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SUMMARY

We show that the extrinsic information about the coded bits of any good (capacity achieving) binary code
operating over a Gaussian channel is zero when the channel capacity is lower than the code rate and unity
when capacity exceeds the code rate, that is, the extrinsic information transfer (EXIT) chart is a step function
of the signal to noise ratio and independent of the code. It follows that, for a common class of iterative
receivers where the error correcting decoder must operate at first iteration at rate above capacity (such as in
turbo equalization, iterative channel estimation, parallel and serial concatenated coding and the like), classical
good codes which achieve capacity over the Additive White Gaussian Noise Channel are not effective and
should be replaced by different new ones. Copyright © 2006 AEIT

1. INTRODUCTION

In this letter we derive the extrinsic information transfer
(EXIT) chart of asymptotically long binary codes which
achieve a vanishing probability of error over the Additive
White Gaussian Noise (AWGN) channel at code rates be-
low the channel capacity. We denote such codes as ‘good
codes’ in the following. The results provide an insight about
corresponding iterative receivers designed to approach the
channel capacity assuming asymptotically long codewords.

It is well known that when a good error correcting code
(ECC) is used to transmit information over a channel the ca-
pacity of which is lower than the code rate, then the error rate
is high. This scenario actually occurs at the first decoding
iteration performed by the new iterative receivers based on
the turbo principle, see Figure 1, where some preprocessor
such as equalizer, multi-user detector [1], phase estimator
or other precedes the decoder and employs the decoder out-
puts to improve the channel presented to the decoder over
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the successive iterations. The ECC code may be any code,
including an iteratively decodable turbo or LDPC code.

If the whole iterative receiver is designed to approach
capacity and if the iterative feedback to the preprocessor is
really required then at the first iteration the ECC decoder is
presented with a channel the capacity of which is below the
code rate while at the next iterations the preprocessor will
improve the ECC decoder input and finally enable errorless
decoding. To achieve this, the ECC decoder must pass some
useful information to the preprocessor at the first iteration,
while operating over channel the capacity of which is below
the code rate. The relevant information to be passed is the
well known extrinsic information (EI) to be defined below.

In fact, serially concatenated turbo codes can also be rep-
resented by the structure of Figure 1 where the preprocessor
is the decoder of the inner component code. Parallel con-
catenated turbo codes are decoded by a similar structure and
the operation at rate above channel capacity at first iteration
is then also clearly required since the component code is
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Figure 1. Iterative receiver.

presented only with a subset of the channel output symbols.
In the following derivation we will show formally that over
AWGN channels, codes considered to be good in the classi-
cal sense, provide no EI at all in this setting and thus elimi-
nate any improvement by the iterative feedback in Figure 1.
So the search for different codes fitting the new iterative sys-
tems, such as performed in References [1–3] and others, is
indeed essential if the iterative receiver is to perform better
than, say, separate equalisation and decoding. Also, classi-
cal good codes cannot perform well as outer codes in a seri-
ally concatenated turbo code or component codes in parallel
concatenated turbo codes. This was indicated first in Refer-
ence [4] where increasing the constraint length of a convolu-
tional component code rendered the iterative feedback of a
turbo decoder ineffective. More precisely, we will show that
the extrinsic information transfer (EXIT) chart of any good
binary code over a memoryless AWGN channel is a step
function, the EI being zero for signal to noise ratio (SNR) at
which the channel capacity is below the code rate and unity
at SNR larger than this. Notations: Mutual information is
denoted by I, entropy by H and statistical expectation by E.
Probability and probability density functions are denoted by
P and p respectively and bold-faced letters denote vectors.

2. MODELS AND DEFINITIONS

2.1. Channel model

We examine a binary input additive white Gaussian noise
(BI-AWGN) channel

y = √
s(2x − 1) + η (1)

where (2x − 1) is the transmitted signal, −1 or 1, x is the
corresponding bit at the channel input, 0 or 1 and η is a Gaus-
sian random variable with zero mean and unit variance. The
signal power, denoted s, is equal to the SNR. The channel
is characterised by the Gaussian probability p(y|x) and C

denotes the channel capacity. For some sl < sh, a channel
characterised by s = sl, can be described as physically de-
graded with respect to a channel characterised by sh, where
the superscripts h and l denote ‘higher’ and ‘lower’ SNR
respectively. The outputs of the two channels are denoted

yl and yh. By physically degraded we mean that xi, yl and
yh form the following Markov chain:

xi − yh
i − yl

i (2)

arising from the possibility to obtain yl from yh by adding
independent Gaussian noise and scaling to conform to
Equation (1).

2.2. The good code

We desire to transmit informationU. We do so in the stan-
dard manner of transmitting a codeword x, a vector of n

channel symbols xi belonging to an asymptotically long
good code X of rate R. The selection of the transmitted
codewords is determined byU and is equi-probable. The re-
ceived vector is denoted y. The code is such that it achieves
vanishing error probability at channel SNR s = s0 for which
C(s0) − ε′ < R < C(s0) where ε′ is positive and can be
made as small as desired by increasing n. A well known
result is then

1

n
I
[
x;y(s0)

]
≥ C(s0) − ε′ (3)

2.3. The extrinsic information

We are interested in a symbol xi, which is a symbol at the
i’th position in x. We define x′

i as x with xi excluded and
correspondingly y′

i as y with yi excluded. We denote zi the
complete information obtainable from y′

i about xi, known
as the extrinsic information, see for example Reference [4].
The extrinsic information zi can be expressed for example
as the logarithmic likelihood ratio (LLR) of xi or as:
P(xi = 1|y′

i). The average extrinsic information measure
is then defined as

EI = 1

n

n∑
i=1

I(xi;y
′
i) = 1

n

n∑
i=1

I(xi; zi) (4)

When xi is given, then yi is clearly independent of y′
i, that

is p(yi|xi,y
′
i) = p(yi|xi) and p(y′

i|xi, yi) = p(y′
i|xi). This

extends the Markov chain in Equation (2) to

y′h
i − xi − yh

i − yl
i (5)

where y′h
i depends on xi only due to the dependence of

x′
i on xi induced by the code. Using the physical degraded

Copyright © 2006 AEIT Eur. Trans. Telecomms. 2007; 18:133–139



ON EXTRINSIC INFORMATION OF GOOD BINARY CODES 135

channel property in Equation (2) this can be extended to

y′l
i − y′h

i − xi − yh
i − yl

i (6)

Furthermore, due to this Markov chain and the data
processing theorem we have I(y′h

i ; xi) ≥ I(y′l
i; xi), thus EI

is a non-decreasing function of s:

EI(sh) ≥ EI(sl) (7)

3. EXIT CHART OF GOOD CODES

When the capacity C is strictly above the code rate R, we
have perfect decoding for asymptotically long good codes,
even if the single symbol yi is removed (erased) before the
decoding. Thus, we have for any small positive ε′ and large n

R < C − ε′ → EI = 1 (8)

This intuitive attribute of good codes is verified in
Appendix A for finite s. The central result of this letter is
the following proposition and its method of proof:

Proposition 3.1. The average EI, Equation (4), about the
coded bits xi of a good binary code operating over a BI-
AWGN channel, the capacity of which is lower than the code
rate, is zero. (More precisely smaller than any positive ε2
for n large enough.)

Proof. It is well known that, when the code rate R is at
or above capacity, good codes mimic closely the channel
output statistics of a capacity achieving identically and
independently distributed (i.i.d.) input [5, Theorem 15].
Specifically, we prove in Appendix B that for all s < s0, the
mutual information I(x;y) over the channel with the good
code is similar to the symbol wise mutual information.
That is for any small ε′ > 0 and sufficiently large n:

0 ≤ 1

n

n∑
i=1

I [xi; yi(s)] − 1

n
I [x;y(s)] = γ(s) ≤ ε′ �= ε3

(9)

where γ(s) is a non-decreasing function of s. The
substitution ε′ = ε3 will be required below.

We shall need to upper-bound the derivative of
Equation (9) with respect to s

ID(s)
�=

d

ds

{
1

n

n∑
i=1

I[xi; yi(s)] − 1

n
I[x;y(s)]

}
= d

ds
γ(s)

(10)

Since γ is non-decreasing, ID is non-negative and its aver-
age over an interval of s0 − � to s0 cannot exceed ε3/�, oth-
erwise its integral (9) would exceed ε3. We shall choose� =
ε to limit the average ID to ε2. Thus, there is some s = st in
the above interval, ε within s0, for which ID is bounded by

0 ≤ ID(st) ≤ ε2 (11)

Due to Equation (7), vanishing EI at st implies vanishing
EI at all smaller values of s, so it is sufficient to prove
vanishing EI at st .

In Reference [6] the minimum mean square error
(MMSE), when estimating a general input of a Gaussian
channel using the channel output, is linked to the derivative
with respect to the SNR of the relevant mutual information.
This property is useful in analysis of iterative receivers, see
for example Reference [7]. Using Reference [6, Theorem
2] while the transmitted signal Hx in Reference [6] is our
(2x− 1), see Equation (1), and the constant 1 does not in-
fluence the estimation errors, we can see that the sum of the
estimation errors of all the symbols xi is

n∑
i=1

MMSE(xi|y) = d

ds
0.5 I [x;y(s)] (12)

where MMSE(xi|y) denotes the MMSE of an individual
bit xi obtained by optimally estimating xi from y. The fac-
tor before the sum in Equation (12) is 0.5 rather than 2 in
Reference [6] because the transmitted signal equation (1), is
2x − 1 rather than x. However, for any xi, a similar estima-
tion error can be achieved using merely the single received
symbol yi, see Reference [6, Eq. (1)]:

n∑
i=1

MMSE(xi|yi) = d

ds
0.5

n∑
i=1

I[xi; yi(s)] (13)

By Equations (10)–(13) we have then

0 ≤ 1

n

n∑
i=1

MMSE(xi|yi) − 1

n

n∑
i=1

MMSE(xi|y) ≤ 0.5ε2

0 ≤ 1

n

n∑
i=1

[MMSE(xi|yi) − MMSE(xi|y)] ≤ 0.5ε2 (14)

Clearly each element of the above sum is positive and their
average is upper bounded by 0.5ε2. We need to upper bound
those elements. The following rather loose but simple bound
is sufficient for our purpose. At most 0.5nε elements may
be larger than ε otherwise Equation (14) would be violated.
This vanishing proportion of elements can contribute only
0.5ε bits to the average EI Equation (4) because the EI for
each bit is bounded by 1, so we can disregard them in our
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proof of vanishing average EI , Equation (4), and use

MMSE(xi|yi) − MMSE(xi|y) ≤ ε (15)

Thus, at s = st , the MMSE estimation error of xi using y is
nearly the same as if only yi was used. The MMSE estimate
of xi, valued 0 or 1, is its conditional expectation

x̂i(y
′
i, yi) = 0 × P(xi = 0|y′

i, yi) + 1 × P(xi = 1|y′
i, yi)

x̂i(y
′
i, yi) = P(xi = 1|y′

i, yi) (16)

and x̂i(yi) = P(xi = 1|yi)

Equations (15) and (16) imply that yi is an approximate
sufficient statistics, where the full statistics is y = (yi,y

′
i).

This immediately implies Equation (17) due to continuity
as shown in more detail in Appendix C:

E[P(xi = 1|y′
i, yi) − P(xi = 1|yi)]

2 ≤ ε (17)

Thus P(xi = 1|y′
i, yi) ∼= P(xi = 1|yi), showing thaty′

i can-
not provide additional information about xi when yi is
known.
To establish (for any small positive ε2)

EI = 1

n

n∑
i=1

I(xi;y
′
i) ≤ ε2 (18)

we have to show that y′
i cannot provide information about

xi also when yi is not known. This is equivalent to P(xi =
1|y′

i) = P(xi = 1). We present in the following the princi-
ples leading to Equation (18), while a detailed but tedious
proof is presented in Reference [8, Appendix D].

Since P(xi = 1|y′
i, yi) and P(xi = 1|yi) determine the

log likelihood ratios (LLR) which are closely coupled to
mutual information, Equation (17) leads to

I(xi;y
′
i, yi) − I(xi; yi) < ε1 (19)

for some ε1 proportional to ε. Next we shall use the bounds
on information obtained by combining the outputs of in-
dependent channels [9]. The channel outputs yi and y′

i can
be considered independent sources of information about xi

by Equation (5). Thus, yi and y′
i are outputs of parallel

broadcast channels in the sense of Reference [9]. Also the
channel (1) xi to yi is symmetric and xi is nearly uniformly
distributed over −1 and 1 for all but a vanishing proportion
of symbols xi (otherwise the code cannot achieve capacity,
see Reference [10], and further references therein) and those

can be disregarded since they cannot influence the average
EI Equation (4) because the contribution of one symbol to
the average EI is limited to 1/n.

The bounds [9] hold for x distributed uniformly accord-
ing to P(x = 1) = 0.5, however since the bounds based on
mutual information combining are all continuous functions
of the parameter P(x = 1) describing the distribution of x,
small deviations from P(x = 1) = 0.5 inflict small devia-
tion on the outputs. Under those conditions it follows from
Reference [9, Theorem 2] that when I(yi; xi) and I(y′

i; xi)
are given, then I(y′

i, yi; xi), the information about xi ob-
tained by combining both yi andy′

i, is lower bounded by the
one obtained when replacing y′

i by the output B of a binary
symmetric channel (BSC) transmitting xi, with I(B; xi) =
I(y′

i; xi). Straightforward calculation reveals that for the
Gaussian channel with input xi and output yi and BSC with
output B we have I(B, yi; xi) > I(yi; xi) + αI(B; xi) for
some positive α. Thus I(y′

i, yi; xi) > I(yi; xi) + αI(y′
i; xi).

This together with Equation (19) implies

I(xi;y
′
i) ≤ ε2 (20)

for any small positive ε2. This establishes Equation (18)
and proposition 3.1; a detailed proof is available in
Reference [8]. �

By the data processing theorem for the Markov chain
Equation (5) we have I(xi;y′

i) ≥ I(yi;y′
i), thus

1

n

n∑
i=1

I(yi;y
′
i) ≤ ε2 (21)

when channel capacity is below the code rate. This attribute
cannot be derived directly from the results of Reference [5]
and does not hold when capacity exceeds slightly the code
rate and successful decoding occurs.

Remarks. When capacity exceeds the code rate there is a
sharp transition of the EI since I(x,y) is not determined by
Equation (9) any more but reaches a plateau at the code rate
and the MMSE, which is proportional to the derivative of
I(x,y) with respect to s = SNR by Equation (12), goes to
zero abruptly. This transition takes place over a small region
of s for which the difference Equation (9) is very small but,
significantly, not zero. A similar transition of

1

n

n∑
i=1

I(yi;y
′),

see Equation (21), occurs in the same region.
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Clearly, the area A under the EI versus I(xi; yi) curve,

A =
∫ 1

0
EI d[I(xi; yi)],

equals 1 − R, thus the step function EXIT chart derived here
for good binary code over the AWGN channel conforms to
the ‘EXIT chart area property’ of outer codes which was
proved in Reference [11] for any code over the binary era-
sure (BEC) channel. This property over the BEC channel
together with Equation (8), which is easy to verify also for
the BEC channel, implies that Equation (18) holds for good
codes over the BEC channel too.

4. CONCLUSIONS

The EXIT chart of any good binary code operating over a
Gaussian channel is a step function, zero at channel capac-
ities below the code rate and unity at capacities above the
code rate. Thus codes which are good over the AWGN chan-
nels are very inefficient when used in an iterative receiver
of the type presented in Figure 1 which includes turbo-
equalization, iterative multi-user receivers and serially con-
catenated codes as special cases. Interestingly, the step func-
tion EXIT chart derived here for the AWGN channel con-
forms to the EXIT chart area property derived in Reference
[11] for the erasure channel. Furthermore, good code operat-
ing at rate above channel capacity falls apart into its individ-
ual transmitted symbols in the sense that all the information
about a coded bit xi is contained in the corresponding re-
ceived symbolyi and no information aboutxi can be inferred
from the other received symbols, neither alone, see Equa-
tion (18) and neither as supplement to yi, see Equation (17).

It is of interest if the main result of this letter, namely
Equation (18), holds for more general memoryless chan-
nels. Based on [11], the results hold for the BEC channel
as explained above, Reference [8] outlines an extension to
a wider class of M-ary input memoryless channels using
the concept of GEXIT [12], and the arguments presented in
Reference [1] suggest extension to any memoryless channel
for binary random codes.

APPENDIX

This appendix verifies Equation (8) for finite s. When
R < C − ε′, the symbol xi is decoded with zero error prob-
ability. Furthermore, by the Markov chain Equation (5)

P(y′
i, yi|xi) = P(y′

i|xi)P(yi|xi)

Thus

P(xi|y′
i, yi) = P(y′

i|xi)P(yi|xi)P(xi)
1

P(y′
i, yi)

(A.1)

Let us denote the actually transmitted xi by xt . Perfect de-
coding of xi implies P(xi|y′

i, yi) = 0 for xi 	= xt for all
yi and y′

i possible when xi = xt . For the channel (1) all
yi have non-zero probability for both possible xt , that is
P(yi|xi) > 0. Then since any of the terms on the right hand
side of Equation (A.1) except of the first one is not zero for
all possible y′

i and xi, the first term must be P(y′
i|xi) = 0,

for xi 	= xt , which ensures perfect decoding of xi from y′
i,

implying Equation (8).

APPENDIX

Proof of Equation (9). In this appendix we shall use two
types channel inputs. One of them will be a codeword x
chosen randomly and uniformly from the good code (GC)
X approaching capacity within ε′ at channel SNR s0. All
the properties related to this input will be denoted by the
superscript GC, such as IGC. The other type of input will
be a vector x of symbols xi chosen independently and ac-
cording to the symbol-vise distribution of our good code
X which may be dependent to a certain extent on the sym-
bol index i. We denote this input distribution by the su-
perscript IND and the corresponding mutual information as
IIND(x;y). The symbol-wise mutual information I(xi; yi)
is identical for both the distributions for each i. Thus, the
first term in Equation (9) equals 1

n
IIND(x;y) and the second

equals 1
n

IGC(x;y).
In the rest of this appendix we shall denote by y0 the

output of a channel with SNR equal to s0 and by yl and yh

the output of a channel parameterised by some sl < sh < s0.
For both the xGC and xIND types of channel inputs

I(x;y) = H(y) − H(y|x) (B.1)

Since H(y|x) is invariant with respect to the type of channel
input (GC or IND) over the memoryless channel, the differ-
ence DI = IIND(x;y) − IGC(x;y) is determined wholly by

DI = H IND(y) − HGC(y) (B.2)

By the chain rule of entropy we have for both the types of
channel inputs:

H(yh,yl) = H(yl) + H(yh|yl) = H(yh) + H(yl|yh)
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H(yl) = H(yh) + H(yl|yh) − H(yh|yl) (B.3)

Let us compare H(yl) for the two types of channel inputs
taking into account that H(yl|yh) does not depend on the
channel input type due to the Markov, Equation (2), and the
memoryless properties of the channel:

H(yl)IND − H(yl)GC = H(yh)IND − H(yh)GC

− H(yh|yl)IND + H(yh|yl)GC

(B.4)

Let us define β = H(yh|yl)IND − H(yh|yl)GC. Then from
Equations (B.2) and (B.4)

I(x;yl)IND − I(x;yl)GC = I(x;yh)IND − I(x;yh)GC − β

(B.5)

The difference β is positive or zero since the IND and
the GC distributions induce the same symbol-wise distri-
butions p(yl

i, y
h
i ) while only the GC induces dependence be-

tween different symbols. So DI = I(x;y)IND − I(x;y)GC

is a non-decreasing function of s. Furthermore, DI is al-
ways positive or zero since the symbol-wise distributions
of the two input types are identical while only the GC in-
put induces dependency between the input symbols. Thus
DI = I(x;y)IND − I(x;y)GC is a positive non-decreasing
function of s. At s = s0, DI is small as desired since
1
n

I(x;y)GC approaches capacity within ε′ at channel SNR
of s0 while I(x;y)IND cannot exceed it. This proves Equa-
tion (9) including γ(s) being non-decreasing function of s.

APPENDIX

Proof of Equation (17). Denote the MMSE estimators
Equation (16) of xi by

A = P(xi = 1|yi) = x̂i(yi)

B = P(xi = 1|y′
i, yi) = x̂i(y

′
i, yi) (C.1)

Then, by Equation (15):

ε ≥ E[(x − A)2 − (x − B)2]

= E[A2 − B2 − 2x(A − B)]

= E[(A − B)(A + B) − 2x(A − B)]

= E[(A − B)(A − x + B − x)]

ε ≥ E[(A − B)(A − x + B − x)] (C.2)

It is well known that the error of an MMSE estimator is
not correlated neither to the estimate itself and neither to
any function of the information which was used to form
the estimate. Now, since B is the MMSE estimate using
the full information y which can also produce A, we have
0 = E[A(B − x)] = E[B(B − x)]. Then 2(B − x) can be
subtracted from the term inside the right parenthesis in
Equation (C.2) yielding

ε ≥ E[(A − B)(A − x − (B − x))]

ε ≥ E[(A − B)(A − B)] = E(A − B)2 (C.3)

This, together with the definitions Equation (C.1) implies
Equation (17).
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