Fig. 3. Path tracing strategies: (a) Basic path tracing samples paths from a Markovian path distribution following Eq. (25). Most paths
do not end in the sensor, and they are discarded. (In the figure, only purple curve is contributing and all blue ones are discarded) (b) In
a next-event estimation approach all paths contribute to the estimate, and moreover, every node on the path is explicitly connected
to the sensor. We weight each connection by the probability that a path-segment leaving that node will actually hit the sensor. (c)
Next-event estimation of path pairs: we only sample the central segment of the path, and connect it to two sources and two sensors.
The covariance estimate sums the throughput contributed from such connections.

As a result, the covariance estimate can be expressed as332

Ci,i
v,v
(
- t

2 , t
2
)
≈ 1

N ∑
n

f I,n
B ·

B−1

∏
b=1

γ( ¯̂on
b ōn

b+1 − ¯̂on
b−1ōn

b ). (28)

Since we do not sample the last segment, the ratio333

c⃗xs,n
(
- t

2 , t
2
)

q(⃗xs,n)
(29)

leaves the term f I,n
B in Eq. (28). Note that effectively, the for-334

mula for this term provided in supplement is the probability335

that when sampling a path leaving ōB, we will actually sample336

the segment connecting ōB to the sensor. The main advantage337

of Eq. (27) over the basic path-tracing approach in Eq. (25) is338

that all paths contribute to the estimate, and estimation noise is339

considerably reduced. Moreover, since all segments on the path340

are sampled using importance sampling, we can reuse them and341

connect to the sensor from every node on the path, not only342

when it exits the volume, improving path utility, see Fig. 3(b).343

In supplement we evaluate path tracing with and without next344

event estimation. We show that for small sensor sizes, next-345

event estimation provides a very significant acceleration. In346

practice MC simulations for diffused correlation spectroscopy347

applications often use wide sensors, and for such, the next-event348

estimation does not provide additional acceleration. However,349

as we see below, to extend path-tracing algorithms to the case350

of spatio-temporal covariances, we need to exploit next-event351

estimation ideas.352

Computing spatio-temporal covariance. To compute spatio-353

temporal covariance we want to consider two paths that can354

start and/or end at two different points. In this case the term355

f I
b has a different structure at the first and last segments of the356

path (detailed in supplement), and this expression does not lend357

itself to simple sampling. As we have seen above, using the next358

event estimation strategy, there is no need to sample the last359

segment of the path, but rather include f I
B in the accumulated360

contribution. We can use a similar strategy for the first segment.361

Rather than starting from the source and sampling the length362

of the first segment, we directly sample the first node ō1 and363

the direction ω̂1 of the segment ̂̄o1, ō2 from some distribution q1364

of choice. Subsequent segments are sampled as before. As we365

do not sample the first segment, we explicitly connect the first366

node to the source as in Fig. 3(c), and add to the summation its367

throughput f I
0 :368

Ci1,i2
v1,v2

(
- t

2 , t
2
)
≈ 1

N ∑
n

f I,n
0 · f I,n

B
q1(ōn

1 , ω̂n
1 )

·
B−1

∏
b=1

γ( ¯̂on
b ōn

b+1− ¯̂on
b−1ōn

b ), (30)

The complete path sampling algorithm is provided in supple-369

ment, along with an extension for heterogeneous, spatially vary-370

ing volumes.371

There are multiple ways in which the first node can be sam-372

pled, and a good one may depend on the imaging geometry373

of interest, see discussion in [46]. The simplest strategy is to374

sample the first node uniformly. Alternatively we can sample375

it in probability 0.5 from |α̃(i1, ō1)|2 and in probability 0.5 from376

|α̃(i2, ō1)|2.377

5. SAMPLING A SPECKLE FIELD378

In this section our goal is to sample a speckle field with the cor-379

rect spatio-temporal statistics. For that we assume we are given380

a list of J sources i1, . . . , iJ , sensors v1, . . . , vJ and time indices381

t1, . . . , tJ , and wish to sample J complex numbers ui1
v1 , . . . , uiJ

vJ382

that have the same covariance as computed in the previous383

section. That is, for every j, k,384

E
[
u

ij
vj · uik

vk

∗]− E
[
u

ij
vj

]
· E
[
uik

vk

]∗
= C

ij ,ik
vj ,vk (tj, tk). (31)

A straightforward way to do that would be to use the algo-385

rithm of the previous section to compute all elements of the386

J × J covariance matrix, and then sample our fields as entries387

of a multi-variate Gaussian distribution. To reduce the compu-388

tational complexity, we suggest that we can use the subpaths389

sampled in the Monte-Carlo process to directly generate fields390

with the desired covariance.391

We follow the strategy of the previous section and sample392

N subpaths x⃗s,n. For each subpath we sample a sequence of393

temporal displacements ∆⃗n
tj

from T . We define N × J paths by394

concatenating the same sub-paths to all sources and sensors, as395

illustrated in Fig. 4.396

x⃗n
j (tj) = ij→⃗xs,n + ∆⃗n

tj
→vj. (32)

We define the sampled fields as the sum of contributions from397

these paths. Each path has a phase proportional to its length and398

we also need to take into account the attenuation and scattering399
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Fig. 4. Sampling speckle fields: We sample subpaths x⃗s,n. To
achieve a field with consistent entries, each subpath is connected
to all source and sensors.

amplitude function at the first and last segments, as those are400

not sampled by q. This leads to the fields401

u
ij
vj =

1
N

N

∑
n=1

u
n,ij
vj , (33)

with

u
n,ij
vj =

√
σs(ōn

1 )

q1(ōn
1 , ω̂n

1 )
s(îj, ōn

1 · ̂̄on
1 , ōn

2 ) · s( ̂ōn
B−1, ōn

B ·̂̄on
B, vj)

· α̃(ij, ōn
1 ) · α̃(ōn

B, vj)
B

∏
b=0

ξ(on
b (tj)→on

b+1(tj)). (34)

A detailed pseudo-code for the field-sampling algorithm is pro-402

vided in supplement. We emphasize that while the central seg-403

ment x⃗s,n is shared by all paths x⃗n
j (tj), the lengths of the start404

and end segments, connecting the first and last shared node405

on
1 , on

B to different sources and sensors are different, and hence406

for different entries j of the field the phases of u
n,ij
vj are different.407

However, the fact that the same central segments are used to408

render all entries of the vector u
n,ij
vj leads to consistent speckles.409

For example, if sensors v1, v2 are located next to each other, the410

phases of the segments ξ(ōn
B→v1) and ξ(ōn

B→v2) are similar411

and a smooth speckle grain is generated, as we visualize in the412

results section below.413

In supplement we formally prove that the fields sampled with414

this strategy have the desired covariance of Eq. (31). Intuitively,415

this results from the fact that different paths are independent416

and for each path the expectation of its contribution to the pairs417

(ij, vj), (ik, vk) is the same as the pairwise path contribution we418

sum in Eq. (28). We also validate this equivalence numerically419

in the following section.420

We emphasize that the fields generated by the algorithm de-421

scribed in this section do not correspond to any physical particle422

instantiations as simulated in Fig. 1. Yet, they have the same sec-423

ond order statistics as fields obtained from a particle instantiation424

followed by an exact solution to the wave equation. However,425

the fields sampled with our algorithm do not contain any higher426

order statistics, such as the C2 and C3 terms in [5]. In supple-427

ment we also add to the sampled fields the speckle mean (the428

ballistic term).429
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Fig. 5. Validation of temporal-only correlations: we compare our
algorithm against the MCX simulator [42], which is designed
to compute temporal-only speckle correlations. Our simulator
agrees accurately with MCX (dashed MCX curves are barely
visible), both when used to compute covariance directly and
when used to sample speckle fields. For large source-sensor
separation the correlation decay can also be matched with an
analytical formula. (a) Illustrating the simulated geometry and
medium dimensions. The simulation uses an MFP of 0.1 cm,
λ = 500 nm, isotropic scattering, and the dynamic areas occupy
9% of the overall volume. (b) Evaluating two source-sensor
separations δ using D = 10−7 cm2/s and (c) evaluates two
diffusion coefficient values using δ = 2 cm.

6. RESULTS430

A. Validation431

Temporal correlations. In Fig. 5 we start by validating our ap-432

proach on 3D scenes using the publicly available MCX pack-433

age [42]. This simulator is aimed at computing temporal-434

only correlations. In Fig. 5 we plot the temporal-only corre-435

lation Ci,i
v,v(0, t) as a function of t. The simulation uses point436

source/sensors on the volume boundary separated by distance437

δ. In all cases we compute the correlation directly using the438

covariance MC sampling algorithm of Sec. 4. We also sample439

speckle fields using the algorithm of Sec. 5 and compute the440

temporal correlations of these fields. All three approaches match441

precisely. We also compare the prediction against the theoretical442

prediction of correlation decay [57]. This prediction holds only443

for large source-sensor separations, stating that444

C(t) =
3

4πlt

 exp
(
− k·r1

lt

√
6Dt

)
r1

−
exp

(
− k·r2

lt

√
6Dt

)
r2

 (35)

where lt is the transport MFP, r1 =
√

δ2 + l2
t , and r2 =445 √

δ2 + (2.33 · lt)
2 (ignoring refraction at surface interface).446

Spatial correlations. In Fig. 6 we simulate a static scene and plot447

spatial-only memory effect correlations of the form Cî,î+∆θ

v̂,v̂+∆θ
(0, 0).448

That is, we plot the correlation between a field uî
v̂ illuminated by449

a directional source î and a field illuminated by a tilted source450

at direction î + ∆θ . These memory-effect correlations decay as451

a function of the tilt angle ∆θ . For thick volumes where the452

diffusion approximation applies, the correlation decay can be453

predicted by analytic formulas, known as the C1 term in [5].454

In Fig. 6 we plot such correlations for media of two different455

thicknesses. At all cases we keep the mean free path fixed at456

0.3 cm and vary the anisotropy parameter g of the phase function457

(so that while mean free path is fixed, the transport mean free458
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Fig. 6. Spatial-only memory effect correlation between the
speckle fields generated from a sample under two directional
illuminations, plotted as a function of the tilt ∆θ between the illu-
mination directions. We plot such correlations for media of two
different thicknesses. We keep the mean free path fixed at 0.3 cm
and vary the anisotropy parameter g of the phase function (so
that while mean free path is fixed, the transport mean free path
varies). For the thinner volume our correlation decay agrees
with the theoretical C1 prediction at g = 0, but differs from it at
larger g values as the diffusion limit is not yet achieved. For the
thicker sample the diffusion approximation is also valid with
g = 0.9. The simulation uses λ = 500 nm.

path varies). For the thinner volume our correlation decay agrees459

with theoretical prediction at g = 0, but differs from it at larger460

g values as the diffusion limit is not yet achieved. For the thicker461

sample the diffusion approximation is also valid with g = 0.9.462

Spatio-temporal correlations. In Fig. 7 we test the accuracy of463

the spatio-temporal correlations computed by our algorithm.464

As no Monte Carlo simulator is available we compare against465

statistics evaluated with an exact wave-solvers [39]. For that we466

sample many scatterer instantiations as in Fig. 1, solve the wave467

equation exactly using a numerical solver [39], and compute the468

empirical correlations as in Eq. (7). We restrict the comparison to469

flatland as the solver [39] only supports flatland equations. We470

simulate three different types of scatterer motions, illustrated471

in Fig. 7(d-f). The first case is Brownian only, the second case is472

a motion combining both a Brownian and a linear component,473

and finally we simulate a purely linear motion. In Fig. 7(a) we474

plot correlations of the form475

c(∆x, t) ≡ Ci,i
v,v+∆x

(
- t

2 , t
2
)
= E

[
ui

v
(
- t

2
)
· ui

v+∆x

( t
2
)∗]

. (36)

The first row of each correlation image corresponds to the ∆x = 0476

case, which is the usual temporal-only correlation. As can be477

seen, there are also other correlations in the data which depend478

on the spatial positions.479

In particular, note that if we have a purely linear motion so480

that for all nodes on a path ∆tb = tU, and we also select i2 − i1 =481

v2 − v1 = tU, i.e. the illumination and viewing directions are482

“tracking” the particles and are shifted by the exact same amount,483

then both paths have the exact same length and the correlation484

should be high. Indeed, when the motion includes a linear485

component we see a dominant diagonal in the correlation matrix.486

This corresponds to a situation where the displacement of the487

sensor point tracks the motion of the scatterers. In the simulation488

of Fig. 7(a) the illumination is fixed. In Fig. 7(b) we repeat the489

experiment, this time when the illumination is also shifting in a490

way that matches the scatterer velocity,491

c(∆x, t) ≡ Ci,i+tU
v,v+∆x

(
- t

2 , t
2
)
= E

[
ui

v
(
- t

2
)
· ui+tU

v+∆x

( t
2
)∗]

. (37)

With this tracking configuration the correlation along the diago-492

nal is even stronger. Finally, in Fig. 7(c) we repeat the simulation493

using directional illumination. This saves the need of moving494

the source, and strong correlations are present under a fixed495

illumination.496

For all evaluations in Fig. 7 the correlations produced by our497

MC simulator match precisely those computed with the exact498

wave solver, yet our simulator is several orders of magnitude499

faster and scales to much larger scenes. We also demonstrate500

that the correlations of fields sampled by the algorithm of Sec. 5501

match with the direct covariance evaluation of Sec. 4.502

B. Sampling speckle images503

Fig. 8 demonstrates speckle images, sampled using our field504

sampling algorithm described in Sec. 5. Unlike the toy scene of505

the previous subsection, this sampling algorithm is implemented506

using a realistic 3D scene.507

While these are synthetic images they demonstrate physically508

consistent correlations. For example, in Fig. 8(b-d), as we tilt509

the illumination direction, the resulting speckle patterns are cor-510

related shifted versions of each other. Also, in Fig. 8(d-f), the511

simulated particle motion includes a linear component and a512

Brownian component, and indeed when we fix the illumination513

and visualize the speckle variation over time, we can also see514

how the pattern is shifting. In supplement we demonstrate addi-515

tional speckle images, sampled with a variety of medium param-516

eters: changing the MFP, changing the phase function, changing517

the diffusion coefficient, and changing the linear component. In518

Fig. 8(g-k) we compute the covariances of the sampled fields519

and compare them with a direct evaluation of the covariance520

using the algorithm of Sec. 4, showing a precise match. This521

validates our claim that the field sampling algorithm produces522

fields with desired covariances. The image simulation includes523

blurring by the imaging optics following the algorithm of [46],524

using a numerical aperture of 0.5. As demonstrated below, this525

algorithm can be used to sample spatio-temporal transmission526

matrices with physically correct statistics.527

C. Application: separating diffused and linear motion compo-528

nents529

One important application of measuring temporal correlations530

is that it can be used to extract information about particle mo-531

tion. The first approach is to fit the temporal-only correlation532

formula of Eq. (35) with a parametric model that will allow the533

estimation of the diffusion coefficient D. However, this formula534

only describes the correlation as a function of D, and in many535

contexts [16] there is interest in recovering the flow component536

U as well. One way to approach this is with various extended537

formulas [26, 49] that describe the temporal-only correlation as538

a parametric function that depends on two parameters corre-539

sponding to both D and U. However, as the correlation curve540

is noisy for large temporal displacements, this approach is not541

robust.542

Alternatively, by exploiting spatio-temporal correlations, we543

can obtain a richer description of the motion and separate the544

Brownian (diffused) and linear component. One useful form of545

spatio-temporal correlation is tracking [58, 59], and our spatio-546

temporal simulator can help in the design of such systems. To547

understand tracking, we first note that the linear component548

U can be extracted simply by examining speckle images (e.g.549

Fig. 8) and computing the shift at which correlation is maxi-550

mized. Given U we can extract D by computing the temporal551
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Fig. 7. Spatio-temporal validation: we validate the spatio-temporal covariances predicted by our covariance and field sampling
algorithms (Secs. 4 and 5) against covariances computed with an exact wave solver, using Eq. (7). All three approaches produce the
exact same covariances. (a) plot spatio-temporal correlations for static illumination, as a function of the displacment between the

sensors and the time difference c(∆x, t) = E
[
ui

v
(
- t

2
)
· ui

v+∆x

( t
2
)∗]. In (b) we also shift the illumination source to track particle motion,

demonstrating an even higher correlation. This evaluates c(∆x, t) = E
[
ui

v
(
- t

2
)
· ui+∆x

v+∆x

( t
2
)∗]

. Finally in (c) we simulate correlations
under directional illumination, which can detect strong correlations without moving the light source. We simulate three motion types
illustrated in (d-f): Brownian only motion, mixture of Brownian and linear motion as well as a linear only motion. For fully linear
motion, strong spatio-temporal correlations can be detected over long time instances. The simulation uses an homogeneous MFP=
40λ, D = 0.015λ2/s, U = 1λ/s, ∆x ranging from 0 to 2λ, and t ranging from 0 to 2s.

correlation of a tracking system, when the illumination and sen-552

sor point are shifting with the same velocity as the particles. To553

see this, note that in a standard temporal-only correlation we554

would measure:555

cno tracking(t) = E
[
ui

v(0) · ui
v (t)

∗]
, (38)

and in a tracking system we measure556

ctrack(t) = E
[
ui

v(0) · ui+tU
v+tU (t)

∗]
. (39)

If both the start and end points as well as all nodes on the path557

are shifted by tU, the path length is invariant to this shift and is558

only influenced by the isotropic D component. To demonstrate559

this, in Fig. 9 we simulated temporal correlations in a moving560

volume, whose motion includes both U and D components. We561

compare the temporal only (no-tracking) correlation curve of562

this volume to the temporal-only correlation simulated using563

the same D but U = 0. We see that these two curves are very564

different and thus, in the presence of a U component the decay565

of the curve cannot be used to extract D. In contrast, the tracking566

curve in the configuration with U matches precisely the curve of567

the U = 0 simulation. Thus tracking undoes the influence of the568

linear flow and allows us to estimate the diffusion coefficient D569

by fitting the temporal correlation curve.570

D. Dynamic wavefront shaping571

Wavefront shaping algorithms [38, 60, 61] attempt to overcome572

tissue scattering and find modulated illumination, which is aber-573

rated in a way that is conjugate to the tissue aberration. When574

propagating through a scattering medium, the two aberrations575

should cancel each other and all light energy is focused into576

a sharp spot. Despite the large potential of wavefront shap-577

ing ideas in overcoming tissue scattering, every tissue sample578

would require its own unique modulation, and the estimation579

of such a modulation is a time consuming optimization. This is580

particularly challenging with dynamic samples as the modula-581

tion should rapidly adapt to the change in the tissue. Recently582

Blochet et al. [47] have experimentally tested the operation of583

wavefront shaping algorithms in mediums that contain a mix-584

ture of static and dynamic parts. They arrive at the interesting585

observation that iterative wavefront shaping algorithms, e.g. in586

an Hadamard basis [62], tend to estimate modulations that adapt587

to the static part of the volume and hence they are more robust588

to temporal variations. The authors explain this by the fact that589

the modulation estimation algorithm relies on iterations that590

project a modulation estimate onto the scattering medium and591

re-update the modulation based on the intensity measured at the592

desired focal spot. Due to the iterative nature of this algorithm,593

the dynamic part that is changing between measurements is594
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Fig. 8. Sampling speckle images: we use the algorithm of Sec. 5 to sample speckle images with consistent spatio-temporal variations.
(a) imaging setup. (b-d) Three speckle images under different illumination directions. Note how the speckles shift with illumination
angle, demonstrating memory effect correlations. (d-f) temporal variation of the speckle pattern for a fixed illumination. Again, due
to the linear component, the speckle patterns are shifting. In (g-k) we compute the covariances of the sampled fields and compare
them with a direct evaluation of the covariance using the algorithm of Sec. 4 showing that our sampled fields follow the desired
covariances. In our simulation the volume is illuminated by a plane wave starting at î1 = 0° and tilting at angular intervals of 0.007°.
The simulated motion includes a mixture of linear and Brownian components with Ux = 25 cm/s, D = 2 × 10−8 cm2/s. Temporal
images are sampled at intervals of 25 µs. We use MFP = 250 µm and isotropic scattering. Images are simulated with a 0.5 NA.

manifested as noise to the optimization, and mostly the static595

part is fitted. The observation of Blochet et al. [47] is based on596

experimental validation, which is limited to a particular setup.597

With our simulation we can obtain the same results numerically598

and test them over a wide range of imaging and material pa-599

rameters. To this end we exploit the fact that we can sample600

physically-consistent speckle fields as a function of illumination,601

spatial sensing point and time, which is effectively the sampling602

of a spatio-temporal transmission matrix.603

The setup of our simulation is illustrated in Fig. 10(a). A co-604

herent wavefront is modulated by an SLM with 1024 modes. A605

camera is located at the back side of the sample and can monitor606

the amount of energy at the desired focal spot, as well as its tem-607

poral variation. We record the intensity IFocus at one pixel of the608

validation camera for 2 seconds and use these measurements to609

update the SLM modulation following the algorithm described610

by [63]. After 2 seconds, we stop to update the SLM and record611

the resulting intensity IFocus(t) for additional 4 seconds. We also612

record the native temporal intensity variations ISpeckle(t) at the613

same pixel for 4 seconds without applying any SLM modulation.614

We compute the temporal intensity correlation as evaluated by615

[47]:616

g2(t) =
Eτ [I (τ) · I (t + τ)]

Eτ [I (τ)]2
. (40)

We compute this temporal correlation for both focus and speckle617

intensities. To reduce noise we average the correlations of 100618

different transmission matrix realizations. We demonstrate in619

Fig. 10(b-c) some of these correlations. As predicted by [47], the620

intensity measured after a focusing modulation is computed,621

is more stable compared to the native speckle variation in an622

unmodulated setting, and the decay of the correlation as a func-623

tion of time is lower. This observation is consistent for different624

motion speeds and different MFP densities. As also observed by625

[47], when the scatterers density in the dynamic part increases,626

this layer induces more scattering and hence the decay of the627

correlation is faster even after we find a focusing modulation.628

To analyze the decay analytically, we follow [47] and fit629

the normalized speckle temporal covariance with a paramet-630

ric model of the form631

g2(t) = 1 + w |g1(t)|2 , (41)
632

|g1(t)|2 ≈ exp
(
−2t

Γ

)
·
(

1 + t2 ·
σ2

Γ
2

)2

, (42)
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(a) (b) D = 2 × 10−7 cm2/s (c) D = 10−6 cm2/s
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Fig. 9. Separating motion components. We demonstrate the
temporal decay in correlation for a static source and sensor,
compared with the case where they are both shifting to track
the linear part of the motion velocity. Without tracking the
correlation decay mixes both a Brownian and a linear motion
components. When tracking is used, the remaining correlation is
only a function of the Brownian component. It precisely matches
the correlation observed in a volume with the same D param-
eter and no linear term (U = 0). The simulation uses isotropic
scattering, MFP = 0.1 cm, λ = 500 nm, a linear motion velocity
of Ux = 5 cm/s, and two different Brownian motions simulated
in the two sub-figures.

where g1(t) is the normalized temporal covariance of the com-633

plex fields, which is expressed earlier in this paper as Ci,i
v,v(0,t)

Ci,i
v,v(0,0)

.634

Intuitively, w is the dynamic portion of the volume, and when635

this portion is larger the temporal correlation decays faster. In636

Fig. 10(d-e), we display the average 1 − w and Γ values, respec-637

tively. In Fig. 10(d), we see that the dynamic wavefront shaping638

process achieves a larger static component, indicating that this639

process strengthens the static path contributions over the paths640

that have nodes on the dynamic part of the medium. Also, in641

Fig. 10(e), the decay of the correlation is slower in the focused642

configuration, indicated by a wider variance Γ.643

7. CONCLUSION644

This paper derives a Monte Carlo framework for evaluating the645

spatio-temporal correlations of speckle patterns formed under646

coherent illuminations. It also offers the ability to sample speckle647

fields with correct covariances, which can be used for the real-648

ization of spatio-temporal transmission matrices. This can be649

valuable for the design of new imaging algorithms, in particular650

for generating large-scale training datasets for machine-learning651

algorithms, bypassing painful lab acquisitions. While we have652

demonstrated some applications, we have only scratched the653

surface of what can be done with spatio-temporal statistics and654

we hope this new simulation framework will motivate future655

exploration.656

At the moment our proof of concept implementation is not657

as fast as MCX [42]. We hope that some of the ideas introduced658

for temporal-only MC [44, 64, 65], as well as incoherent path659

tracing ideas developed in computer graphics [54–56], can be660

incorporated into an efficient spatio-temporal MC simulator.661
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