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Enhancing Speckle Statistics for Imaging Inside Scattering Media
Supplementary Appendix

A. ANALYZING CORRELATION PROPERTIES IN LSI
MEASUREMENTS

In this section, we formulate and prove a few properties of LSI
modulations mentioned in the main paper.

Throughout this derivation, we assume that different pixels v
in a speckle pattern uin

(v) arising from one source are indepen-
dent random variables. In practice, depending on magnification,
the grain of speckle features on the sensor may be wider than
a single pixel. This would imply some scaling adjustments in
the exact formulas, which we neglect here. We also ignore small
dependencies introduced by the low pass filtering of Eq. (4) and
treat entries of S̄in

(v) as independent random variables.
Also, in the following derivations expectations are taken with

respect to multiple realization of scattering volumes with the

same material parameters. For example, the notation E
[
C I1 (∆)

]
refers to the following. Suppose we had N different tissue layers
of the same type, and we place behind each layer fluorescent
sources at the exact same layout. We image N different speckle
images and compute N different auto-correlations C I1 (∆). For
large N values averaging these auto-correlations provides the
idealized expected speckle-auto correlation for that source lay-

out, denoted E
[
C I1 (∆)

]
. Similarly Var

[
C I1 (∆)

]
denotes the

variance we expect to see in such auto-correlation. As correla-
tion is computed from a finite number of speckle pixels the cor-
relation is never zero even in displacements ∆ that do not corre-
spond to an actual illuminator displacement. To define variance
mathematically one needs to compute such auto-correlations
from N different speckle images of the same illuminator layout.
In practice for the evaluation in Fig. 8 we only compute the
expectation and variance between different ∆ displacements of
the auto-correlation of a single tissue sample.

Claim 1 We define correlation contrast

Θ
(
C I1,...,IT

)
=

1
|Γ∆ | ∑∆∈Γ∆

E
[
C I1,...,IT (∆)

]2

1
|Γc

∆ |
∑∆∈Γc

∆
Var

[
C I1,...,IT (∆)

] (S1)

If the speckle patterns S0
t are uncorrelated with each other for differ-

ent t values, then the correlation contrast increases linearly with the
number of measurements T.

Proof: The claim is based on the observation that for dis-
placements ∆ ∈ Γ∆ that correspond to an actual illumina-

tor’s displacement, E
[
C I1,...,IT (∆)

]
is a positive quantity, while

for ∆ ∈ Γc
∆, which do not correspond to a displacement be-

tween two illuminators, no correlation exists and in expectation

E
[
C I1,...,IT (∆)

]
= 0.

With this understanding, we note that expectation is linear
and hence recalling the definition of C I1,...,IT (∆) in Eq. (10) of
the main paper, the numerator of Eq. (S1) is independent of the
number of measurements T:

E
[
C I1,...,IT (∆)

]
=

1
T ∑

t
E
[
C It (∆)

]
= E

[
C I1 (∆)

]
. (S2)

We now move to express the denominator. First, we note that
as our signal I1, . . . , IT are zero mean as defined in Eq. (14).

Var
[
C I1,...,IT (∆)

]
= E

[∣∣∣C I1,...,IT (∆)
∣∣∣2] (S3)

Thus, we expand the second moment below. Using again the
definition of the average correlation in Eq. (10) of the main paper,
we express:

E
[
|C I1,...,IT (∆)|2

]
=

1
T2 ∑

(t1,t2)

E
[
C It1 (∆) · C It2 (∆)

∗]
(S4)

=
1

T2 ∑
t

E
[
C It (∆) · C It (∆)

∗]
(S5)

+
1

T2 ∑
(t1 ̸=t2)

E
[
C It1 (∆)

]
· E

[
C It2 (∆)

]∗
(S6)

=
1

T2 ∑
t

E
[
|C It (∆)|2

]
(S7)

=
1
T

E
[
|C I1 (∆)|2

]
(S8)

where Eq. (S6) follows from the assumption that for t1 ̸= t2 the
speckles S0

t1
, S0

t2
are uncorrelated with each other, and Eq. (S7)

from the fact that for displacements ∆ ∈ Γc
∆ the correlation has

zero expectation.
From Eq. (S8), we conclude that as we increase the number

of measurements the denominator scales as 1/T. As a result the
correlation contrast in Eq. (S1) scales linearly with T.

Below, we show that unlike the random modulation of
Eq. (12), the LSI measurements of Eq. (13) do not reduce the
correlation.

Claim 2 For displacements in the order of a few speckle grains, the
correlation between LSI signals Si1

t , Si2

t produced by different illumina-
tors i1, i2 is approximately the same as the correlation of the original
speckle intensity images.

Proof: As we filter the intensity images to have zero mean, the
expected correlation becomes the intensity covariance CI defined
in [1]:

CI(
∣∣∣ui1

(v)
∣∣∣2 ,

∣∣∣ui2
(v + ∆)

∣∣∣2) (S9)

≡ E
[
|ui1

(v)|2|ui2
(v + ∆)|2

]
− E

[
|ui1

(v)|2
]

E
[
|ui2

(v + ∆)|2
]

(S10)

Where the expectation is taken over multiple tissue layers of the
same type. Classical statistics results state that the covariance
between intensities is the square of the covariance between the
complex zero mean fields u. Thus, the above definition can be
further simplified to:

CI(
∣∣∣ui1

(v)
∣∣∣2 ,

∣∣∣ui2
(v + ∆)

∣∣∣2) = ∣∣∣E [
ui1

(v)ui2
(v + ∆)

∗]∣∣∣2 (S11)
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On the other hand, we consider the correlation between LSI
signals:

CI(Si1

t (v), Si2

t (v + ∆)) (S12)

= E
[
Si1

t (v)S
i2

t (v + ∆)
]
− E

[
Si1

t (v)
]

E
[
Si2

t (v + ∆)
]

(S13)

As before, the second term vanishes as in LSI, Sin

t (v) is a zero
mean signal. Also as we assume that different pixels of a speckle
pattern are independent, we can express:

E
[
Si1

t (v)S
i2

t (v + ∆)
]

(S14)

= E
[
ui1

(v)ui1
(v + dt)

∗ui2
(v + ∆)

∗
ui2

(v + ∆ + dt)
]

(S15)

= E
[
ui1

(v)ui2
(v + ∆)

∗]
E
[
ui1

(v + dt)ui2
(v + ∆ + dt)

∗
]∗

.

Now we assume the displacement dt is modest enough so that
the correlation at pixel v and the correlation at a small displace-
ment, at pixel v + dt is similar, so that

E
[
ui1

(v)ui2
(v + ∆)

∗]
≈ E

[
ui1

(v + dt)ui2
(v + ∆ + dt)

∗
]

.
(S16)

Put all together, we can derive

CI(Si1

t (v), Si2

t (v + ∆)) ≈
∣∣∣E [

ui1
(v)ui2

(v + ∆)
∗]∣∣∣2 (S17)

= CI(
∣∣∣ui1

(v)
∣∣∣2 ,

∣∣∣ui2
(v + ∆)

∣∣∣2) (S18)

We now show that despite the fact that we capture multiple
images through the same tissue layer and our measurements are
not independent, they are still uncorrelated which is enough to
reduce the noise of the speckle auto-correlation we evaluate.

Claim 3 For displacements dt1 , dt2 whose distance ∥dt1 − dt2∥ is
larger than the speckle grain, the signals Sin

t1
, Sin

t2
are uncorrelated, so

that
E
[
Sin

t1
· Sin

t2

∗]− E
[
Sin

t1

]
· E

[
Sin

t2

]∗
= 0 (S19)

Proof: Our derivation is based on the assumption that the
speckle fields uin

have zero mean, and the speckle values in
different sensor positions v are independent random variables.
For a non zero displacement dt we get

E
[
Sin

t

]
= E

[
uin

(v)uin
(v + dt)

]
= E

[
uin

(v)
]

E
[
uin

(v + dt)
]
= 0. (S20)

In a similar way

E
[
Sin

t1
Sin

t2

∗]
= E

[
uin

(v)uin
(v + dt1 )

∗
uin

(v)
∗
uin

(v + dt2 )
]

(S21)

= E
[
|uin

(v)|2uin
(v + dt1 )

∗uin
(v + dt2 )

]
(S22)

= E
[
|uin

(v)|2
]

E
[
uin

(v + dt1 )
]∗

E
[
uin

(v + dt2 )
]

(S23)

= 0. (S24)

Where Eq. (S23) follows again from the assumption that
speckle at different pixel positions are independent. Eq. (S20)
and Eq. (S24) prove the desired Eq. (S19).

We now move to study the relationship between the corre-
lation we can measure from LSI to the actual correlation of the
latent pattern.

Claim 4 For speckle fields ui1
(v), ui2

(v) satisfying the tilt shift rela-
tionship of Eq. (1), the LSI measurements Si1

t (v) and Si2

t (v) defined
in Eq. (13) are shifted versions of each other, times a globally constant
phasor, which is independent of pixel position v. This is expressed by
the relationship:

Si1

t (v) ≈ Si2

t (v + ∆)e−jkα(dt
T ∆), (S25)

with ∆ = i2 − i1.

Proof: From Eq. (1), we have ui1
(v) ≈ ejkα(τT ∆)ui2

(v + ∆),
with τ = v − i1. Substituting into Eq. (13) we have,

Si1

t (v) = ui1
(v)ui1

(v + dt)
∗

≈ ejkα(τT ∆)ui2
(v + ∆)e−jkα<∆,τ+dt>ui2

(v + ∆ + dt)
∗

= e−jkα(dt
T ∆)ui2

(v + ∆)ui2
(v + ∆ + dt)

∗

= e−jkα(dt
T ∆)Si2

t (v + ∆)

With all the above claims we are now ready to prove our
main result and show that the global phasor of the previous
claim translates into a phase ramp in the auto-correlation.

Claim 5 Using the LSI measurements of Eq. (13), the speckle auto-
correlation C It = It ⋆ It is equivalent to the auto-correlation of the
latent pattern CO = O ⋆ O, times a phase ramp correction

C It (∆) ≈ CO(∆)e−jkα(dt
T ∆). (S26)

Proof: Using Claim 4 for the specific case i1 = in and i2 = 0
we get Sin

t (v) ≈ S0
t (v+ in)e−jkα(dt

Tin). Summing over all sources
Sin

t (v) we have
It(v) ≈ S0

t ∗ Õ.

with Õ
Õ(v) = O(v)e−jkα(dt

Tv). (S27)

This is due to the fact that O is non zero only at positions v =
in for one of the sources, so effectively Õ has for each sensor
position in the global phasor of Eq. (S25). As in the standard
derivation of the speckle auto-correlation we assume S0

t ⋆ S0
t = δ,

and hence
It ⋆ It ≈ Õ ⋆ Õ. (S28)

or equivalently
C It (∆) ≈ CÕ(∆). (S29)

Hence we are left with the need of computing CÕ(∆). We note
that by the Wiener-Khinchin theorem, CÕ(∆) is the inverse
Fourier transform of

∣∣F (Õ)
∣∣2. However as Õ is obtained by

multiplying O with a phase ramp (see Eq. (S27)), their Fourier
transforms are related via a shift:

F (Õ)(ω) = F (O)(ω + αdt). (S30)

The shift relation holds also for their absolute values∣∣F (Õ)(ω)
∣∣2 = |F (O)(ω + αdt)|2 (S31)

Hence CÕ(∆) and CO(∆) are related via a tilt:

CÕ(∆) = CO(∆)e−jkα(dt
T ∆). (S32)

Substituting Eq. (S32) in Eq. (S29) proves the desired Eq. (S26).
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Fig. S1. Local versus global auto-correlation. The orienta-
tion of the auto-correlation evaluated in three different local
windows of the image matches the orientation of the arc in
the corresponding region of the latent image. By contrast, the
auto-correlation of the full frame is much nosier, and decays
for large displacements due to limited ME.

B. OPTIMIZING USING LOCAL SUPPORT

For sources located inside the scattering medium, speckle pat-
terns emerging from a single source have local support and do
not spread over the entire sensor. To take advantage of this prop-
erty, [1] suggest matching the local speckle correlations in the
image, rather than the full-frame auto-correlation. We review
this algorithm below.

For motivation, consider Fig. S1 that we re-plot from [1]. It
visualizes speckles produced by latent incoherent illuminators
in a double arc layout. Computing auto-correlation at small
subwindows of the speckle image reveals the local orientation
of the arc in the latent image. By contrast, when computing the
auto-correlation of the full frame, the correlation is considerably
noisier even for small displacements. Correlations between far
illuminators are even harder to detect due to the fact that the
ME range is limited and for large displacements ∆ the desired
correlation (see Eq. (1)) is very weak.

The optimization algorithm takes as input two threshold pa-
rameters Tτ , T∆. It assumes that speckles from one illuminator
are spread over pixels in a window of size Tτ around it, and that
ME correlation holds for displacements |∆| < T∆/2. The thresh-
olds Tτ , T∆ are free parameters that can be fine-tuned to improve
reconstruction quality, and [1] show that performance are not
too sensitive to their exact values. In all of our experiments, we
fixed Tτ = 8µm and T∆ = 48µm.

The algorithm offers improved performance compared to
the baseline full-frame auto-correlation algorithm in situations
where Tτ < T∆, namely when the support from one illuminator
is lower than the ME range. For thick scattering slices, where

high-order scattering is dominant, this relationship does not
hold and the approach reduces to the baseline full-frame auto-
correlation algorithm.

The algorithm searches for a latent image O such that the auto-
correlation in its local windows will match the auto-correlation
in the local windows of the input image I. We define w∆ and
wτ to be binary windows with support T∆, Tτ , respectively, and
w̄2τ = wτ ⋆ wτ—note that, from its definition, w̄2τ is non-binary.
Then, we recover O by solving the optimization problem:

min
O

∑p ∥ 1
T ∑t ejkα(dt

T ∆) · It,wτ
p
⋆ It,w∆

p
− Ow̄2τ

p
⋆ Ow∆

p
∥2, (S33)

where It,wτ
p
, It,w∆

p
, Ow̄2τ

p
, Ow∆

p
denote windows of a given size

cropped from the input and latent images, centered around
the p-th pixel.

Eq. (S33) uses windows of three different sizes, and we use
Fig. S2 to visualize their different roles: Each wτ

p is a small win-
dow around pixel p whose support is equivalent to the expected
support size of the speckle pattern due to a single illuminator.
w∆

p is a larger window around the same pixel, corresponding
to the maximal displacement T∆ for which we expect to find
correlation, as dictated by the ME range.

We note, additionally, that the window cropped from O
should be wider than that from I. This is because speckle at
a certain pixel can arise from an illuminator within a window
around it. For example, in Fig. S2, no illuminator is located
inside the cyan subwindow of O, but part of the speckle pattern
of a neighboring source is leaking into the corresponding cyan
subwindow of I. As a result Owτ

p ⋆ Ow∆
p

is a zero image, even
though Iwτ

p ⋆ Iw∆
p

detects three impulses. It is easy to prove that

this can be addressed using the larger, non-binary window w̄2τ

in the latent image, indicated in Fig. S2 using dashed lines: in
this case, Ow̄2τ

p
⋆ Ow∆

p
correctly detects the same three impulses

as Iwτ
p ⋆ Iw∆

p
.

The motivation for the cost of Eq. (S33) is that, even if two illu-
minators in the latent pattern O are at a distance larger than the
ME range T∆, they can be recovered if there exists a sequence of
illuminators between them, where each two consecutive illumi-
nators in the sequence are separated by a distance smaller than
T∆. For example, in Fig. S2, the illuminators outside the yellow
and cyan w∆ windows are recovered thanks to the intermediate
illuminators.

The optimization problem in Eq. (S33) is no longer a phase
retrieval problem as in standard full-frame auto-correlation al-
gorithms. We minimize it using the ADAM gradient-based opti-
mizer [2]. Gradient evaluation is described in [1], and reduces
to a sequence of convolution operations that can be performed
efficiently, e.g., using a GPU based fast Fourier transform. For
initialization, we set the latent image to random noise; we have
observed empirically that the optimization is fairly insensitive
to initialization. Finally, we note that even though we could
place a window wp around every pixel of I, the empirical corre-
lation is insensitive to small displacements of the central pixel
p. Therefore, in practice, we consider windows only at strides
Tτ/2, which helps reduce computational complexity.

We note that the optimization problem of Eq. (S33) is similar
to ptychography algorithms [3]. However, we emphasize that
previous ptychographic approaches for extending the ME range
recover the latent illuminators from multiple image measure-
ments, captured by sequentially exciting different areas on the
scattering sample [4–8]. By contrast, our algorithm recovers the
latent illuminators from a fixed number of full-frame shots.



Research Article Optica 4

I O

Iwτ ⋆ Iw∆ Owτ ⋆ Ow∆ Ow̄2τ ⋆ Ow∆

I O

Iwτ ⋆ Iw∆ Owτ ⋆ Ow∆ Ow̄2τ ⋆ Ow∆

Fig. S2. Local window selection for optimization. We con-
sider local subwindows wτ (light green and cyan frames)
whose support is equivalent to the speckle support size. Each
such window is correlated with a wider window w∆ (yellow
and blue frames) around it, whose support is equivalent to
the ME range. As speckle inside window wτ can arise from
a source outside wτ , Owτ ⋆ Ow∆ may not match Iwτ ⋆ Iw∆ . To
overcome this, we use an extended non-binary sub-window
w̄2τ = wτ ⋆ wτ for O, whose support is indicated by dashed
lines.

C. LOCAL SUPPORT AND PSF AUTO-CORRELATION

As mentioned in Sec. 2.A, ME-based reconstruction algorithms
are based on the assumption that the auto-correlation of a
speckle pattern S̄0 generated by a single source is an impulse,
i.e. S̄0 ⋆ S̄0 ≈ δ. When S̄0 has a limited support, this is only an
approximation and S̄0 ⋆ S̄0 is an impulse plus noise. In Fig. S3
we demonstrate the auto-correlation of speckle patterns with
different supports. As the support increases, its auto-correlation
better approximates a clean impulse.

D. CHOICE OF DISPLACEMENTS IN LSI

Our algorithm is not sensitive to the exact selection of LSI dis-
placements, as demonstrated in Fig. S4. These displacements
should only satisfy the following two properties. First the dis-
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Fig. S3. Auto-correlation with different speckle support.
Top row: We simulated speckle patterns with different sup-
ports. Lower row: The auto-correlation of the speckle pattern.
With smaller support the auto-correlation involves a dominant
noise component. As support increases the auto-correlation
approaches an impulse.

placements need to be larger than the speckle grain, as set by
the NA of the imaging system. Second the distance needs to be
smaller than the support of the speckle pattern generated by a
single source.

In our implementation we used 18 dt displacements
visualized in Fig. S5. These span different directions and
distances, where 6 of them are shifted by 1.6 um ( 5 pixels) with
angles = [0, π

3 , ..., 5π
3 ], and 12 of them are shifted by 3.3 um ( 10

pixels) with angles = [0, π
6 , ..., 11π

6 ]. Since each interferometric
measurement requires 3 images, we take a total of 54 images.

E. HARDWARE PROTOTYPE AND ADDITIONAL RE-
SULTS

We visualize the hardware schematic in Fig. 4 and its image
in Fig. S6. Also, in Fig. S7 and Fig. S8 we show additional
reconstruction results using fluorescent bead targets as well as
translating laser targets. Both used tissue slices of thickness
around ~150µm. In Fig. S14 we use fluorescent beads behind a
parafilm phantom, see characterization in Sec. I.

F. PHASE CORRECTION IN LSI

As noted in Claim 4, when using our LSI, we need a phase ramp
correction to the auto-correlation of speckles. To support the
claim, we compare results with and without the correction. In
Fig. S9, we show the auto-correlation obtained by averaging LSI
measurements It (Eq. (14)) with and without the phase ramp
correction of Eq. (16). The phase correction further improves
the contrast, especially at larger displacements ∆. In Fig. S10 we
further show the reconstruction result of LSI with and without
the phase ramp correction. If the phase correction is not used
the distance sources are not recovered.

The desired α value for Eq. (16) should match the α value
of the ME correlation in Eq. (1), which was derived in [9] as
α ≈ −3

2L . Our tissue is around 150um thick, but between tissue
and beads, there is another cover slides also around 150um
thick, so L ≈ 300µm and thus in principle we should use α ≈
−0.005. In practice we have manually adjusted the selection of α
around this theoretical prediction to improve the visual quality
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Validation
camera

1 image 6 images
(set 1)

6 images
(set 2)

12 images
(set 1)

12 images
(set 2)

54 images

Fig. S4. Evaluating reconstruction vs. number of shots with different selections of the dt values. Top part: we visualize again
the reconstructions of Fig. 9. For g and 12 shots we demonstrate different selections of the dt values in the 6 and 12 image results,
leading to comparable reconstructions. Bottom part: visualization of the selected dt values (each dt shift is captured using 3 shots).

Fig. S5. dt visualization. We demonstrate a typical speckle
pattern and the set of 18 displacement dt we used in our LSI
implementation.

of the results and increase contrast. In Fig. S11 we visualize
reconstructions for different α values. Results are not sensitive
to the exact selection of this parameter, with multiple values
leading to comparable results.

G. RECONSTRUCTION BEYOND THE ME RANGE

As explained by [1] the local correlation approach can recover
objects whose extent is wider than the ME, because it only relies
on local correlations and does not assume correlation between
any two distant sources. While this was exhaustively demon-
strated in their paper, we provide here one empirical evaluation
of this property.

Since our scanning laser setup captures speckle patterns by
different point sources separately, we can compute the correla-
tion between speckle patterns generated by individual sources.
We plot this correlation as a function of the displacement be-
tween the sources. In Fig. S12, we plot the correlation we eval-
uated on the data of Fig. 7. It can be seen that this correlation
drops bellow 0.5 when the source distance is 10µm. At the same
time, the reconstructed pattern is 6 times wider, spanning a
range of 60µm, as in Fig. 7.

Fig. S6. Hardware prototype. Image of our prototype, anal-
ogous to the schematic in Fig. 4.

Furthermore, note that Fig. 1 reconstructs beads spread over
a 300µm × 300µm range. While we do not have ground truth
correlations for this tissue sample, the samples in Fig. 1 and Fig.
7 have about the same thickness of 150µm, hence we believe
they have similar ME correlation ranges.

H. TISSUE THICKNESS

In Fig. S13 we used the scanning laser setup to create the same
illumination layout behind different tissue slices. This allows us
to compare reconstructions through different tissue thicknesses.
For the thickest layer the reconstruction failed.

As discussed in [1], thicker tissue leads to larger speckle
spread and weaker memory effect correlation. As we used the
scanning laser setup we can again compute the ME correlation,
plotted at the lower part of Fig. S13. As expected, as the tissue
thickness increases the correlation decays faster as a function of
displacement, explaining the reconstruction failure in the lowest
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Validation camera Main camera Single image reconstruction [1] Our reconstruction

Fig. S7. Additional reconstruction results for fluorescent beads behind ~150µm-thick tissue slices. With LSI, we can clearly
reconstruct fluorescent bead targets from 54 shot images captured by the main camera. The reconstruction is compared against a
reference image from the validation camera observing the beads directly. In contrast, a standard single-image shot of the scattered
light only facilitates a very noisy reconstruction.

row.

These results demonstrate the limitation of our method: while

we can improve correlation contrast, our approach is still based
on the existence of some memory effect correlation and will fail
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Validation camera Main camera Single image reconstruction Our reconstruction

Fig. S8. Additional reconstruction results for inputs captured using the translating laser setup, behind ~150µm-thick tissue
slices. With LSI, we can clearly reconstruct structured targets with different layouts, while a reconstruction from a single shot is
noisier.

(a) Ground truth (b) No diversification
[1]

(c) Random
modulation

(d) LSI (phase
uncorrected)

(e) LSI

Fig. S9. Comparing speckle auto-correlation in LSI with and without phase correction. (a) Ground-truth auto-correlation. (b)
Auto-correlation from a single speckle image with no diversification. (c) Random phase mask in the Fourier plane. (d) LSI auto-
correlations without correction. The larger displacements at the outer image regions are degraded due to phase variations. (e) After
phase correction, LSI auto-correlations can recover further displacements.

when this correlation is too weak.

I. TISSUE PREPARATION AND CHARACTERIZATION

Most results in this paper used chicken breast tissue as a scat-
tering material. We cut thin slice from thawed chicken breast.
To keep the tissue fresh, we did the fluorescent imaging experi-
ment within 3 hours. The scanning laser targets require longer
capture. To keep freshness we squeeze the tissue between two
cover glasses and seal them using nail polish.

As stated in [10], chicken breast tissue has an anisotropy pa-
rameter g = 0.965 and a mean free path (MFP) around 43.7µm.
However, these parameters may vary significantly between dif-
ferent tissue slices.

For a better characterization, we also use a parafilm phantom.
This was calibrated in [11], reporting an anisotropy parameter
g = 0.77 and a MFP around 170µm. We imaged through one
parafilm layer whose thickness is about 120µm. Results for this
phantom are demonstrated in Fig. S14. Note that while the
parafilm has a longer MFP, it also has a smaller anisotropy factor
and in practice the speckle spreads of both parafilm and chicken
breast are comparable.
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Fig. S10. Comparing LSI with and without phase correction. In addition to Fig. 6, we compare LSI without phase correction. Top
part: sparse, simple shifting laser target. Lower part: challenging fluorescent beads target. For the simple target on the top, the full-
frame algorithm using the auto-correlation of the LSI measurements without phase correction fails to recover the further beads. The
local correlation approach which is more robust to noise can recover the target with and without correlation. For the challenging
target at the lower part, the full-frame algorithm fails completely even with phase correction. The local correlations algorithm can
reconstruct the target using LSI modulations. However, without phase correction, it can only reconstruct a subset of the beads.

Validation camera α = −0.001 α = −0.003 α = −0.005 α = −0.007

Fig. S11. Reconstruction with different α values in Eq.(16). In theory, α ≈ −0.005 in our setting, but comparable results are ob-
tained with multiple α values.
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Fig. S12. Reconstruction beyond the ME range. As the shift-
ing laser setup allows capturing speckles from individual
sources independently, we can empirically compute the decay
of speckle correlation as a function of the distance between the
sources. We show such empirical correlation computed from
the data in the bottom row of Fig. 7. While ME correlation de-
cays below 0.5 for sources separated by as little as 10µm, the
reconstructed object is significantly wider than the ME range,
spanning an area of ∼ 60µm × 60µm.
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Fig. S13. Compare reconstructions with different tissue
thickness. Top panel: We use the shifting laser acquisition
to capture the same illumination pattern through three differ-
ent tissue slices of increasing thicknesses. As tissue thickness
increase the spread of the speckles is wider and the statistical
correlations are weaker. With the ~200µm-thick tissue the cor-
relations are too wreak and reconstruction fails. Lower panel:
As the shifting laser setup allows capturing speckles from in-
dividual sources independently, we can empirically compute
the decay of speckle correlation as a function of the distance
between the sources. Indeed for thicker tissue slices the cor-
relation decays faster as a function of source separation. This
explains the reconstruction failure for the ~200µm-thick tissue
example.
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Validation camera Main camera Single image reconstruction Our reconstruction

Fig. S14. Additional results. reconstructing fluorescent beads behind a parafilm phantom.
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