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Wavefront shaping correction makes it possible to image fluorescent particles deep inside scat-
tering tissue. This requires determining a correction mask to be placed in both excitation and
emission paths. Standard approaches select correction masks by optimizing various image met-
rics, a process that requires capturing a prohibitively large number of images. To reduce acquisi-
tion cost, iterative phase conjugation techniques use the observation that the desired correction
mask is an eigenvector of the tissue transmission operator. They then determine this eigenvec-
tor via optical implementations of the power iteration method, which require capturing orders
of magnitude fewer images. Existing iterative phase conjugation techniques assume a linear
model for the transmission of light through tissue, and thus only apply to fully-coherent imag-
ing systems. We extend such techniques to the incoherent case for the first time. The fact that
light emitted from different sources sums incoherently violates the linear model and makes lin-
ear transmission operators inapplicable. We show that, surprisingly, the non-linearity due to
incoherent summation results in an order-of-magnitude acceleration in the convergence of the
phase conjugation iteration.
© 2022 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
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1. INTRODUCTION

One of the core challenges when performing linear fluorescence
microscopy inside tissue is the fact that biological tissue is highly
scattering at visible wavelengths. This limits the clinical appli-
cability of linear fluorescence microscopy techniques to thin
superficial layers, as incoming and outgoing light propagating
through the tissue is highly aberrated. In turn, this precludes
widespread clinical use for tasks such as vasculature imaging,
laser light therapy, and tumor detection.

A promising approach for overcoming the multiple scatter-
ing challenge is wavefront shaping correction: if one reshapes
the incoming (or outgoing) coherent wavefront, such that its
aberration is conjugate to the aberration that will happen inside
the tissue, then after propagation the wavefront will focus into a
sharp spot inside the tissue.

Adaptive optics techniques [1–3] were first used to correct
modest aberrations, for example due to imperfect optics or re-
fractive index variations in the tissue. More recently, wavefront

shaping techniques [4, 5] have shown that it is possible to focus
light through thick, highly-scattering layers [6–9]. Wavefront
shaping ideas have found applications in a wide range of imag-
ing modalities, including sound and light, coherent imaging and
OCT, and incoherent fluorescence imaging using single-photon
and multi-photon excitation. Our interest in this work is wave-
front shaping for linear, single-photon fluorescence feedback.

The practical application of wavefront shaping is hindered by
the difficulty of finding the wavefront correction to apply. This
wavefront correction varies between different tissue layers, and
even between different positions inside the same tissue sample.
The simplest approach for finding the wavefront correction is to
use a so-called guide star [10–19]: In this case, scattering arises
from a strong single point source inside tissue, and a wavefront
sensor [9, 14] directly measures the scattered wavefront.

Finding a wavefront shaping correction in the presence of
multiple sources is more challenging, and typically involves
optimization strategies relying on a variety of feedback mecha-
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nisms [6–8, 11–13, 20–32]. This optimization is tractable when
the wavefront correction can be described by a small number of
parameters (e.g., using Zernike polynomials [33, 34]). However,
to focus inside thick highly-scattering media, it is desired to use
all the degrees of freedom of a modern spatial light modulator
(SLM), often in the megapixel range. This is posing non-trivial
optimization challenges [6, 12, 30, 35]. Even if we can test every
such free parameter only once [32], the very large number of im-
ages captured for optimization limits any real-time applicability.

For fully coherent imaging systems, an alternative class of
techniques estimating the wavefront correction is iterative phase
conjugation. These techniques use the observation that a wave-
front shaping correction focusing on a single point inside tissue
is an eigenvector of the transmission matrix of the scattering
sample [36]. They then find these eigenvectors using an opti-
cal implementation of the power method [37], which iterates
between sending in a wavefront, measuring the scattered wave-
front, and using the measurement as the successive input. Often
this procedure converges after a very small number of iterations,
leading to an order-of-magnitude acquisition speedup compared
to standard optimization approaches. Iterative phase conjuga-
tion has found successful applications for sound [38, 39] and
acousto-optics [40, 41], where the propagation is fully coherent.
Although not presented this way, a similar iterative scheme was
also applied for two-photon fluorescent imaging [42].

An important assumption underlying the coherent iterative
phase conjugation scheme is that light scatters only once. This
greatly limits its applicability to thin or sparse volumes. Our
goal in this work is to develop an iterative phase conjugation
approach that is applicable to linear (single-photon) fluorescent
imaging. As the emitted light does not excite the tissue or the
particles again, by working with fluorescent sources we can
greatly relax the single scattering assumption, making our ap-
proach applicable to much thicker volumes, in particular tissue.

The primary technical challenge in this setting is that any
uncorrected incident wavefront (such as the wavefronts used
during the power method) will excite more than one fluorescing
point inside the tissue sample, and the excited points will emit
light that sums incoherently. Consequently, we cannot model
the relation between input excitation and output fluorescent
emission using a linear transmission operator, as fully-coherent
iterative phase conjugation techniques do. To overcome this
challenge, we analyze the incoherent case, and report two find-
ings: First, we show that the same power method procedure
as in the fully-coherent case can be used to recover the correc-
tion pattern also in the incoherent case. Second, we show that,
whereas for the fully-coherent case the power method converges
at an exponential rate, for the incoherent case it converges at a
doubly-exponential rate. We demonstrate these findings experi-
mentally, focusing light on fluorescent beads attached at the back
of chicken breast tissue layers. Our technique achieves wave-
front correction after capturing as few as 10− 30 images, com-
pared to thousands of images captured by existing optimization-
based wavefront shaping strategies for fluorescent imaging [21].

2. PRINCIPLE

Fig. 1 shows our imaging setup. A laser beam illuminates a
tissue sample via a microscope objective. A phase SLM at the
Fourier plane of the illumination arm modulates the illumination
pattern. The modulated laser light excites fluorescent beads at
the back of the sample. The emitted light is collected via the same
objective, and reflected at a dichroic beam-splitter. A second

phase SLM at the Fourier plane of the imaging arm modulates
the emitted light. Lastly, the modulated light is measured by the
front camera, which captures the images used by our algorithm.
The setup includes a second validation camera behind the tissue
sample. In our experiments we attached fluorescent beads at
the back of the tissue layer, so that the validation camera can
image them directly. We emphasize that measurements from
this camera are not used by our algorithm, and that we only use
the camera for validation purposes, to assess focusing quality
and to image an undistorted reference of the bead layout.

We derive a strategy for efficiently finding a wavefront shap-
ing modulation pattern for the illumination arm, allowing us to
focus all light into a single spot inside the tissue sample. Once
we have found the modulation pattern, we use the same modu-
lation to also correct the emitted light in the imaging arm. This
is possible because, in our linear fluorescent imaging setting,
emission and excitation wavelengths are relatively close. Our
approach extends to the incoherent imaging case iterative phase
conjugation ideas that were previously used with coherent illu-
mination. We begin our presentation by reviewing the coherent
case, and then introduce the incoherent one.

Coherent iterative phase conjugation. Consider a set of K scat-
tering (non fluorescent) particles inside a sample, and denote
their positions by o1, . . . , oK . We denote by u the value of an
incoming 2D electric field at the input plane, and by ν a K× 1
vector of the field propagating through the sample at each of
the K scatterers. Although u is a 2D field, we reshape it as a 1D
vector and relate ν to u as ν = T iu, where T i is the incoming
transmission matrix describing coherent light propagation. T i

is specific to the tissue sample being tested. Likewise, we denote
by T o the back-propagation transmission matrix, describing the
light returning from the particles to the sensor. The propagation
of light to the particles and back to the sensor is then modeled
using the combined transmission matrix

T a ≡ T o · T i. (1)

Note that Eq. (1) offers a simplistic description of light propaga-
tion, assuming there is not much light back-scattered from other
structures in the medium apart of the listed particles o1, . . . , oK ,
and multiple scattering between the particles is negligible.

Under fully coherent illumination, the input illumination and
the measured speckle intensity are related as

I = |T au|2. (2)

Our goal is to find an illumination pattern u that will focus on
one of the particles, so that ν is a one-hot vector—non-zero only
at a single point ok for some k value. We note that focusing at
any of the particles is sufficient for our setting; below, we show
that once we focus at one point, we can use the memory effect
to focus at nearby ones.

To find a wavefront modulation we need access to T i, but in
practice we can only measure T a. The wave conjugation princi-
ple states that the returning transmission matrix is the transpose

of the incoming one, T o = T i> [43]. With this assumption,
consider an illumination field u that, after propagating through
the tissue sample, generates a one-hot ν vector. If we focus all
light at one particle, then by the wave conjugation principle the
returning field is proportional to the incoming one. Therefore,
we can express the returning intensity in Eq. (2) as

I = s|u|2 = |T au|2, (3)
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Fig. 1. Our wavefront correction fluorescent microscope setup: A laser beam is exciting fluorescent beads at the back of a tissue layer, and fluorescent
emission is scattered again through the tissue, reflects at a dichroic beam-splitter and is collected by a main (front) camera. We place two SLMs in the
Fourier planes of both illumination and imaging arms to allow reshaping these wavefronts. A validation camera views the beads at the back of the
tissue directly. This camera is not actually used by the algorithm, and is only assessing its success. LP=linear polarizer, BS=beam-splitter, DBS=dichroic
beam-splitter, BPF=bandpass filter, L1 . . . L7=lenses, Obj=Objective.

where s is a scale factor. That is, a focusing wavefront is an eigen-
vector of the combined transmission matrix T a. Consequently, if
we can compute eigenvectors efficiently, we can find a wavefront
that focuses all the light in a single spot.

A common class of numerical algorithms for computing ma-
trix eigenvectors follows the power method [37]. This algorithm
relies on the fact that the sequence u,T au, (T a)2u, (T a)3u . . .
converges exponentially-fast to the largest eigenvector of T a.
Iterative phase conjugation algorithms [38–41] do not acquire
the full transmission matrix T a, but instead directly measure
its optical operation on wavefronts of interest. They begin by
illuminating the sample with a random wavefront u0, then it-
eratively measure the resulting output wavefront, and use its
conjugate as a successive illumination pattern. That is, at the t-th
iteration, the incident wavefront is u(t) = (T au(t−1))∗, where
∗ denotes complex conjugation. When measuring intensity im-
ages I = |T au(t)|2, computing u(t+1) also requires estimating
the phase of the measured intensity pattern.

Using the exponential convergence property of the power
method it can be shown [37], and we review the derivation in
the supplement, that the energy focused on the k-th particle at
the t-th iteration follows a geometric sequence of the form

|ν(t)
k | =

1
Nt

λt
k · ck, (4)

for constants λk, ck and a normalization factor N(t) we derive in
the supplement. Eq. (4) implies that the energy at the k-th parti-
cle scales exponentially with the iteration number t. Thus, each
iteration increases the gap in energy between the strongest and
second strongest particles, and the sequence quickly converges
to a one-hot ν vector.

Incoherent phase conjugation. The main limitation of coherent
iterative phase conjugation is that to describe the propagation
using the model of Eq. (1) one neglects multiple scattering be-
tween the particles, as well as back-scattering from any other

tissue components. This in turn limits the applicability of the
technique to thin or sparse volumes. By using fluorescent emis-
sion we remove this restriction, because even in thick tissue it
is reasonable to assume that the emitted light does not excite
the tissue or the other beads again. Moreover, we show that the
incoherent summation of fluorescent emission results in largely
accelerated convergence. However, an adaptation of the power
method to the incoherent case is not straightforward due to the
non-linearity imposed by incoherent emission.

To study the incoherent case we need to adjust the above
model in two ways. First, we now mark by o1, . . . , oK the
positions of the fluorescent particles rather than all scatter-
ers in the volume. We use T i to describe propagation at the
excitation wavelength λi, and T o to describe propagation at
the emission wavelength λo. Despite the small difference be-
tween emission and excitation wavelengths, we still assume

that T o ≈ T i>. Note that T i,T o describe multiple scattering
events by other tissue components apart of the listed fluorescent
particles o1, . . . , oK .

Second, whereas in the coherent case the output wavefront
is a linear function of the input, T au(t), this linear model no
longer holds when incoherently summing light from different
emitters. To derive an image formation model for this case, we
again use ν = T iu to denote the field arriving at the fluorescent
emitters. Fluorescent emission is proportional to the intensity of
ν, and the recorded intensity equals an incoherent summation

I = ∑
k
|T o

:,k|
2|νk|2, (5)

where T o
:,k is the k-th column of T o.

If we manage to focus and ν is a one-hot vector, then there
is only a single non zero term in the summation of Eq. (5). De-
noting the index of this non zero entry by ko we can express the
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intensity in Eq. (5) as

I = |T o
:,ko
|2|νko |

2 = |T o
:,ko

νko |
2 = |T oν|2 =

= |T oT iu|2 = |T au|2.
(6)

So effectively, when focusing is achieved, Eq. (5) reduces to
Eq. (2), and the measured intensity is equivalent to |T au|2.
Therefore in the incoherent case, a focusing wavefront is still an
eigenvector of the transmission operator T a = T o · T i.

Motivated by this observation we apply iterative phase conju-
gation as in the coherent case. As we measure only the intensity
of the emitted light, to recover the phase of the wavefront, we
use a phase diversity acquisition scheme [44]. We place J = 5
known modulation patterns H j on the phase SLM of the imaging
arm. At the t-th iteration, we measure speckle intensity images

I(t,j) = ∑
k
|hj ? T o

:,k|
2|ν(t)

k |
2, (7)

where ? is convolution, hj is the Fourier transform of the pattern
we placed on the SLM, and |νt

k|
2 is the intensity arriving at

the k-th particle in the t-th iteration. We use gradient descent
optimization to find a complex wavefront u(t+1) minimizing

∑
j

∣∣∣I(t,j) − |hj ? u(t+1)|2
∣∣∣2 . (8)

We then use the conjugate of the estimated wavefront as the
excitation of the next iteration, and display it on the SLM of the
illumination arm.

When the intensity image is an incoherent summation from
multiple sources there is typically no wavefront minimizing
Eq. (8) with zero error. Despite this, we show in the supple-
ment that the resulting wavefront is approximately equal to
a weighted linear combination of the wavefronts T o

:,k gener-
ated by the individual sources. Sources with stronger emission
receive a higher weight in the reconstruction, which further
increases their weight in the next iteration of the algorithm.

In the supplement, we analyze the differences between the
coherent and incoherent models, and we show that the incoher-
ent summation results in an asymptotically faster convergence
rate. In particular, we prove the following claim.

Claim 1. The convergence of the power iterations in the incoherent
case follows a doubly exponential sequence of the form

|ν(t)
k |

2 =
1

N(t)
(λk)

2t · ck (9)

for scalars λk, ck derived in the supplement.

To understand the difference, we note that in the coherent
case of Eq. (4), the energy at the different particles scales as λt

k.
In the incoherent case, we get another exponential factor, and
energy scales as (λk)

2t
. Intuitively, this is because the fluores-

cent emission is proportional to the intensity of the field |ν(t)|2
arriving at the particles, rather than to the field ν(t) itself. As
ν(t) is squared in every iteration, the squaring is accumulated into
another exponential term.

To visualize the faster convergence, in Fig. 2 we simulated
coherent and incoherent power iterations on a random transmis-
sion matrix sampled as described in supplement.

In practice, in the hardware implementation described be-
low, our algorithm converged within about 2− 6 iterations. Ac-
counting for the 5 images used for phase acquisition at each
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Fig. 2. Simulating coherent and incoherent convergence: We plot the

power of scatterers |ν(t)
k |

2, for different iterations of the iterative phase
conjugation algorithm. As predicted by theory, the incoherent case
converges into a one-hot vector within a smaller number of iterations
(compare 4 incoherent iterations to 15 coherent ones). The x axis of our
plot corresponds to scatterer index k, where for ease of visualization we
sort these in decreasing order of power.

step, our approach can find a wavefront correction pattern us-
ing about 10− 30 image measurements. This provides orders
of magnitude speedup compared to recent optimization-based
approaches recovering a wavefront shaping correction pattern
using a single-photon fluorescent feedback, which requires cap-
turing thousands of images [21].

3. RESULTS

In our experimental implementation, we use fluorescent micro-
spheres of diameter 200 nm (ThermoFisher FluoSpheres dark
red), excited and imaged with NA = 0.5 objectives so that the
particles are slightly smaller than the diffraction limit. For exci-
tation, we use a 637 nm laser, and to measure emission we use
a band-pass filter of center wavelength 680 nm and bandwidth
10 nm. In the main paper, we use as scattering samples chicken
breast tissue slices of thickness 200− 400µm. In the supplement,
we also show results using other scattering phantoms, includ-
ing parafilm and polystyrene beads dispersed in agarose. For
all examples, significant scattering is present, and a standard
microscope cannot image the actual source pattern. The beads
are attached at the back of the tissue layer, separated only by a
150µm microscope cover glass. We use two Pluto Holoeye SLMs,
and a Prime BSI sCMOS sensor for imaging fluorescent emission.

Fig. 3 visualizes the power iterations of our algorithm from
both the main camera and the validation camera. In the begin-
ning the main camera sees a wide speckle pattern, and from
the validation camera we can see that a wide speckle pattern
reaches the back of the tissue. We also use a band-pass filter
on the validation camera to image the beads excited by each
modulation pattern. The validation camera confirms that as
the algorithm proceeds the illumination reaching the back of
the tissue converges into a single spot. Even if we manage to
excite a single bead, the emitted light can scatter on its way to
the main camera and generate a speckle pattern. In Fig. 3 we
first visualize this scattering by showing the views of the main
camera when modulation is used in the illumination SLM to
focus the excitation, but with no modulation at the imaging arm.
In addition, we show what happens if the modulation pattern of
each iteration is also placed on the SLM of the imaging arm. As
the iterations proceed and the modulation pattern improves, the
imaging SLM refocuses the light emitted from the excited bead
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Fig. 3. Algorithm convergence. We show the iterations of our power algorithm on two different tissue samples. We demonstrate views via the main
camera seeing the front of the tissue with and without the modulation correction, and the validation camera observing fluorescent beads directly. To
better appreciate the focusing we used the validation camera to capture both the excitation and emission wavelengths. In the first iteration we see
a speckle image, but as power iterations proceed the illumination wavefront converges and focuses on a single bead. When the same modulation
pattern is placed at the imaging arm, imaging aberrations are corrected and one can see a sharp image of the excited bead. Note that images in different
iterations have very different ranges, and for better visualization each image was normalized to its own maximum.

into a single sensor spot.

When multiple fluorescing particles are present in the field

of view, the algorithm typically converges to the strongest one.
However the particle at which the algorithm converges may
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(a) Initial speckle (b) Wide illum. (c) Speckle from (d) Focused illum (e) Focused illum+
validation camera single source valid. camera corrected emission

Fig. 4. Analyzing focusing inside tissue. each row visualizes a different experiment on a different tissue slice. (a) Main camera when SLMs are
blank, demonstrating initial speckles. (b) Validation camera when illumination SLM is blank, demonstrating the enlightened bead layout at emission
wavelength. (c) Speckles from one bead (imaging SLM is blank and illumination SLM is corrected), demonstrating the amount of aberration.
(d) Validation camera when illumination is corrected, demonstrating that most light gets into a single spot (excitation wavelength). (e) Main camera
when both SLMs are corrected, demonstrating focusing in a single spot.
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(a) Speckle image (b) Recovered intensity (c) Recovered phase
Sensor plane Fourier plane

Fig. 5. Phase reconstruction: (a) Speckle image captured by the main
camera in the first and last iteration of the algorithm. (b) The intensity
of the recovered aberration correction in the sensor plane. In the first
iteration when multiple incoherent beads are excited we cannot fully
explain the image as a single coherent wavefront. But as the algorithm
converges to excite a single bead the recovered wavefront better matches
with the captured image. (c) The phase of the recovered aberration
correction in the Fourier plane, which is the mask presented on the SLM.

vary due to multiple reasons such as imaging noise, fluorescence
bleaching or local minima of the phase diversity optimization.
Convergence can also change if the optimization is initialized
with a different speckle pattern.

In Fig. 4 we demonstrate the final iteration of our algorithm

on a few additional examples. In Fig. 4(c) we also visualize the
actual scattering of the tissue layer. To this end we place the
correction mask on the illumination SLM only, bringing all light
to excite a single bead. We use no correction on the imaging
arm, allowing us to visualize the speckles from this source. This
image corresponds to a column of the transmission matrix T o.

In Fig. 5, we visualize the phase diversity acquisition results
at the first and last iterations of the algorithm. Fig. 5(a) shows the
image from the main camera in both iterations when the imaging
SLM applies no correction. Fig. 5(b) shows the intensity of the
recovered wavefront at the plane of the camera sensor, which is
set conjugate to the plane of the fluorescent sources. The phase
diversity optimization attempts to explain the images in Fig. 5(a).
However, in the first iteration, the captured speckle image is
an incoherent summation from multiple particles, which the
optimization objective of Eq. (8) attempts to explain with a single
coherent wavefront; thus the result is imperfect. In the last
iteration, the algorithm excites a single particle, and indeed
the estimated wavefront better explains the captured intensity.
Finally, Fig. 5(c) shows the retrieved phase in the frequency
domain, which is essentially the pattern displayed on the SLM.
We note that, as we use a phase-only SLM, we effectively correct
only the phase of the wavefront and neglect its amplitude.

Imaging a wide field of view. The recovered modulation pattern
is designed to focus at a single particle inside the tissue sample.
However, due to the memory effect, the corrections of nearby
spots are similar. We demonstrate this experimentally in the sec-
ond row of Fig. 6: We place a random pattern on the illumination
arm, which results in exciting multiple fluorescing particles. We
then place the correction pattern recovered for focusing on one
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Fig. 6. Imaging a wide area of fluorescent sources, behind 4 different tissue slices. Top: Reference image from validation camera. Second row: Imaging
fluorescent sources within a small region behind the tissue using a simplified memory effect. We use the correction mask on the imaging arm, and use
wide illumination to excite multiple beads. Third row: Using the tilt-shift memory effect to image a wider area, by shifting the imaging mask in the
Fourier plane.

of the fluorescing particles on the imaging arm. We observe that,
thanks to the memory effect, the camera can image a small neigh-
borhood of particles around the focus points, and not just the
single particle the correction pattern corresponds to. To further
improve on this, we use the tilt-shift memory effect [45, 46] and
shift the modulation mask in the Fourier plane. As we explain
in the supplement, this shift allows us to focus at nearby regions
using the same correction pattern. In the third row of Fig. 6,
we image a wider range of particles behind the tissue sample,
by scanning 21× 21 such shifts. We acknowledge that by plac-
ing the SLM at a plane conjugate to the sample itself [45, 47]
rather than in the Fourier plane, we can probably expand the
region corrected by a single modulation and reduce the number
of required shifts. Even after exploiting the tilt-shift, the extent
of the memory effect is limited, and beads at the periphery of
the images of the last row in Fig. 6 are either not recovered or
strongly aberrated. Imaging beyond this region would require
applying another set of power iterations to calibrate a different
wavefront modulation, amplifying the importance of the faster
convergence of our proposed procedure.

4. DISCUSSION

We extended iterative phase conjugation algorithms to apply
to incoherent fluorescent imaging. Even though the incoherent
contribution of different sources alters the linear transmission
model from which these algorithms are derived, we show that
the non-linear incoherent model accelerates convergence rate,
from exponential to doubly-exponential. To find a wavefront
correction pattern, we need to excite the tissue with a very small
number of trial patterns and measure the resulting excitation.
The number of measurements is orders of magnitude smaller
than that of previous optimization-based techniques.

We used the recovered modulation pattern to image fluores-
cent particles placed behind a tissue sample. However, wave-
front correction in thick tissue is spatially-varying, and each
modulation pattern is only usable for imaging a limited region,
with size determined by the memory effect. To image a wider re-
gion behind the tissue sample, we have to apply the modulation
recovery algorithm multiple times in different sub-regions. This
makes it even more important to have fast wavefront shaping
algorithms. One way to further reduce the number of acquired
images is to use a tilt-shift adaptation of the aberration correc-
tion estimated in one region, and initialize with it the power
iteration in neighboring sub-regions.
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Our current results apply only on a sparse set of fluorescent
particles. Increasing the density of the sources is challenging
because as speckle contrast decays [48], it is harder for the phase
diversity acquisition scheme to recover phase. To alleviate this
problem, we could adopt other phase acquisition schemes, such
as using a Shack-Hartmann sensor [49].

Another issue which may challenge convergence with a dense
continuous fluorescent object is two nearby spots emitting sim-
ilar power. This is due to the fact that when a transmission
matrix contains multiple eigenvectors with the same eigenvalue,
power iterations may not separate them, and can converge to a
linear combination of the two eigenvectors. We note however
that the incoherent convergence rate as analyzed in supplement
Eq. (26) depends not only on the actual eigenvalues, but also
on the initial excitation T i

k,:u
(0). As this excitation is usually

a highly varying speckle pattern, there is a better chance to
separate between nearby illuminators of similar power.

Our approach also relies on the assumption that the excitation
and emission wavelength are close enough so that the excitation
and emission transmission matrices are sufficiently similar. Also,
as the emitted light contains multiple wavelengths, these can
produce somewhat different speckle patterns. There is evi-
dence in the literature that speckle patterns produced by nearby
wavelengths are correlated [50], but this similarity degrades as
the tissue sample thickness increases [51]. In our experimental
implementation, there is a 40 nm gap between the emission and
excitation wavelengths. In linear fluorescence imaging, the gap
between excitation to emission can be made lower than that,
leading to even stronger correlation between the wavefronts.

Relationship to memory-effect techniques. Our work is orthog-
onal to approaches for imaging fluorescent sources through
tissue using speckle statistics, and in particular the memory ef-
fect [48, 52, 53]. Recently, such approaches were successful in
imaging a sparse set of fluorescent particles inside tissue, using
hundreds [22, 54] or even just dozens [55] of images. While the
field of view of a wavefront shaping modulation is constrained
by the extent of the memory effect, as demonstrated in Fig. 6,
approaches based on the memory effect can recover full-frame
patterns with much wider field of view. By contrast, memory ef-
fect correlations only exist in thin tissue layers, while approaches
based on phase conjugation can theoretically achieve larger pen-
etration depths. However, in practice, the penetration depth
is greatly constrained by the very weak signal-to-noise ratio of
fluorescent emission. Approaches based on phase conjugation
make it possible to not only image through scattering, but also fo-
cus light inside scattering tissue, a capability that memory effect
approaches lack. Focusing inside tissue is important for applica-
tions such as laser treatment therapy, confocal microscopy, and
STED microscopy. Finally, a modulation recovered from fluores-
cent sources can also be used to image adjacent non-fluorescent
tissue structures.
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