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Abstract— The problem of a wireless terminal sending in-
formation to a remote destination via agents with reliable
connections is investigated. Such a setting typifies, nomadic users
communicating with access points to a wireless network, where
each access point (agent) is equipped with a prescribed reliable
connection bandwidth. The agents are assumed to be ignorant of
the code-book employed by the nomadic user, and hence they are
not able to decode messages. We focus here on a decentralized
quantization based approach, and provide outer and inner
bounds for the reliable transmission rate when the channel
between the user to the agents is a general broadcast channel. For
a Gaussian channel model, the best reliable rate is determined
when the transmitter uses typical Gaussian codewords.

I. I NTRODUCTION

Information theory view of networks and especially wireless
networks is in the focus of an extensive research activity. This
interest is partly due to many recent results about the multiple
antenna channel, which demonstrate significant improvements,
especially for the fading channels.
Many papers propose and analyze ad-hoc wireless network
in information theoretic terms. Among these, reported com-
parisons between relaying and dirty paper coding are [2]
and coding schemes which achieveO(n) transport capacity
[1]. The relaying technique, or as is sometimes called multi-
hop, makes use of several intermediate wireless nodes to
assist the communication between two nodes. An information
theoretic framework for the relay channel was given by El
Gamal and Cover in [3] for a single relay node and extended
by [4] to several relaying nodes. Relaying can be coarsely
divided into compress-and-forward and decode-and-forward,
depending on whether the relays decode the transmitted mes-
sage or just forward the processed received signal to the
destination. Relaying schemes can take advantage of their
common knowledge for the sake of forwarding to the final
destination. This cooperation is commonly used, for example
in [5],[6]. Cooperation between receiving nodes in a degraded
broadcast channel is described in [7]. We conclude that an
upper bound derived by [8] suggests that as the number of
users in an ad-hoc network is going to infinity, the total rate per
user tends to zero. This bound motivates the use of networks
that are not solely ad-hoc, but are composed of base stations
or access points as well.
The problems of conveying a source which is observed by
remote agents to a single destination are built around similar
settings, where the source is modelled as an i.i.d. random
variable. Different aspects of these problems are analyzed in

information theoretic frameworks such as distributed source
coding, CEO [9] and sensor networks. The setting of wireless
network with base stations and/or access points is closely
related to these problems, as is evident in this presentation. A
small list of papers that are relevant to this end are [10],[11]
for distributed reconstruction of the sources. Distributed lossy
reconstruction of sources, as opposed to central processing
[12] is still essentially unsolved. The Gaussian CEO problem
[13],[14],[15] which was recently solved by the entropy power
inequality. Multi-terminal lattice approaches are described in
[16]. Relating these rate-distortion problems to the network
scenario is the subset of [17],[18],[19]. The use of other
measures instead of the distortion is addressed in [20]. The
dissertation of Schein [21] focuses on the characteristics of
the problem of communicating via two agents, and several
achievable rates are demonstrated.
Here we consider the problem of reliable communication of
a nomadic transmitter through non-decoding agents which are
connected via lossless links to the final destination. The agents
use a distorted version (via their respective channels) of the
transmitted message, and are able to transmit a predetermined
number of bits to the destination without any errors. The
destination is reached only via the agents which serve as
access points. The rest of the paper is organized as follows: in
section II the setting of the problem is given. An achievable
rate and an upper bound are presented in sections III and IV
respectively. The Gaussian channel is presented as an example
in section V which also includes a complete characterization
of the rate-region for the case where the agents are unaware
of the code used. We use capital letters for random variables,
capital letter with subscriptXi denotes thei-th element in a
random vector and capital letter with superscriptXn denotes
the vector (X1, . . . , Xn). When using the notationXm

k it
refers to the vector(Xk, . . . , Xm). A calligraphic letterX
denotes the signal space of the random variableX or a set
T .

II. PROBLEM SETTINGS

We consider the problem of a single transmission throughT
agents, playing the role of decentralized processors, as is seen
on figure 1. For the purpose of stating a converse to the case
where the agents do not know the codebook, we artificially
introduce random code for the transmitterS. Such random
coding is also used in [22] for a miss-match scenario, while the
advantages of random codebooks were demonstrated in [23].



The following properties hold (unless clearly stated otherwise)
for the scheme described in this presentation:

1) Define C as the ensemble of allNC = |X |k2kR

code-
books with rateR, codeword length ofk and input
channel alphabet ofX . Let F denote a key which is
an index into a code fromC, so 1 ≤ F ≤ NC .

2) In an initialization stage, the transmitterS randomly
selects the keyF . It then sends to the channel the signal

Xk = φS,F (M) : I2Rk → X k (1)

duringk channel uses, whereφS,F represents the coding
with code F and M is the message to be sentM =
[1, 2kR]. The keyF is chosen fromNC according to the
probability

PF (F ) =
2kR∏

M=1

PXk(φS,F (M)) (2)

and PXk(Xk) =
∏k

i=1 PX(Xi), for some single letter
probability PX(X).

3) T agentsA1, . . . , AT , receive thek outputs of a mem-
oryless broadcast channel

PY k
1 ,...,Y k

T |Xk(Y k
1 , . . . , Y k

T |Xk) =
k∏

i=1

PY1,...,YT |X(Y1,i, . . . , YT,i|Xi), (3)

whereYt ∈ Yt.
4) The agents are not informed about the the keyF but

know C and thereforePX(X). All agents encode every
n ≤ k channel outputs (wherem = k/n is an integer)
with T encoding functions:

0 < t ≤ T, 0 < j ≤ m :

Vt,j = φAt(Y
jn
t,(j−1)n) : Yn

t → ICtn. (4)

WhereCt is the capacity in bits per channel use of a
lossless link which connects the final destinationD to
the agentAt.

5) The final destinationD knows all the encoding functions
in the system, the code ensembleC and most important,
the chosen keyF . DenoteT , {1, . . . , T}. So D can
decode the messageM from the setV m

T of m = k/n
length T vectors V m

T , (VT ,1, . . . , VT ,m) which are
sent to the destination from theT agents:

M̂ = φD,F (V m
T ) : I2m

∑
nCt → I2kR . (5)

Notice that with the knowledge ofF , Xk is uniformly
distributed over2kR codewords, while without the key,Xk

is distributed according to
∏k

i=1 PX(Xi). We use the two
following simple lemmas in the sequel:

Lemma 1:Without the key F , the received vectorXk

is distributed according toPXk(Xk) =
∏k

i=1 PX(Xi), and
due to the memoryless property,Y k

t are also distributed as
PY k

t
(Y k

t ) =
∏k

i=1

∑
X PYt|X(Yt,i|X)PX(X). This lemma is

proved in appendix I.
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Fig. 1. Scheme of a system with two agents between the transmitter and the
destination

Lemma 2:The chosen code bookF is identical to a stan-
dard single codebook which is constructed by randomly and
independently selecting codewords according to the probabil-
ity law PXk(Xk) =

∏k
i=1 PX(Xi).

Proof: It is easy to see from the probability laws and
the fact that all possible codebooks are considered, that the
resulting codebooks are chosen with the same probability.
These settings correspond to the situation where the final des-
tination decodes the message from the transmitter via simple
agents who are not able to decode the transmitted message and
use short compression schemes of the received signals. This
enables to relate to the problem with two separated problems:
first we would like to build agents that will convey the received
signals to the destination so the reliable transmission rate is
maximized, and secondly we would like to design a transmitter
that will maximize the total rate.

III. A N ACHIEVABLE RATE

The following theorem is proven in appendix III.
Theorem 1:if the codebook ensembleC contains codes

within the rate:

R < max I(X;UT ) (6)

under the constraints

∀S ⊆ T :
∑

t∈S
Ct > I(US ; YS |USC ) (7)

the transmitted message can be decoded correctly in the des-
tination using a suitable encoder, decoder and agent encoders.
The maximization in (6) is overPX,UT ,YT (X, UT , YT ) such
that:

PX,UT ,YT (X,UT , YT ) =

PX(X)PYT |X(YT |X)
T∏

t=1

PUt|Yt
(Ut|Yt). (8)

The following Markov relations hold as a consequence of (8):

Ut − Yt − {X, UT \t, YT \t}. (9)

Since this achievable region is attained through the use of
compression which is independent of the message index and
the codebook used by the transmitter, the proof is valid for
agents which are ignorant of the code used by the nomadic
transmitter.



IV. A N OUTER BOUND

We start by stating the maximum rateR so error free
decoding is possible at the destination, when the agents’
encoding functions are given. Using Fano’s inequality, an error
free decoding at the destination is possible only if:

H(M |V m
T , F ) ≤ kεk, (10)

wherekεk → 0 ask →∞.
DefineXj , (X(j−1)n+1, . . . , Xjn), now we have:

kR = H(M) = I(M ; V m
T , F ) + H(M |V m

T , F ) (11)

≤ H(V m
T ) + H(F |V m

T )−H(F |M) +
−H(V m

T |M, F ) + kεk (12)

= I(V m
T ;M, F )− I(F ; V m

T ) + kεk (13)

≤ I(V m
T ;M, F ) + kεk (14)

= I(Xk(M, F ); V m
T ) + kεk (15)

≤
m∑

j=1

H(VT ,j)−H(VT ,j |Xj) + nεk (16)

≤ m max
P (X)

I(VT ; Xn) + kεk, (17)

where (13) is sinceF is independent withM so H(F |M) =
H(F ) and (16) is due to properties 3 and 4. From (17) we
conclude that the transmission rateR is upper bounded by

R ≤ max
P (X)

1
n

I(VT ; Xn). (18)

Turning to the agents, we would like to upper bound the
maximization of

1
n

I(VT ; Xn), (19)

over the encoding functions of the agents without the keyF .
By definingUS,i , (VS , Y i−1

T , Xi−1) we get to the following
theorem, which is proved in appendix II and by theorem 2 of
[13]:

Theorem 2:The maximum achievable rate when the agents
do not know the codebook keyF is

R ≤ max I(X; UT ), (20)

andUT must fulfill the constraints:

∀S ⊆ T :
∑

t∈S
Ct ≥ I(US ; YT |USC ). (21)

and considering lemma 1, also fulfill the following Markov
relations:

Ut − Yt − {X, YT \t}. (22)

The difference between theorems 1 and 2 besides the differ-
ence of (7) and (21), is that for the former

PUt|YT ,UT \t
(Ut|YT , UT \t) = PUt|Yt

(Ut|Yt) (23)

and for the latter

PUt|YT ,UT \t
(Ut|YT , UT \t) = PUt|Yt,UT \t

(Ut|Yt, UT \t).
(24)

V. THE GAUSSIAN CHANNEL

In this section we explore the Gaussian channel. Using the
latest results on the Gaussian CEO rate-distortion problem
[15], a converse for the maximum achievable rate is shown
for the former case.
We use the results of section III with continuous alphabets,
where the extension relies on standard arguments.

A. The capacity

For the Gaussian channel, assume thatYt = X + nt

whereX,nt are independent Gaussian random variables with
EX2 = PX andEn2

t = Pnt
. As specified since we deal with

non-decoding agents, with ”typical” codebooks,X is i.i.d.
according toPX(X).

Theorem 3:The capacity for this case is

R ≤ max
rt≥0

min
S⊆T

∑

t∈S
Ct−rt+

1
2

log2

(
1 + PX

∑

t∈SC

1− 2−2rt

Pnt

)
.

(25)
This is proved by showing that the region of minimum required
links C , (C1, . . . , CT ) which are sufficient for communica-
tion with rateR is equal to the region of minimum linksC ,
(C1, . . . , CT ) which are necessary for communicating with
rate R. An adaptation of [15] to a communication problem
instead of the quadratic distortion is used to this end. The
altered proof is briefly scatched here.
First, the sum-rate under the constraints

m∑
t=1

Ct ≤ am, m = 1, . . . , T − 1 (26)

is shown to be

Cmin(a1, . . . , aT−1) = R + min
rt≥0

T∑
t=1

rt (27)

where the minimum is over the space:





∀ 1 ≤ t ≤ T : rt ≥ 0
∀ 1 ≤ m ≤ T − 1 :∑m

t=1 rt + R− 1
2 log2

(
1 + PX

∑T
t=m+1

1−2−2rt

Pnt

)
≤ am

R = 1
2 log2

(
1 + PX

∑T
t=1

1−2−2rt

Pnt

)
.

(28)
The direct part of this sum rate is subtantiated by the contra-
polymatroid form of the achievable region which is evident in
[15] or [13]. The converse part is shown in appendix IV using
[15] via the entropy power inequality.
Next it is shown that the above sum-rate identity leads to
identical rate-regions (C(R) ≤ C(R)). This is since both
regions are convex [15] and since for all non-negative vectors
(α1, . . . , αT ),

min
(C1,...,CT )∈C(R)

T∑
t=1

αtCt ≥ min
(C1,...,CT )∈C(R)

T∑
t=1

αtCt. (29)



Identity (29) is proved in [15] as follows. Assume thatα1 ≥
· · · ≥ αT , then

min
(C1,...,CT )∈C(R)

T∑
t=1

αtCt

≥ min
(C1,...,CT−1)∈C(R)

αT Cmin

(
C1, . . . ,

T−1∑
t=1

Ct

)

+
T−1∑
m=1

(αm − αm+1)
m∑

t=1

Ct

≥ min
(r1,...,rT )

αT (R +
T∑

t=1

rt) +
T−1∑
m=1

(αm − αm+1)×
(

m∑
t=1

rt + R− 1
2

log2

(
1 + PX

T∑
t=m+1

1− 2−2rt

Pnt

))
,

(30)
where {rt} must satisfy the last equality of (28). Now the
minimizers {rt} can be used in the direct part of (27),
completing the argument.

B. Example of two equivalent agents

Next we consider the case where there are only two users
with Pn1 = Pn2 and withC1 = C2 = C. Recall that a simple
uppr bound for this case can be derived from the cut-set bound,
which appears in [24]. This bound for our case reduces to:

R ≤ min
[
1
2

log2

(
1 + 2

PX

Pn

)
, 2C

]
. (31)

We denote the term1
2 log2

(
1 + 2PX

Pn

)
in (31) as the MIMO

upper bound, since it is identical to the maximum achievable
rate whenC →∞.
The achievable rate of (6) can be calculated by maximizingR
over R, r1, r2 such that following set of inequalities is valid:





R ≤ C − r1 + 1
2 log2

(
1 + PX

1−2−2r2

Pn

)

R ≤ C − r2 + 1
2 log2

(
1 + PX

1−2−2r1

Pn

)

R ≤ 2C − r1 − r2

R ≤ 1
2 log2

(
1 + PX

2−2−2r1−2−2r2

Pn

)
(32)

Solving for the case where the two lower inequalities are active
results with the rate of:

R =
1
2

log2

(
1 + 2S

(
1−

√
S2 + 24C(1 + 2S)− S

24C

))
.

(33)
whereS = PX

Pn
. This solution fulfilles the inequalities (32) and

thus is the capacity for the problem. Figure 2 demonstrates this
achievable rate for severalC values as a function of the signal
to noise ratioS. It is noticed that for the lower values ofS, the
achievable rate is near optimal for a system with fixed users,
and that at most 0.7 bit per channel use is lost to maintain the
scheme robustness.
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Fig. 2. The achievable rates of systems with two equivalent agents versus
the signal to noise ratio in dB where 5 different values ofC were considered.
The dashed lines represent the cut-set bounds where the flat lines are2C and
the MIMO upper bound is the upper-left dashed line.

VI. CONCLUSION

The case of communication of nomadic transmitter via
separated non-cooperative agents is presented. The agents are
assumed to be ignorant about the codebook used, and the
scheme is robust of the codebooks used by the transmitter.
A direct coding theorem based on decentralized quantization
and an outer bound are presented. Considering the Gaussian
channel, a converse is proved by the entropy power inequality.
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APPENDIX I
PROOF OFLEMMA 1

In this section we show that when the keyF in unknown the
transmissionXk is a memoryless random process, distributed
according to:PXt1 ,...,XtL

(Xt1 , . . . , XtL
) =

∏tL

t=t1
PX(Xt)

for all tL , t1 < · · · < tL and all XtL , Xt1 , . . . , XtL
.

We have that

PXt1 ,...,XtL
(Xt1 , . . . , XtL) =∑

F,M :(φS,F (M))tL=XtL

PF,M (F, M). (34)

Now since we consider all possible codebooks, we consider
also all the possible2kR! permutations of every codebook, so
the above is equal to:

PXt1 ,...,XtL
(Xt1 , . . . , XtL

) =
2kR∑

M=1

∑

F :(φS,F (M))tL=XtL

PF |M (F |M)PM (M) =

∑

F :(φS,F (M=1))tL=XtL

PF |M (F |M = 1). (35)



Now we calculateP (F |M = 1) and sum over all the possi-
ble |X |(2kR−1)k+k−L codebooksF , that is over all possible
XtLC

, Xk(M = 2), . . . , Xk(M = 2kR). We get that:

PXtL (XtL) =
tL∏

t=t1

PX(Xt)
∑

XtLC
,Xk(M=2),...,Xk(M=2kR)

∏

j∈tLC

PX(Xj)
∏

i=[1,k2kR−k])

PX(Xi) =
tL∏

t=t1

PX(Xt). (36)

Concluding the proof.

APPENDIX II
PROOF OF THE OUTER BOUND OFTHEOREM (2)

Turning to the agents, we would like to upper bound the
maximization of

1
n

I(VT ; Xn), (37)

over the encoding functions of the agents, when the agent do
not knowF :

I(VT ; Xn) = H(Xn)−H(Xn|VT ) (38)

=
n∑

i=1

H(Xi)−H(Xi|VT , Xi−1) (39)

≤
n∑

i=1

H(Xi)−H(Xi|VT , Y i−1
T , Xi−1)(40)

=
n∑

i=1

H(Xi)−H(Xi|UT ,i) (41)

≤ n max I(X; UT ). (42)

WhenUS , (VS , Y i−1
T , Xi−1) for anyS ⊆ T .

The random variablesUS must also fulfill the following
constraints:

n∑

i=1

I(US,i; YT ,i|USC ,i) (43)

=
n∑

i=1

I(VS , Y i−1
T , Xi−1; YT ,i|VSC , Y i−1

T , Xi−1)(44)

=
n∑

i=1

I(VS ; YT ,i|VSC , Y i−1
T , Xi−1) (45)

≤
n∑

i=1

I(VS ; YT ,i|VSC , Y i−1
T , Xi−1) + (46)

I(VS ; YT ,i, Xi|VSC , Y i
T , Xi−1) (47)

=
n∑

i=1

H(VS |VSC , Y i−1
T , Xi−1) + (48)

−H(VS |VSC , Y i
T , Xi−1) + H(VS |VSC , Y i

T , Xi−1) + (49)

−H(VS |VSC , Y i
T , Xi) (50)

=
n∑

i=1

I(VS ; YT ,i, Xi|VSC , Y i−1
T , Xi−1) (51)

=
n∑

i=1

H(YT ,i, Xi|VSC , Y i−1
T , Xi−1) + (52)

−H(YT ,i, Xi|VT , Y i−1
T , Xi−1) (53)

= H(Y n
T , Xn|VSC )−H(Y n

T , Xn|VT ) (54)

= H(VS |VSC )−H(VS |VSC , Y n
T , Xn) (55)

= H(VS |VSC ) ≤ n
∑

t∈S
Ct, (56)

Combining (56) and (42) and following the proof ofLemma
7 in [13] we prove theorem 2.
Notice the following equality which is due to Lemma 1, and
the memoryless channel:

H(Xi, YT \t,i|Yt,i) = H(Xi, YT \t,i|Yt,i, Y
n
t,i+1, X

i−1, Y i−1
T ).

(57)
This identity implies that:

0 = I(Xi, YT \t,i;Y n
t,i+1, X

i−1, Y i−1
T |Yt,i)

≥ I(Vt, X
i−1, Y i−1

T ; Xi, YT \t,i|Yt,i), (58)

Due to data processing inequality. ThusUT in theorem 2 also
fulfill the Markov relations (22).

APPENDIX III
PROOF FOR THE ACHIEVABLE RATE

For the proof we use ideas from [25], which presents an
achievable rate region for compress and forward technique
for the multiple relays problem. The difference being that
the agents benefit from a fixed non-interfering links to the
destination, thus multiple access communication and the in-
terferences of simultaneously transmitting relays are avoided.
Notice that the construction of the compression does not
assume knowledge of the codebook at the agents. The network
is composed ofT agentst ∈ T = {1, . . . , T}, a source
transmitter and a final destination. Apposed to [25], we do
not need theblock Markov encodingtechnique here.

The transmitter is sendingXn(M) where M ∈ [1, 2nR].
The t-agent compresses the received signalY n

t into zt, where
zt ∈ [1, 2nR̂t ]. Since the compressed signals{zt} are depen-
dent with each other and withMT , bandwidth from the agents
to D can be saved by using the Slepian-Wolf (SW) lossless
distributed source coding. Each agent usesCt to send the
compression information. So by using SW the agents send
{St ∈ [1, 2nCt ]}. The final destination usesS1, . . . , ST to
decodez1, . . . , zT . By knowing z1, . . . , zT it decodesM ∈
[1, 2nR]. The detailed proof goes as follows: we first describe
the code construction, in the transmitter and in the agents.
Next the processing at transmitter, agents and the decoding at
the final destination are given. The conditions (7) result from
the described construction so that whenn → ∞ the error
probability is arbitrary small.

A. Code construction:

For compress and forward transmission:
For everyt = (1, . . . , T ):



• Randomly generate2n[R̂t−Ct] vectorsUn
t according to

PUn
t
(Un

t ) =
∏

i PUt(Ut,i). Label theseUn
t (zt).

• Repeat the last step2nCt times so thatzt ∈ [1, 2nR̂t ]. For
each repetition label the resulting set ofzt by Sst where
st ∈ [1, 2nCt ].

• The message of thet-agent to the destination is therefore
st.

For everyM ∈ [1, 2nR]:
• Randomly chooseXn with PXn(Xn) =

∏
i PX(Xi).

Label theseXn(M), M = [1, 2nR].

B. Encoding:

Let M be the message to be sent, the source terminal then
sendsXn(M).

C. Processing at the agents:

1) Compression:The t agent chooses any of thezt such
that (

Un
t (zt), Y n

t

) ∈ Tt,1
ε . (59)

The probability of an independently generatedUn
t (ẑt) not to

be in Tt,1
ε is bounded from above by

1− 2n[H(Ut,Yt)−ε]

2n[H(Ut)+ε]2n[H(Yt)+ε]
= 2−n[I(Ut;Yt)+3ε]. (60)

So there is no suchzt with probability P which is upper
bounded by

P ≤ (
1− 2−n[I(Ut;Yt)+3ε]

)2nR̂t

(61)

It is easy to see that this probability goes to zero for sufficiently
largen as long as

R̂t > I(Ut;Yt). (62)

After deciding onzt the agent transmitsst which corresponds
to zt ∈ Sst .

D. Decoding (at the destination):

The destination finds the set of indicesẑT , {ẑ1, . . . , ẑT }
of the decoded indices of the compressed vectors which
satisfies {(

Un
1 (ẑ1), . . . , Un

T (ẑT )
) ∈ T3

ε

ẑT ∈ (Ss1 , . . . , SsT ).
(63)

Error analysis:
Assume that̂zS 6= zS and ẑSC = zSC for someS ⊆ T . Such
vector is distributed according toPUSC (USC )

∏
S PUt(Ut).

Thus the probability that such vector belongs toT3
ε is upper

bounded by

2n[H(UT )+ε]

2n[H(USC )−ε])2n[
∑

t∈S H(Ut)−ε]
=

2n[H(UT )−H(USC )−∑
t∈S H(Ut)+(|S|+2)ε]. (64)

Since there are at most2n
∑
S [R̂t−Ct] such vectors in the set

(Ss1 , . . . , SsT ), the probability of such error is upper bounded
by:

2n[
∑
S [R̂t−Ct−H(Ut)]+H(UT )−H(USC )+(|S|+2)ε]. (65)

Which means that as long as
∑

t∈S
Ct >

∑

t∈S

[
R̂t −H(Ut)

]
+ H(US |USC ) (66)

for all S ⊆ T , the destination will be able to reliably decode
zT for sufficiently largen.
Now the destination decides thatM was sent if

(
Xn(M), Un(ẑT )

) ∈ T4
ε . (67)

The probability that there existŝM 6= M that satisfies (67) is
upper bounded by

2−n[I(X;UT )−3ε]. (68)

Now summing over2nR−1 and upper bounding, we find that
reliable detection ofM is possible if

R < I(X;UT ). (69)

Taking (62) and (66) and noticing that{Ut}t∈T are indepen-
dent given(Yt) we can write the constraints as:

∀S ⊆ T :
∑

t∈S
Ct > I(US ;YS |USC ). (70)

Which proves (7). The achievable rate (6) is through (69).

APPENDIX IV
DIRECT AND CONVERSE FOR(27)

A simple compression scheme where:

Ut = Yt + Wt, (71)

and Wt is a Gaussian i.i.d. random variable independent of
Yt (no connection withW in the previous appendices) is used
for the direct part.
This scheme leads to

Ut = X + dt, (72)

and
Dt , Ed2

t = Pnt + PWt . (73)

Definert , I(Yt;Ut|X), which can be written as

rt = H(Ut|X)−H(Ut|Yt, X)

=
1
2

log2 (2πeDt)− 1
2

log2 (2πePWt)

= −1
2

log2

(
1− Pnt

Dt

)
,

(74)

andDt in terms ofrt

1
Dt

=
1− 2−2rt

Pnt

. (75)

The terms{rt} can take any positive value, when{Dt} are
determined accordingly (this space{R+}T is limited as seen in



the next lines, by the SW compression). The last equality can
be used to express the maximum mutual information (through
maximal ratio combining) in terms of{rt} betweenX and
some subsetUS

I(X; US) =
1
2

log2

(
1 +

PX

(
∑

t∈S Dt)−1

)
(76)

=
1
2

log2

(
1 + PX

∑

t∈S
Dt

)
(77)

=
1
2

log2

(
1 + PX

∑

t∈S

1− 2−2rt

Pnt

)
. (78)

Using (7) as a SW compression (since 9 is fulfilled) we get
for {rt} andR in the above simple memoryless compression

∑

t∈S
Ct ≥ I(US ; YS |USC ) (79)

= I(X, YS ; US |USC ) (80)

= I(X; US |USC ) + I(YS ; US |X) (81)

= I(X; UT )− I(X;USC ) +
∑

t∈S
I(Yt; Ut|X) (82)

= I(X; UT )− I(X;USC ) +
∑

t∈S
rt, (83)

where rt , I(Yt; Ut|X) and (82) is true when using
memoryless compression, as described in (71).

With (78) these inequalities become

∑

t∈S
Ct ≥ 1

2
log2

(
1 + PX

∑

t∈T

1− 2−2rt

Pnt

)

− 1
2

log2

(
1 + PX

∑

t∈SC

1− 2−2rt

Pnt

)
+

∑

t∈S
rt. (84)

Which define a contra-polymatroid. The sum-rate of a poly-
matroid is known to be equal over all theT ! polymatroid
vertices [15]. By using the constraints (26) for the contra-
polymatroid, a permutation1, . . . , T − 1 for the vertex and
that R = 1

2 log2

(
1 + PX

∑
t∈T

1−2−2rt

Pnt

)
, the direct part of

the sum rate is proven [15].
The converse part is showed by using Oohama [14] rather than
through the results such as those of section IV. We have that

Cmin ≥
T∑

t=1

Ct ≥ 1
n

I(Y n
T ; VT ) (85)

=
1
n

I(Y n
T , Xn; VT ) (86)

=
1
n

I(Xn;VT ) +
1
n

I(Y n
T ;VT |Xn) (87)

≥R +
1
n

I(Y n
T ; VT |Xn) (88)

where (88) is due to (18). Now also by imposing the

conditions (26) we can get

am ≥ (89)
m∑

t=1

Ct ≥ 1
n

I(Y n
T ; V1,...,m|Vm+1,...,T ) (90)

=
1
n

I(Y n
T ; VT )− 1

n
I(Y n

T ; Vm+1,...,T ) (91)

=
1
n

I(Y n
T , Xn;VT )− 1

n
I(Y n

T , Xn;Vm+1,...,T )(92)

=
1
n

I(Xn; VT ) +
1
n

I(Y n
T ; VT |Xn) +

− 1
n

I(Xn;Vm+1,...,T ) +

− 1
n

I(Y n
m+1,...,T ; Vm+1,...,T |Xn)(93)

=
1
n

I(Xn; VT ) +
T∑

t=1

rt − 1
n

I(Xn; VT ) +

−
T∑

t=m+1

rt (94)

=
1
n

I(Xn; VT )− 1
n

I(Xn; Vm+1,...,T ) +
m∑

t=1

rt.(95)

Where (92) and (94) is sinceVt is a deterministic function
of Y n

t . These lead, by redefiningrt , 1
nI(Y n

t ;Vt|Xn) and
since the rateR is upper bounded by (18) to (27) with the
constraints

am ≥
m∑

t=1

rt + R− 1
n

I(Xn; Vm+1,...,T ) (96)

R ≤ 1
n

I(Xn; VT ). (97)

Now using the entropy power inequality, as in [14] it is seen
that:

2
2
n I(Xn;VS) ≤ 1 + PX

∑

t∈S

1− 2−2rt

Pnt

. (98)

So that we get to the constraints (28), where the last equal-
ity of (28) is since the constraintR ≤ 1

nI(Xn; VT ) ≤
1
2 log2

(
1 + PX

∑
t∈T

1−2−2rt

Pnt

)
is maximized with equality.
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