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1. CONVERGENCE ANALYSIS FOR INCOHERENT
TRANSMISSION

We analyze the convergence of our iterative algorithm, while
modeling the incoherent summation of different fluorescent
emitters. We show that incoherence leads to asymptotically
faster convergence when compared to the coherent case.

Model. We introduce some notation that we will use to rewrite
the transmission image formation model in an equivalent form
that is more convenient for our analysis. For this, we recall from
the main paper our assumption that the transmission matrices
for excitation T i and emission T o are transposes of one another,

T o = T i⊤. Therefore, the rows of T i equal the columns of T o.
We write T i

k,:,T
o
:,k for the k-th row and column of these T i and

T o, respectively. We also denote by nk the norm of the k-th row
of T i and k-th column of T o,

nk ≡ ∑
x
|T i

k,x|
2 = ∑

x
|T o

x,k|
2, (1)

where x is a position on the input or sensor plane, for excitation
and emission respectively. nk can be lower than one, because
some light emitted by the fluorescent particles scatters at angles
higher than the numerical aperture of the objective and does not
reach the sensor. We use T i, To to denote the matrices T i, T o

after normalizing their rows and columns, respectively, to have
unit-norm:

T i
k,: ≡

1√
nk

T i
k,:, To

:,k ≡ 1√
nk

T o
:,k. (2)

We will account for the norm explicitly in the image formation
model. Then, linear fluorescence emission from the k-th location

inside tissue is proportional to

|νk|2 = eknk|T i
k,:u|

2, (3)

where we use ek to denote the emission power of the k-th particle
(for simplicity of exposition, in the main text we have absorbed
ek into the unnormalized transmission matrix). Similarly, the
measured emission intensity is

∑
k
|T o

:,k|
2|νk|2 = ∑

k
|To

:,k|
2nk|νk|2. (4)

With this notation we can express the combined transmission
operator as

T a ≡ ToWT i, (5)

where W is a diagonal matrix with non-negative diagonal entries

wk ≡ nk
√

ek. (6)

These entries encode the power of the fluorescent emitter at the
k-th focus location, as well as the amount of energy transferred
on the k-th row and column of T i and T o, respectively.

To further simplify our analysis, we also assume that the
wavefonts emitted by different fluorescent particles are suffi-
ciently random, and their correlation

εk,ℓ ≡ ∑
x

To
x,kTo

x,ℓ
∗ (7)

is sufficiently small. For the rest of this derivation we will as-
sume εk,ℓ ≈ 0 and can be neglected. We note that the memory
effect implies that the rows of the transmission matrix are corre-
lated shifted versions of each other; that is To

x,k ≈ To
x+∆,ℓ where

∆ is the displacment between the k, ℓ particles. However, even
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in the presence of ME correlation, at the zero shift we consider in
Eq. (7), such rows are uncorrelated, as effectively, the row entries
are pseudo-random patterns.

With this decorrelation assumption, T i, To are orthogonal
matrices, and the diagonal entries wk of the matrix W in Eq. (5)
will correspond to the eigenvalues of the transmission operator
T a.

Power method under coherent illumination. We start by reviewing
the principles of the power method [1] considering a coherent
illumination model. For simplicity, we assume that we can mea-
sure the phase of wavefronts rather than only their intensities.
We will later extend this analysis to the incoherent case.

To apply the power method for the coherent illumination
case, we start with a random illumination pattern u0. At each
iteration, we illuminate the tissue sample with a wavefront ut.
The propagation through the sample and back to the sensor
produces a wavefront T aut. Assuming we can measure both
amplitude and phase of the resulting wavefront, we update the
illumination wavefront as

u(t+1) ≡ (T au(t))∗

∥T au(t)∥
, (8)

where we normalize u(t+1) to fix the total energy of the excitation
pattern ∥u(t+1)∥ at each iteration, as determined by the power of
the excitation laser. We note that, in practice, we use a phase-only
SLM, and thus we only display the phase of u(t+1), dropping its
amplitude.

To understand the convergence of this algorithm, we denote
by βt

k the energy scattered from the k-th particle inside the tissue
sample at the t-th iteration,

β
(t)
k ≡ wkT i

k,:u
(t). (9)

With this notation, the operation of the transmission matrix T a

on u(t) equals the sum of the columns of To weighted by β
(t)
k ,

T au(t) = ∑
k

β
(t)
k To

:,k (10)

Therefore, the illumination pattern used at the next iteration will
equal a weighted combination of the conjugate columns,

u(t+1) =
(
T au(t)

)∗
= ∑

k
β
(t)
k To

:,k
∗, (11)

u(t+1) is then normalized as in Eq. (8).
Applying T i on u(t+1) can be expressed as a summation over

all entries x. Using the decorrelation assumption of Eq. (7), and
Eq. (11) this reduces to

T i
k,:u

(t+1)=∑
x

T i
k,xu(t+1)

x =∑
ℓ

β
(t)
ℓ ∑

x
T i

k,xTo
x,l

∗=β
(t)
k . (12)

Therefore,
β
(t+1)
k = wkT i

k,:u
(t+1) = wkβ

(t)
k . (13)

A simple recursion implies that β
(t)
k follows an exponential series

of the form
β
(t)
k = (λk)

tck (14)

where λk ≡ wk, ck ≡ β0
k. Eq. (14) states that the entries of β(t)

scale exponentially as a function of the iteration number. This
implies that the gap between the largest entry of β and the next
one increases with each iteration. It is easy to show that the
sequence converges quickly into a one-hot vector, which is non-
zero at a single entry.

Power method under incoherent illumination. The coherent case is
similar to the classical application of the power method. We now
make the necessary adaptations for the incoherent case. The
convergence rate we achieve is asymptotically faster than the
exponential convergence we derived in Eq. (14). Throughout
this derivation we assume the power of the fluorescent sources is
constant during optimization and ignore effects such as blinking
or bleaching.

To study the incoherent emission of fluorescent sources, we
start by deriving the corresponding image formation model. At
the t-th iteration, we excite the tissue sample with a wavefront
u, and measure

I(t) = ∑
k
|To

:,k|
2α

(t)
k , (15)

where α
(t)
k denotes the incoherent equivalent of β

(t)
k , the energy

emerging from the k-th emitter, times the norm of the k-th col-
umn. Following the definitions in Eqs. (3), (4) and (6), we use:

α
(t)
k = nk|νk|2 = w2

k |T
i
k,:u

(t)|2. (16)

Our goal is to show that, as in the coherent case, within a small

number of iterations, α
(t)
k converges to a one-hot vector.

At each iteration, our algorithm needs to estimate some phase
from the speckle intensity image I(t). As we mention in the
main paper, we use a phase diversity acquisition scheme. As
this scheme is based on optimizing a non-linear score, analyzing
its convergence is not straightforward. To this end, we start by
considering a simpler acquisition scheme based on point diffrac-
tion interferometry [2, 3]. This scheme is highly-sensitive to
noise, and implementing it using weak fluorescent sources is
impractical. However, the advantage of this scheme is in pro-
viding a closed-form expression for the contribution of different
sources to the estimated phase, allowing for simple analysis. We
will later use numerical simulations to compare the convergence
of phase diversity against the analytical expressions we derive
from point diffraction interferometry.

Point diffraction interferometry. Consider the field To
x,k generated

by the k-th fluorescent source at image point x. We decompose
it as

To
x,k = T̂o

x,k + τo
k (17)

where τo
k is its complex mean

τo
k = ∑

x
To

x,k (18)

and T̂o
x,k = To

x,k − τo
k.

Point diffraction interferometry captures J ≥ 3 images using
the SLM in the Fourier plane of the imaging arm. It changes
phases at a single spot corresponding to the 0-th (central) fre-
quency. Placing phase ϕj at the zero frequency only changes the
mean of the signal, and the intensity to be measured at pixel x
of the image plane from the k’th source corresponds to

I(t,j)k,x = α
(t)
k

∣∣∣T̂o
x,k + eiϕj τo

k

∣∣∣2 (19)

= α
(t)
k

(∣∣∣T̂o
x,k

∣∣∣2 + |τo
k|2 + 2ℜ

(
eiϕj τo

k T̂o∗
x,k

))
,

where ℜ denotes the real component, and α
(t)
k defined in Eq. (16)

corresponds to the energy emitted by the k-th fluorescent par-
ticle given the current excitation wavefront. In the presence of
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multiple incoherent sources, we measure the incoherent sum-
mation of the intensity speckle patterns produced by each of
them,

I(t,j)x = ∑
k

α
(t)
k I(t,j)k,x (20)

In point diffraction interferometry, we capture J ≥ 3 im-
ages with equally-spaced phase shifts ϕj = [1 . . . J] 2π

J . Standard
phase shifting interferometry techniques [4] imply that, by sum-
ming measurements with different phase shifts, we can extract

u(t+1)
x = ∑

j
e−iϕj I(t,j)x = ∑

k
α
(t)
k τo

k T̂o∗
x,k. (21)

Thus, point diffraction interferometry extracts a weighted com-
bination of the wavefronts emerging from all incoherent sources.
The weights correspond to the intensity they receive from the
previous excitation pattern, weighted by a complex scalar corre-
sponding to the mean τo

k.
In the next iteration of the power method, we excite the tissue

with the extracted wavefront normalized to have unit energy:

ut+1

∥ut+1∥
(22)

Convergence. We now show that the sequence αt
k converges to

a one-hot vector, which implies that the iterative approach we
described above converges. To this end, we note that when we
excite the tissue sample with illumination ut+1(x), we effectively
multiply ut+1(x) by T i. Using the decorrelation assumption in
Eq. (7), we can write the energy at the k-th fluorescent particle as

T i
k,:u

(t+1)
x = ∑

ℓ

α
(t)
ℓ τo

ℓ ∑
x

T i
k,x T̂o∗

x,ℓ = α
(t)
k τo

k. (23)

Thus, using the definition of αk in Eq. (16) and ignoring the
normalization in Eq. (22), we have

α
(t+1)
k = (wkα

(t)
k |τo

k|)2. (24)

Using recursion, this leads to

α
(t)
k = (wk)

2(2t+1−1)|τo
k|2(2

t−1)|T i
k,:u

(0)|2t+1

= (λk)
2t · ck. (25)

where

λk = w4
k |τ

o
k|2|T i

k,:u
(0)|2, ck = w−2

k |τo
k|−2. (26)

To understand the difference between this result and the coher-
ent case in Eq. (14), we note that in the coherent case the leading
term converges as λt

k, which is an exponential sequence. In the
incoherent case we have another exponent, and the leading term
in Eq. (25) is of the form (λk)

2t
. This is known as a doubly expo-

nential series, which will converge into a one-hot vector much
faster than the exponential series of Eq. (14).

Phase diversity acquisition. As we mentioned above, the point
diffraction interferometry scheme is useful for analysis, as it
leads to closed-form expressions. In practice, this approach is
very sensitive to noise, and implementing it with weak fluores-
cent sources is unrealistic. Instead, our implementation uses a
phase diversity acquisition scheme [5]. We place J = 5 known
modulation patterns Hj on the SLM of the imaging arm, and
measure speckle intensity images of the form

I(t,j) = ∑
k
|hj ⋆ To

:,k|
2α

(t)
k , (27)

where ⋆ denotes convolution, and hj is the Fourier transform
of the pattern we placed on the SLM. We use gradient descent
optimization to find a complex wavefront u(t+1) minimizing

∑
j

∣∣∣I(t,j) − |hj ⋆ u(t+1)|2
∣∣∣2 . (28)

This optimization is subject to local minima, and it is hard to give
any analytic guarantees about its convergence. Below we con-
duct numerical simulations comparing its empirical convergence
to the analytical predictions from point diffraction interferome-
try.

Numerical evaluation. We sample transmission matrices To, T i

such that each row is a random i.i.d. complex Gaussian random
vector. For simplicity all rows have the same mean τo

k. We
transform the noise vectors to the Fourier domain and set to zero
any frequency above NA = 0.5. In the primal domain, we limit
the speckles in a Gaussian window of STD 20µm, as the speckles
imaged in our setup have a limited support and do not spread
over the full sensor. We assume K = 20 fluorescent sources.
We initialize with a uniform excitation and apply the power
method as we described above. We simulate phase acquisition
with ideal noise-free point diffraction interferometry, and also by
solving the phase diversity optimization of Eq. (28), which may
converge to local optima. In Fig. 1(a-b) we plot the vectors α(t)

we obtain in the first three iterations of the algorithm. For ease
of visualization, we sort the entries of this vector by decreasing
order of wk, so that the maximal eigenvalue is always at k = 1.
We also normalize the plotted vectors to sum to 1. With both
acquisition schemes, within a small number of iterations α(t)

is a one-hot vector. In each case we plot a dashed line with
the expected values following the model of Eq. (25). Even the
point diffraction interferometry values do not match this model
precisely, because the transmission matrices we sample have
random rows which have low correlation, yet their correlation is
not precisely zero as assumed in Eq. (7). Despite this difference,
the convergence rate of both schemes qualitatively agrees with
the model predictions.

To statistically assess the differences between the model of
Eq. (25) and the empirical phase retrieval results, we sample
50 random transmission matrices and apply on each the first
iteration of the power method. For this, we use an initial excita-
tion such that |T i

k,:u
(0)| is uniform.We measure intensities using

the point diffraction interferometry or phase diversity schemes,
recover the phase of u(1), and compute the vector

α
(1)
k = w2

k |T
i
k,:u

(1)|2. (29)

To assess the sparsity of this vector, we measure

s = max
k

α
(1)
k

∑k α
(1)
k

. (30)

Ideally we want s to be as close to 1 as possible. According to
the model in Eq. (25) the sparsity of the eigenvalues after one
iteration should be equivalent to

so = maxk
w6

k

∑k w6
k

. (31)

In Fig. 1(c), we evaluate spdi and spd using the point diffrac-
tion interferometry and phase diversity schemes for 50 differ-
ent transmission matrices. For the k-th random transmission
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Fig. 1. Numerical convergence evaluation. (a-b) two typical examples
for the α(t) values corresponding to the energy in different fluorescent
sources for the first three iterations of the algorithm. We compare the
convergence with an idealized noise free point diffraction interferometry
scheme and the phase diversity optimization we use in practice. In each
case we plot in dashed lines the prediction of the model in Eq. (25),
with qualitative match to what we measure in practice. The graphs are
plotted as a function of the bead index k, where for ease of visualization
we sort the eigenvalues in decreasing order of the bead strength wk so
that the strongest eigenvalue appears in the first place. (c) Comparing
the sparsity of α(1) to the model prediction for 50 random transmission
matrices. Examples that match the model prediction should lie on the
dashed diagonal line and indeed point diffraction interferomety results
are concentrated around the diagonal line. Phase diversity optimization
is often sparser than the model prediction (above the diagonal line) but
can also be of lower quality.

matrix, we plot the 2D points (sk
o, sk

pdi) and (sk
o, sk

pd). The plot
demonstrates that, in practice, the sparsity of phase diversity is
equivalent or even better than point diffraction interferometry.
If spdi and spd matched the so prediction, all points should lie
on the diagonal dashed line marked in the figure. We see that,
for point diffraction interferometry, spdi is proportional to so,
but is not exactly equivalent to it, as the decorrelation assump-
tion of Eq. (7) does not hold exactly. We obtained the result of
phase diversity acquisition using gradient descent optimization,

Three shifts of correction pattern and the resulting images.

Combined reconstruction Reference

Fig. 2. Using the tilt-shift memory effect to see a wide area behind the
tissue. The top row demonstrates three different shifts of the recovered
correction pattern. The second row demonstrates the image we capture
by placing this shifted mask on the SLM of the imaging arm. Each shift
allows us to see a different sub-region of fluorescent sources. By merging
21 × 21 such shifts we get the wider image in the lowest row. Compare
this reconstruction against the reference from the validation camera.

which does not always converge to a global optimum. The plot
in Fig. 1(c) illustrates that, in most cases, this solution is actu-
ally better than the so prediction (points above the dashed line),
though for some transmission matrices the solution is worse,
and the points lie below the dashed lines.

2. TILT-SHIFT CORRECTION

Below we explain the acquisition of the last row of Fig. 5 in
the main paper. Given a wavefront shaping modulation that
applies to one fluorescent particle inside the tissue sample, we
correct nearby ones using the tilt-shift memory effect. For that,
we denote by uo1

x , uo2
x two speckle fields obtained on the sensor

plane of our main camera (where x denotes spatial position
on this plane), generated by fluorescent particles at o1, o2. We
focus the objective such that the sensor plane is conjugate to the
plane containing the fluorescent sources. The tilt-shift memory
effect [6, 7] implies that, for small displacements, uo1 is correlated
with a tilted and shifted version of uo2 :

uo1
x ∼ uo2

x+∆eikα<∆,x> (32)

with ∆ = o2 − o1 the displacement between the sources. If there
was no tilt, and the speckle at the image plane could be explained
by pure shift, placing in the Fourier plane the Fourier transform
of uo1

x would correct the emission from o1 and the emission from
nearby points o2. Given the tilt, the Fourier correction for o2
should be a shifted version of the Fourier correction of o1. To
account for this, we place in the Fourier plane of our imaging
arm shifted versions of our recovered mask. Fig. 2 illustrates
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that each such shift allows us to see the fluorescent particles
in a different local region. By scanning multiple shifts of the
modulation mask, we construct a wider image of the fluorescent
particles inside the tissue sample, as shown in the last row of
Fig. 2 and in Fig. 5 of the main paper.

3. ADDITIONAL RESULTS

Most experiments in this paper used chicken breast tissue, whose
optical properties have been characterized by [8], reporting an
anisotropy parameter g = 0.965 and a mean free path (MFP)
around 43.7µm. In practice, these numbers may vary signif-
icantly between different tissue slices. We also demonstrate
results on two other materials whose optical properties are bet-
ter characterized. First, as in [6] we used 10µm polystyrene
micro-spheres dispersed in agarose. Using Mie theory we com-
pute the anisotropy parameter of this dispersion to g = 0.98.
Sample thickness was 500µm and we measured its optical depth
as OD = 5.9. Results on this sample are demonstrated in Fig. 3.
In addition, we used parafilm, whose optical properties were
characterized by [9]. This has an anisotropy g = 0.77 and a
MFP around 170µm, where each layer is 120µm thick. In Fig. 4
we demonstrate focusing through one and two parafilm layers.
While the OD here is not high, the parafilm has a much wider
scattering angle and the speckle spread on the sensor is very
wide. As the fluorescent emission is weak in power, for the two
layer example the speckle images we measure involved a lot of
shot noise and the algorithm convergence was not very stable.

4. CALIBRATION AND ALIGNMENT

Below we elaborate on various calibration and alignment details.
First, to correctly modulate the Fourier transform of the wave,

the illumination SLM needs to be at the focal plane of the lens
right after it (L2 in the system figure), and the imaging SLM at
the focal plane of the lens before it (L5). We do this alignment
using another camera focused at infinity. We use this camera
to view the SLM through the relevant lens, forming a relay
system. We adjust the distance between the SLM to the lens
until the calibration camera can see a sharp image of the SLM
plane. We also ensure that the distance between the sensor of
the main/validation cameras and the lenses L6/L7 attached to
them is set such that the cameras focuse at infinity.

A second step of the alignment is to focus the excitation
laser and the system camera on the same target plane. In our
setup the sample and the objective of the validation camera are
mounted on two motorized z-axis (axial) translation stages. We
use fluorescent beads with no tissue and adjust the axial distance
between the sample and the objective of the main camera (Obj1
in the setup figure) such that the main camera sees a sharply
focused image of the bead. Then we adjust the distance of the
validation objective (Obj2 in the setup figure) from the beads so
that we see a sharp image of the same beads in the validation
camera. We then want the laser to generate its sharpest spot on
the same plane. Assuming the validation and main camera are
focused at the same plane, we adjust the position of the lens L3
until the validation camera sees a sharp laser spot.

After the system has been aligned we need to determine two
mappings. The first one is between frequencies to pixels on the
SLM. A second, more challenging one is the registration between
the two SLMs, so that we can map a pixel on the imaging SLM to
a pixel on the illumination SLM controlling the same frequency.
We start with a mapping between frequencies to the SLM on

the imaging arm. We first put a calibration camera that can
image the camera SLM plane directly when it receives light from
fluorescent beads. This allows us to see an illuminated circle
on the SLM plane, corresponding to the numerical aperture of
the imaging system. The center of this circle gives us a first
estimate of the zero (central) frequency of the Fourier transform.
Assuming we know the focal length of L5, the SLM pitch and
the wavelength of the emitted light, we can map frequencies to
SLM pixels using simple geometry. Alternatively we can display
on the SLM sinusoidals of various frequencies. This shifts the
image on the sensor plane. By measuring the shift resulting
from each sinusoidal we can calibrate the mapping between
frequencies to SLM pixels. To align between the two SLMs we
find a region behind the tissue where a single isolated bead is
excited so that optimizing the phase diversity cost provides the
correct modulation pattern with a single power iteration. We
need to determine how to position this modulation on the SLMs
keeping in mind that tilt and shift on these planes may impact
the results. For the imaging SLM this is less of an issue because
we have already marked the zero frequency and because a tilt of
the imaging SLM only shifts the position of the spot on the sensor.
However, if the illumination SLM is not registered correctly we
may see a sharp spot behind the tissue but it will be shifted from
the bead of interest and will not excite it. Thus, we tilt and shift
the modulation on the illumination SLM until we see the bead
is excited in the validation camera, or alternatively, until the
intensity we measure on the main camera (when the modulation
correction is on) is maximized. After this is achieved we can fine
tune the shift on the imaging SLM, which is equivalent to the
position of the zero (central) frequency that we have previously
marked by looking at the illuminated circle.

Once the system has been calibrated and aligned the algo-
rithm can proceed as described above. For the phase diversity
we use j = 5 random, phase-only, modulation masks H j. We
start by sampling values for each SLM pixel independently, but
we then low pass the masks H j to limit the spread of the con-
volution kernels hj in the image domain, so that the limited
fluorescent energy is not split between too many sensor pixels.
We chose the support of hj to be about the same as the spread of
the speckle pattern we observe in an unmodulated image.

To use a recovered modulation pattern to image a larger
region of beads we use the tilt shift memory effect. To apply the
scan we need to recover the parameter α of Eq. (32), determining
the ratio between the tilt and shift. For that, after we recover the
modulation pattern we place it on the illumination SLM and use
the validation camera to view the focused spot. We then adjust
the ratio between tilt and shift of the modulation pattern so that
we can move the focused spot in the validation camera, while
preserving maximal intensity.
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Fig. 4. Algorithm convergence on a parafilm scattering phantom. The top example uses a single parafilm layer and the second one images through two
such layers. We demonstrate views via the main camera seeing the front of the tissue with and without the modulation correction. We also demonstrate
the view from the validation camera observing fluorescent beads directly, with and without a bandpass filter. Note the different scale bar in different
rows, some rows zoom only on the center of the speckle pattern.
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