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Abstract—The problem of a wireless terminal sending in- information theoretic frameworks such as distributed source
formation to a remote destination via agents with reliable coding, CEO [9] and sensor networks. The setting of wireless
connections is investigated. Such a setting typifies, nomadic userspetwork with base stations and/or access points is closely
communicating with access points to a wireless network, where . . . . .
each access point (agent) is equipped with a prescribed reliable related. to these problems, as is evident in this presentation. A
connection bandwidth. The agents are assumed to be ignorant of Small list of papers that are relevant to this end are [10],[11]
the code-book employed by the nomadic user, and hence they arefor distributed reconstruction of the sources. Distributed lossy

not able to decode messages. We focus here on a decentralizedeconstruction of sources, as opposed to central processing
quantization based approach, and provide outer and inner 2] s stjl| essentially unsolved. The Gaussian CEO problem

bounds for the reliable transmission rate when the channel .
between the user to the agents is a general broadcast channel. For[13]'[14]'[15] which was recently solved by the entropy power

a Gaussian channel model, the best reliable rate is determined inequality. Multi-terminal lattice approaches are described in
when the transmitter uses typical Gaussian codewords. [16]. Relating these rate-distortion problems to the network
scenario is the subset of [17],[18],[19]. The use of other
measures instead of the distortion is addressed in [20]. The
Information theory view of networks and especially wirelesgissertation of Schein [21] focuses on the characteristics of
networks is in the focus of an extensive research activity. THise problem of communicating via two agents, and several
interest is partly due to many recent results about the multidehievable rates are demonstrated.
antenna channel, which demonstrate significant improvemertigre we consider the problem of reliable communication of
especially for the fading channels. a nomadic transmitter through non-decoding agents which are
Many papers propose and analyze ad-hoc wireless netweodanected via lossless links to the final destination. The agents
in information theoretic terms. Among these, reported corase a distorted version (via their respective channels) of the
parisons between relaying and dirty paper coding are [Bhnsmitted message, and are able to transmit a predetermined
and coding schemes which achie@¥n) transport capacity number of bits to the destination without any errors. The
[1]. The relaying technique, or as is sometimes called multiestination is reached only via the agents which serve as
hop, makes use of several intermediate wireless nodesatess points. The rest of the paper is organized as follows: in
assist the communication between two nodes. An informatisection Il the setting of the problem is given. An achievable
theoretic framework for the relay channel was given by Ehte and an upper bound are presented in sections Ill and IV
Gamal and Cover in [3] for a single relay node and extendeespectively. The Gaussian channel is presented as an example
by [4] to several relaying nodes. Relaying can be coarsdly section V which also includes a complete characterization
divided into compress-and-forward and decode-and-forwauf, the rate-region for the case where the agents are unaware
depending on whether the relays decode the transmitted mefsthe code used. We use capital letters for random variables,
sage or just forward the processed received signal to ttapital letter with subscripk; denotes the-th element in a
destination. Relaying schemes can take advantage of thaindom vector and capital letter with superscipt denotes
common knowledge for the sake of forwarding to the finahe vector(Xy,...,X,). When using the notationX}" it
destination. This cooperation is commonly used, for examplefers to the vecto(Xy, ..., X,,). A calligraphic letterX’
in [5],[6]. Cooperation between receiving nodes in a degraddénotes the signal space of the random variabler a set
broadcast channel is described in [7]. We conclude that dn
upper bound derived by [8] suggests that as the number of
users in an ad-hoc network is going to infinity, the total rate per Il. PROBLEM SETTINGS
user tends to zero. This bound motivates the use of networkdNe consider the problem of a single transmission thrdlfigh
that are not solely ad-hoc, but are composed of base statiagents, playing the role of decentralized processors, as is seen
or access points as well. on figure 1. For the purpose of stating a converse to the case
The problems of conveying a source which is observed lbyhere the agents do not know the codebook, we artificially
remote agents to a single destination are built around similatroduce random code for the transmitt&r Such random
settings, where the source is modelled as an i.i.d. rand@wding is also used in [22] for a miss-match scenario, while the
variable. Different aspects of these problems are analyzedaitvantages of random codebooks were demonstrated in [23].

I. INTRODUCTION



The following properties hold (unless clearly stated otherwise) Aiel”‘
for the scheme described in this presentation: Y1
1) DefineC as the ensemble of alVe = |X|*2*" code- Transmitter / CT™ Destination
books with rateR, codeword length oft and input X Agent D
channel alphabet oft'. Let F' denote a key which is A2
\YZ Cc2

an index into a code frord, sol < F < Ng.
2) In an initialization stage, the transmittef randomly

selects the key. It then sends to the channel the signal
¥ 9 Fig. 1. Scheme of a system with two agents between the transmitter and the

Xk _ ¢S,F(M) . IQRk N Xk (1) destination
during k channel uses, wheigs  represents the coding
with code F' and M is the message to be seif = Lemma 2: The chosen code book is identical to a stan-
[1,2kE]. The keyF is chosen from\; according to the dard single codebook which is constructed by randomly and
probability independently selecting codewords according to the probabil-

okR ity law PXk(Xk) = Hf:l Px (X;).
_ Proof. It is easy to see from the probability laws and
Pr(F) = Pxx M 2
# (F) H xx (95,0 (M) @ the fact that all possible codebooks are considered, that the

M=1
resulting codebooks are chosen with the same probabiity.

k .
and Pxx(X*) = [T;_, Px(X;), for some single letter These settings correspond to the situation where the final des-

probability Py (X). . tination decodes the message from the transmitter via simple
3) T agentsAl,..., AT, receive thek outputs of a mem- agents who are not able to decode the transmitted message and
oryless broadcast channel use short compression schemes of the received signals. This

enables to relate to the problem with two separated problems:

Pyp  vgx (V- Y XY = first we would like to build agents that will convey the received
k signals to the destination so the reliable transmission rate is
1P veix (Vi Yl Xi), (3)  maximized, and secondly we would like to design a transmitter
i=1 that will maximize the total rate.

whereY; € ;.

4) The agents are not informed about the the Keybut [1I. AN ACHIEVABLE RATE
know C and thereforePy (X). All agents encode every
n < k channel outputs (where. = k/n is an integer)
with T' encoding functions:

The following theorem is proven in appendix lll.
Theorem 1:if the codebook ensembl€ contains codes
within the rate:

0<t<T,0<j<m: R <maxI(X;Ur) (6)

Vij=0ac(Y (i 1)) 1 V¢ = Icin- (4 under the constraints

Where C; is the capacity in bits per channel use of a
lossless link which connects the final destinatibnto
the agentAt.

5) The final destinatiotD knows all the encoding functions the transmitted message can be decoded correctly in the des-
in the system, the code ensemBl@and most important, tination using a suitable encoder, decoder and agent encoders.

VSCT: Y C>I1(Us;Ys|Usc) (7)
tes

the chosen key". Denote7 £ {1,...,T}. So D can The maximization in (6) is ovePx v, v, (X, Ur,Yr) such
decode the messag¥ from the setV}" of m = k/n  that:
length T vectorsV;* & (Vr4,...,Vz.,) which are
sent to the destination from tHE agents: Px vr v (X, Ur,Y7) =
~ T
M = ) Lymy ney Irkr. 5
¢op,p(VT') : Iyms ne, — Iorr (5) PX(X)PYﬂ[lX(YﬂX)HPU,,|Yt(Ut|Y;&)' (8)

Notice that with the knowledge of", X* is uniformly
distributed over2*?* codewords, while without the keyx*
is disFributgd according t_q"[f:1 PX(Xi?. We use the two U, — Y, — {X,Upy, Yrul}- 9)
following simple lemmas in the sequel:

Lemma 1:Without the key F, the received vectorX* Since this achievable region is attained through the use of
is distributed according t&Py«(X*) = Hle Px(X;), and compression which is independent of the message index and
due to the memoryless property;* are also distributed asthe codebook used by the transmitter, the proof is valid for
Py (YF) = Hle > x P x (Y:,:]X)Px(X). This lemma is agents which are ignorant of the code used by the nomadic
proved in appendix I. transmitter.

t=1
The following Markov relations hold as a consequence of (8):



IV. AN OUTER BOUND V. THE GAUSSIAN CHANNEL

We start by stating the maximum rat& so error freé |n this section we explore the Gaussian channel. Using the
decoding is possible at the destination, when the agenfgest results on the Gaussian CEO rate-distortion problem
encoding functions are given. Using Fano’s inequality, an erpIs) a converse for the maximum achievable rate is shown
free decoding at the destination is possible only if: for the former case.

(M|VE, F) < ke, (10) We use the resul_ts of s_ection [Il with continuous alphabets,
where the extension relies on standard arguments.
whereke, — 0 ask — oo.

DefineX; £ (X(j_1yn+1, - - -+ Xjn), NOW We have: A. The capacity
kR = H(M)=I(M;V] F)+ HM|V? F) (11) For the Gaussian channel, assume that= X + n,
where X, n; are independent Gaussian random variables with
< H(V™+H(F|V])—-H(FIM ) 1t iyt ; .
< H(7 zj (FV7") (FM) + EX? = Py andEn2 = P,,. As specified since we deal with
—H(V7 |M F) + key, (12) non-decoding agents, with "typical” codebookX, is i.i.d.
= (V7 M, F) = I(F; V") + kep, (13) according toPy (X).
< IV ,M F) + key, (14) Theorem 3:The capacity for this case is
= I(XF(M,F); V") + key (15) Z 21—22”
m R < max min Ct—rt—|— logs | 1+ Px _
< SO H(Vry) - H(VrjX;)+ne, — (16)  n=0ScT 27 e Pn
Jj=1 (25)
< mmax I(Vr; X™) + ke, (17) This is proved by showing that the region of minimum required
P(X) links C' £ (C1,..., Cr) which are sufficient for communica-
where (13) is sincé” is independent with\/ so H(F|M) = tion with rateR is equal to the region of minimum link§ =

H(F) and (16) is due to properties 3 and 4. From (17) w1, ..., Cr) which are necessary for communicating with
conclude that the transmission rafeis upper bounded by rate R. An adaptation of [15] to a communication problem
instead of the quadratic distortion is used to this end. The
R < max I(VT,X") (18) altered proof is briefly scatched here.

PO First, the sum-rate under the constraints

Turning to the agents, we would like to upper bound the m

maximization of ) th Sap, m=1,...,T -1 (26)
EI(VT§X7L)7 (19) N

is shown to be
over the encoding functions of the agents without the key

.. ; . . T

By definingUs ; = (Vs, Y ', X*~1) we get to the following ' _ .
theorem, which is proved in appendix Il and by theorem 2 of Cumin(a1,--,ar-1) = R+ f?é%;” 27)
[13] =

Theorem 2:The maximum achievable rate when the agenyghere the minimum is over the space:
do not know the codebook ke¥ is

V1i<t<T:r,>0
RSmaxI(X,UT), (20) VlSmST—l
and U7 must fulfill the constraints: St e+ R — 4 logy (1 +Px 2") <anm
VS CT: ZCt>IUS;YT|USC (2]_) R—*IOgQ(l—‘y‘PXZt 11 Q;ZM).

(28)
and considering lemma. 1, also fulfill the following Markovrne girect part of this sum rate is subtantiated by the contra-
relations: polymatroid form of the achievable region which is evident in

U =Y —{X, Y} (22)  [15] or [13]. The converse part is shown in appendix IV using

The difference between theorems 1 and 2 besides the diffe2] Via the entropy power inequality. o
ence of (7) and (21), is that for the former Next it is shown that the above sum-rate identity leads to

identical rate-regions(R) < C(R)). This is since both
Pu,1vr v, (UlYT,Ur\t) = Pu,y, (Ut|V2) (23) regions are convex [15] and since for all non-negative vectors

and for the latter (o1,...,ar),

PUt|YT,UT\t(Ut|YT7 UT\t) = PUt\Yt,UT\t (Ut|}/t7 UT\t) o C min o C 29
28 o ZH_ ZH()



Identity (29) is proved in [15] as follows. Assume that >
- > ap, then

min E o Cy

(C1,-.,01)eC(R) 1

T—1 I 7
> min _ arChin (Cl, ey Z Ct> = ,/{::,,_
t=1 o ,

(C1,....Cr—1)eC(R)
- . /
+ E (am—am+1) E Ct L i i i i i i ]
! 0 10 20 30 40 50 60 70
t=

R [bits/channel use]
>
[
|

m=1 SNR [dB]
T T-1
>  min aT(R + Z r Z — am+1 Fig. 2. The achievable rates of systems with two equivalent agents versus

the signal to noise ratio in dB where 5 different values_bivere considered.
The dashed lines represent the cut-set bounds where the flat lin2€’ aned

m T r . .
1 1—272m the MIMO upper bound is the upper-left dashed line.
(g rt+R—210g2(1+PX E )),

t=1 t=m+1 't

(7"1,...77"1“)

where {r,;} must satisfy the last equality of (28). Now the VI. CONCLUSION

minimizers {r;} can be used in the direct part of (27), The case of communication of nomadic transmitter via
completing the argument. separated non-cooperative agents is presented. The agents are
assumed to be ignorant about the codebook used, and the
. scheme is robust of the codebooks used by the transmitter.
B. Example of two equivalent agents A direct coding theorem based on decentralized quantization
Next we consider the case where there are only two usersd an outer bound are presented. Considering the Gaussian
with P,, = P,, and withC; = Cs = C. Recall that a simple channel, a converse is proved by the entropy power inequality.
uppr bound for this case can be derived from the cut-set bound,
which appears in [24]. This bound for our case reduces to: ACKNOWLEDGMENT
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R < min [2 log, (1 + 2pn) ’20] : (31)  gram via the NEWCOM network of excellence. The authors
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We denote the tern log, (1 + 2%) in (31) as the MIMO
upper bound, since it is identical to the maximum achievable
rate whenC' — oc.
The achievable rate of (6) can be calculated by maximiZing |, this section we show that when the kB\in unknown the
over R, 71,2 such that following set of inequalities is valid: tya3nsmission” is a memoryless random process distributed
2 2ro according to Px, .x., (X, 0, Xy,) = thtl Px(X})
forallt, 2t <--- <tpandall X;, = Xy,,..., Xy, .

APPENDIX |
PROOF OFLEMMA 1

R<C’77"1+ log, 14 Pyi=2 2

R<C—ra+5 logg 1+ Pxt 2 e (32) We have that
R S 2C — M — T2
R < $log, (1 + Px 42*2_2;72_%2) Pt e B 2
" > Pra(F,M). (34)
Solving for the case where the two lower inequalities are active F,M:(¢s,7r(M))e,=Xt,

results with the rate of: ) ) ) )
Now since we consider all possible codebooks, we consider

1 2494C(1 L2 — i kR i
R=Llog, (1 499 (1 B \/S + (1429) S)) also all the possible®**! permutations of every codebook, so

24C the above is equal to:
(33)

whereS = f;X This solution fulfilles the inequalities (32) and  Px, ,...x,, (Xtysoo s X)) =
thus is the capaC|ty for the problem. Figure 2 demonstrates this ok R
achievable rate for severél values as a function of the signal Z Z Priy(FIM) Py (M) =
to noise ratiaS. It is noticed that for the lower values 6f, the M=1 Fi(gs, p (M), =1,
achievable rate is near optimal for a system with fixed users,
and that at most 0.7 bit per channel use is lost to maintain the Z Ppiyu(FIM =1). (35)

scheme robustness. Fi(ds,p(M=1))t, =Xt



Now we calculateP(F|M = 1) and sum over all the possi- _ ZH(YTZ_’X_WSC?Y?RXZA) + (52)

ble |X|(2"'R—1>k+’f—L codebooksF', that is over all possible - =
Xi o, XF(M =2),..., X¥(M = 28%). We get that: —H(Yr:, Xi|Vr, Yy ' X (53)
= HY}, X"|Vsc)— HYE, X"|Vr) (54)
Pr,, (%00 = T Pe(x0) > = H(Vs|Vse) = H(Vs|Vse, Y4, X") (55)
t=t1 Xt o XF(M=2),.... X *(M=2kR) —  H(Vs|Vse) < nZCt (56)

teS

Px (X, Px(X;) = Px(X:). (36 . )
H x(X;) o H x(Xi) 1__[ (X0 (36) Combining (56) and (42) and following the proof bémma
J€t C i=[1,k2kE —k]) t=t; B
_ 7 in [13] we prove theorem 2.
Concluding the proof. Notice the following equality which is due to Lemma 1, and
the memoryless channel:

APPENDIX I
PROOF OF THE OUTER BOUND OH HEOREM (2) H(X;, YTW\YM) = H(X,, YT\t,i\Yt,i’ Yﬂ-erX’_l’ y;l)'
Turning to the agents, we would like to upper bound the (57)
max|m|zat|0n of Th|S |dent|ty Imp|les that
1
—I(Vy; X™), 37 n im1 i
n (v X™) (37) 0=1I(X;,Yr\.; Vi, X1 Y5 Ya)
over the encoding functions of the agents, when the agent do > I(Ve, X' YN X, Y ilYea),  (58)
not know F: o _ _
Due to data processing inequality. Thidg in theorem 2 also
fulfill the Markov relations (22).
I(Vr; X™) = H(X”) — H(X"|Vr) (38)
APPENDIXIII
= ZH H(Xi|Vr, XY (39) PROOF FOR THE ACHIEVABLE RATE

For the proof we use ideas from [25], which presents an

< ZH H(X; |VT7YZ 1 Xi~1§40) achievable rate region for compress and forward technique
for the multiple relays problem. The difference being that
the agents benefit from a fixed non-interfering links to the
= ZH H(Xi|Ut ) (41) destination, thus multiple access communication and the in-
terferences of simultaneously transmitting relays are avoided.
< ”maXI(XyUT)- (42) Notice that the construction of the compression does not
WhenUs £ (Vs, Y%-q’ X1 for any S C 7. assume knowledge of the codebook at the agents. The network
is composed ofl" agentst € 7 = {1,...,T}, a source

The random variable$/s must also fulfill the following

constraints: transmitter and a final destination. Apposed to [25], we do

not need théblock Markov encodindgechnique here.

The transmitter is sending™ (M) where M < [1,2"7].
Thet-agent compresses the received sigrjalinto z;, where
n z € [1,2"%]. Since the compressed signdls } are depen-
= Z I(Vs, Vit X7 vy 4| Vse, Y71 X171)(44)  dent with each other and with/7, bandwidth from the agents

> I(Usi:Yr.ilUse ) (43)
=1

i=1 to D can be saved by using the Slepian-Wolf (SW) lossless
n _ _ distributed source coding. Each agent uggsto send the

= > I(Vs;YrlVse,Y§ ', X7) (45)  compression information. So by using SW the agents send
izl {S; € [1,2"%]}. The final destination useS,...,Sr to

< ZI(VS'YTi|VSC yi-1 X1+ (46) decodez, ..., zr. By knowing z1, ..., 27 it decodesM €

- e T [1,2"£]. The detailed proof goes as follows: we first describe

=1

I(Vg;Yf[,,;,Xi\VSc,Yf},X"*l) (47) the code construction, in the transmitter and in the agents.

N Next the processing at transmitter, agents and the decoding at
_ ZH(VS|V5C’Y}—1’X2’71) + (48) the final d.est|nat|on are given. The conditions (7) result from

the described construction so that when— oo the error
probability is arbitrary small.

=1
7H(V$|VSca Y’]z'a Xiil) + H(VS|V807 Y’Zi’inil) + (49)
—H(Vs|Vse, Yy, X") (50) A. Code construction:

n

ZI(Vs; Yo, Xi|VSc,Y7i—71,Xi_1) (51) For compress and forward transmission:
= ’ For everyt = (1,...,T):



« Randomly generate!?:=C) vectors U according to
Pyn(Uf) =11, Pu,(Uy;). Label theseJ(z).

« Repeat the last stel#C* times so that, € [1,2"%]. For
each repetition label the resulting setxfby S,, where
sy € [1,27¢].

Since there are at mo&t = s!2:—C:l such vectors in the set

» The message of theagent to the destination is thereforanhich means that as long as

St.

For everyM € [1,2"E]:

« Randomly chooseX” with Pxn»(X™) = [, Px(X;).
Label theseX™ (M), M = [1,2"F].

B. Encoding:

Let M be the message to be sent, the source terminal then

sendsX™(M).

C. Processing at the agents:

1) Compression:The ¢ agent chooses any of the such
that

(U7 (). ¥7) € T, (59)

The probability of an independently generatéd(z;) not to
be in T4! is bounded from above by

2n[H(Ut,Yt)—e]

_ _ 2—7L[I(Uf,;Yf,)+3€]
QnlH(U) el gnlH (V) +e] '

1 (60)

So there is no such; with probability P which is upper
bounded by

on Ry

P< (1 _ 2_n[I(Ut§Yt)+3€]) (61)

(Ssy5---,55,), the probability of such error is upper bounded
by:
onlY s [Re=Co—H(U)|+H(Ur)=H(Ugc)+(IS|+2)e] (65)
o>y [Rt . H(Ut)} + H(Us|Use)  (66)

tes tes
for all S C 7, the destination will be able to reliably decode
z7 for sufficiently largen.

Now the destination decides thaf was sent if

(X™(M),U™(27)) € T?. (67)

The probability that there exists/ =# M that satisfies (67) is

upper bounded by

27n[I(X;UT)735]. (68)

Now summing ovee™? —1 and upper bounding, we find that
reliable detection of\/ is possible if

R < I(X;U7). (69)
Taking (62) and (66) and noticing th&t/; }:cr are indepen-
dent given(Y;) we can write the constraints as:

VSCT: Y C>I1(Us;Ys|Use).
tes
Which proves (7). The achievable rate (6) is through (69).

(70)

APPENDIX IV
DIRECT AND CONVERSE FOR(27)

Itis easy to see that this probability goes to zero for sufficiently A simple compression scheme where:

largen as long as

Ry > I(U;Yy). (62)

Ut :}/;5+Wt, (71)

and W, is a Gaussian i.i.d. random variable independent of

After deciding onz; the agent transmits, which corresponds Y: (N0 connection witdV" in the previous appendices) is used

to z; € Ss,,-

D. Decoding (at the destination):

The destination finds the set of indiceés = {21,...,%r}

of the decoded indices of the compressed vectors which

satisfies
{(U{l(zl), L UR(2r)) € T2 (63)

Zr € (Ssyy- -3 Ssp)-

Error analysis:

Assume thats # zs andZsc = zgc for someS C 7. Such
vector is distributed according &y . (Use)[[s P, (Ur).
Thus the probability that such vector belongsEg is upper
bounded by

on[H(Ur)+e]

on[H(Ugc)—e) g[S res HUD—]
on[H(UT)—H(Uso) =% yes HU)+(IS|42)e]

(64)

for the direct part.
This scheme leads to

Ut - X + dt, (72)
and
D; £ Ed? = P,, + Py,. (73)
Definer; £ I(Y;; U;|X), which can be written as
o= H(U|X) — HU|Y:, X)
1 1
= 5 log, (2meDy) — 3 log, (2me Py, ) (74)
1 P,
= ——log, (1 -
2 OgQ ( Dt ) )
and D; in terms ofr,
1 1 —272m
— = 75
D, P, (75)

The terms{r,} can take any positive value, wheiD,} are
determined accordingly (this spag&*}7 is limited as seen in



the next lines, by the SW compression). The last equality caanditions (26) we can get

be used to express the maximum mutual information (through
maximal ratio combining) in terms ofr;} betweenX and
some subsel/s

1 Px
I(X;Us) = =log (1 + ) (76)
2 2 (Ztes Dy)~t
1
= log (1 +Px Y Dt> (77)
teS
1 1—272r
tes e

Using (7) as a SW compression (since 9 is fulfilled) we get
for {r;} and R in the above simple memoryless compression

Y Ci>1(Us; Ys|Use) (79)
teS
=1(X,Ys;Us|Usc) (80)
= I(X;Us|Use) + I(Ys; Us| X) (81)
=I(X;Ur) = I(X;Usc) + > _ I(Y; U] X) (82)
teS
= I(X;Ur) = I(X;Use) + Y i, (83)
teS
where r, £

memoryless compression, as described in (71).
With (78) these inequalities become

Ay > (89)
- 1
Y Ci= —I(YF Vi m|Vimsi,...1) (90)
t=1
1 n 1 n
= A7 Vr) = 1Y Vins,.1) (91)

—3

1
= 107 X5 Vr) = SI(VF, X" Vi) (92)

=3

1
=—I(X"Vr)+ EI(Y}L; VrlX™) +

3

1
——I(X"; Ving,...1) +

n

1 n n
_EI(ijLL...,T; Vm+17..4,T|X )(93)

T
1 1
= —I(X"Vr) + > - ~I(X"Vr) +
t=1
T

- ) (94)

t=m+1
m

= EI(X V) — EI(X 7Vm+1,...,T) + Zm(95)

t=1

Where (92) and (94) is sinck, is a deterministic function
of Y,”. These lead, by redefining
I(Y;; U] X) and (82) is true when usingsince the rateR is upper bounded by (18) to (27) with the
constraints

& 11y i[X7) and

n

m

- 1
am = Y ret R —I(X" Vg1 1) (96)
St <1+p 21—2‘27"‘) T
t 2> 5 logy X)) —p P
tes 2 teT P, ko< nI(X V1) (97)
1 1—272m Now using the entropy power inequality, as in [14] it is seen
teSC 't tes 5 " 1— 2—27‘t
2 I(X™Vs) <1 4 Py Z s (98)
Which define a contra-polymatroid. The sum-rate of a poly- P,

matroid is known to be equal over all tHE! polymatroid
vertices [15]. By using the constraints (26) for the contra:
polymatroid, a permutation,...,T — 1 for the vertex and
that R = logy (1+ Px X,eq L5
the sum rate is proven [15]. '

The converse part is showed by using Oohama [14] rather than
through the results such as those of section IV. We have thB{

Crin 2 XT:Ct > %I (Y7 V1) 85 [
t=1

= (VP X" Vr) (86) [

= LI(X Vo) 4 TYVE VEIXT) 87) g

>R+ %I(Y}L; Vr|X™) (88) -

where (88) is due to (18). Now also by imposing the

ity of (28) is since the constrainR <
1 1—92727t \ Lo . .
)1 the direct part of 2 log, (1 +Px D ier Pi,) is maximized with equality.

teS

So that we get to the constraints (28), where the last equal-

Li(xmvr) <
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