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Abstract: We show that the Extrinsic Information about the 

coded bits of any good (capacity achieving) code operating 

over a binary symmetric channel is zero when the code 

operates at code rate above capacity and a positive constant 

otherwise, that is, the Extrinsic Information Transfer (EXIT) 

chart is a step function of channel quality, for any capacity 

achieving code. This extends similar previous results proved 

over the erasure channel and over the AWGN channel, 

indicating the step function property of the EXIT chart is 

rather general. It follows that, for a common class of iterative 

receivers where the error correcting decoder must operate at 

the first iterations at rate above capacity (such as in turbo 

equalization, turbo channel estimation, parallel and serial 

concatenated coding and the like), classical good codes which 

achieve capacity over the relevant channels are not effective 

and should be replaced by different new ones. 

 

I  INTRODUCTION 

We examine a certain property of good codes, denoting here 

capacity achieving asymptotically long codes. A codeword 

comprising transmitted symbols xi is transmitted over a 

memoryless channel and the Extrinsic Information (EI) which 

can be extracted about a particular xi from the received 

symbols yj, excluding the symbol yi corresponding to xi, is 

examined as a function of the channel quality. As shown in 

[1], [2] and in this work, the average EI about the coded bits 

of any good code operating over a class of Discrete Input 

Memoryless Channels (DIMC) is zero when the code operates 

at a code rate R above the capacity C and a positive constant 

otherwise. That is, the Extrinsic Information Transfer (EXIT) 

chart is a step function of the channel quality. Consequently 

any good code operating at a rate above channel capacity falls 

apart into its individual transmitted symbols in the sense that 

all the information about a coded transmitted symbol is 

contained in the corresponding received symbol and no 

information about it can be inferred from the other received 

symbols. 

 Let us consider a common class of iterative receivers utilizing 

preprocessing inside the iterative loop, such as turbo 
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equalization, turbo channel estimation, serial concatenated 

coding and the like, see Fig. 1. 
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Fig.1: Iterative receiver with a preprocessor inside the 

decoding loop. 

 

In such a setting the error correcting decoder must operate at 

the first iteration at a rate above capacity. Clearly, if the 

iterative feedback to the preprocessor is indeed required for 

reliable decoding, then classical good codes which achieve 

capacity over the DIMC are not effective here due to their 

failure to provide any extrinsic information at the first 

iteration, and so should be replaced by different codes 

designed specifically for such a system. In fact, serially 

concatenated turbo codes can also be represented by the 

structure of Fig.1 where the preprocessor is the decoder of the 

inner component code. Parallel concatenated turbo codes are 

decoded by a similar structure and the operation at rate above 

channel capacity at first iteration is then also clearly required 

since the component code is presented only with a subset of 

the channel output symbols. So the search for codes fitting the 

new iterative systems such as performed in [3], [4], [5] and 

others is indeed essential if the iterative receiver is to perform 

better than, say, separate equalization and decoding. Also, 

classical good codes cannot perform well as outer codes in a 

serially concatenated turbo code or component codes in 

parallel concatenated turbo codes. This was indicated first in 

[6] where increasing the constraint length of a convolution 

component code rendered the iterative feedback of a turbo 

decoder ineffective. 

Interestingly, the proofs of the above step function attribute 

of EXIT charts over various channels are based on diverse 

area properties. In the case of the Binary Erasure Channel 

(BEC), this attribute of good codes is a direct consequence of 

the constant area property of the EXIT chart over erasure 

channels [7]. A similar result for the Binary Input Additive 

White Gaussian Noise (AWGN) channel was proved in [1], 

[2] using the recently discovered link between mutual 

information and Minimum Mean Square Error (MMSE) [8] 

and the corresponding constant area under the MMSE versus 
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the Signal to Noise Ratio (SNR) curve.  

Interesting consequences of the last constant area property 

are demonstrated in Fig. 2. The MMSE is that of the 

transmitted codeword x estimated from the received codeword 

y [8] and it is a measure of the reliability of decoding. The 

black curve is that of the good code. It is identical for all sub-

threshold SNRs (meaning SNRs for which C<R) to that of an 

uncoded transmission (the blue line), an attribute closely 

related to the step function property of the EXIT chart [1]. The 

red line is that of a repetition code, which compensates by 

suboptimal performance at SNRs above the capacity threshold 

for the MMSE reduced relatively to the good code at sub-

threshold SNRs. The green line is that of a state of art LDPC 

code from [9] exhibiting performance approaching that of the 

good code; it is approximated by a tight upper bound 

produced by the belief propagation showed suboptimal in 

[10]. This is another demonstration of the tradeoff between 

performance of a code below and above the threshold SNR. 
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Fig.2: MMSE as a function of SNR for uncoded 

transmission, for LDPC code of rate 0.5 from table II in [9] 

(dv=50), for repetition code of rate 0.5 and for a good code. 

 

The results require the channel quality to be determined by 

a single parameter w such as 1/SNR in a manner we denoted 

'incremental noisiness', see the next section.  

In the following derivation we extend the result to the 

Binary Symmetric Channel (BSC) using the concept of 

Generalized Extrinsic Information Transfer (GEXIT) 

introduced in [10] and exhibiting an inherent area property. 

The derivation is based on a more general one in [2, part 2] 

yielding a compact proof for the BSC channel.  

GEXIT, area theorems and their applications to important 

aspects of iteratively decoded systems were studied in [11], 

[12] and references therein. Related derivatives of mutual 

information were used in [13] to obtain mutual information in 

coded systems. 

Notations: Mutual information is denoted by I, entropy by 

H, P and p denote probability and a probability density 

function respectively and bold letters denote vectors. 

 

II MODELS AND DEFINITIONS  

A. Channel model: 

We examine a time invariant BSC characterized by P(y|x) 

where and x and y are the input and the output bits of the 

channel respectively. C denotes the channel capacity. 

The channel transfer function P(y|x) is determined by a 

single noisiness parameter denoted by w as to preserve the 

notation of previous papers, in our case it is chosen identical 

to the probability of error Pe.  

A channel characterized by wh,  for some wh > wl , can be 

described as physically degraded with respect to a channel 

characterized by wl, where the superscripts h and l denote 

'higher' and 'lower' noisiness respectively. The outputs of the 

two channels are denoted yh and yl. By physically degraded 

we mean that , ,l h

i i ix y y   form the Markov chain: 

 

l h

i i ix y y− −
                                                              

(1)
 

It can be seen easily that the BSC conforms to this property. 

    In order to perform partial derivatives in our derivation, we 

shall need an extension to a channel characterized for each 

channel use i by a different wi, so we use w=[w1,w2…wi..wN].  

Non-bold w will mean that all wi are equal to w. Derivative 

with respect to wi with the other elements of w held constant 

is denoted as
()

i

d

dw
, while 

()d

dw
 denotes a derivative with 

respect to the channel quality w common to all the elements of 

w. 

 

B. The good code: 

 We desire to transmit information U. We do so in the 

standard manner of transmitting a codeword x, a vector of n 

channel symbols xi belonging to an asymptotically long good 

code X of rate R. The selection of the transmitted codewords 

is determined by U and is equi-probable. The received vector 

is denoted by y. The code is such that it achieves vanishing 

error probability at channel noisiness level w0 for which  

R=C- 'ε  for any small positive 'ε when n is large enough. The 

Markov chain (1) implies vanishing error probability also for 

all w<w0. 

 

C. The Extrinsic Information: 

We are interested in a symbol xi, which is a symbol at the 

i'th position in x. We define xi' as x with xi excluded and 

correspondingly y'i as y with yi excluded.  

We denote by zi the complete information obtainable from 

yi' about xi, known as the Extrinsic Information, see for 

example [6] and [10]. The extrinsic information zi over the 

binary channel can be expressed, for example, as the 

Logarithmic Likelihood Ratio of xi given yi'. The average 
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extrinsic information measure is then defined as 

 

n n

i=1 i=1

1 1
EI= I( ; ' )= I( ; )  .

n n
i i i ix x z∑ ∑y                      (2) 

. 

When xi is given, then yi is independent of y'i, that 

is ( | , ' ) ( | )i i i i iP y x P y x=y as shown already in [6]. This 

extends the Markov chain (1) to  

 ' 'h l l h

i i i i ix y y− − − −y y                                          (3) 

 
l h

i i i iz x y y− − −                                                     (4) 

 

Furthermore, due to this Markov chain and the data 

processing theorem we have ( ' ; ) ( ' ; )l h

i i i iI x I x≥y y , thus EI 

is a non-increasing function of the noisiness w. 

 

 ( ) ( )l hEI w EI w≥                                                 (5) 

 

III EXIT CHART OF GOOD CODES 

When the code rate R is strictly below the capacity C we 

have perfect decoding for asymptotically long good codes, 

even if the single symbol yi is removed (erased) before the 

decoding, thus we have  

 1  bits per symbolR C EI< ⇒ =                    (6) 

 

This intuitive attribute of good codes is proved in [1] and 

[2]. 

 

The central result of this work is the following proposition 

and its method of proof: 

Proposition: The average EI, eq. (2), which can be 

obtained from all the channel outputs about the coded bits xi 

of a good code operating over a BSC,  the capacity of which is 

below the code rate,  is zero.  

 

Proof:  
We shall examine a code which is capacity achieving for 

some noisiness w=w0, that is, it is capable of reliably 

transmitting information at a rate 0( ) 'R C w ε= −  over a 

channel parameterized by w=w0 for any small 'ε . 

Our proof uses the concept of GEXIT as introduced in [10]. 

GEXIT is defined [10, eq. (2)] as: 

 
1

( | )
d

GEXIT H
n dw

= x y                                       (7)    

 

which is transformed easily to: 

 
1

[ ( ) ( ; )]
d

GEXIT H I
n dw

= −x x y  

 
1

( ; )
d

GEXIT I
n dw

= − x y                                     (8) 

  

GEXIT is an average of GEXITi, [10, eq. (3)]: 

       

1

1 n

i

i

GEXIT GEXIT
n =

= ∑                                 (9)          

     

   where  ( | )  .i

i

d
GEXIT H

dw
= x y  

 

It was shown in [10, eq. (5)] that: 

 ( | , )i i i i

i

d
GEXIT H x z y

dw
=                             (10) 

 

Similarly to (8), GEXITi from (10) is  

 ( ; , )i i i i

i

d
GEXIT I x z y

dw
= −                         (11) 

 

Now let us introduce GEXIT0 and GEXIT0i defined as 

GEXIT and GEXITi respectively but with the transmitted 

symbols x0i uncoded and distributed independently, which 

implies zi=0. Each x0i is distributed according to the symbol-

wise distribution of the corresponding xi in our good code X 

which may be dependent to a certain limited extent [14] on the 

symbol index i. We denote this input distribution by the 

superscript IND and the corresponding mutual information as 

IIND(x0;y0). 

 We shall see below that a plot of GEXIT and GEXIT0 

versus Pe would resemble the plots of MMSE in Fig. 1 for the 

coded and uncoded transmissions respectively. In fact MMSE 

is (up to a constant factor) the GEXIT (7) over the AWGN 

channel as pointed out in [10] and GEXIT is used in this work 

to a similar purpose as the MMSE in [1]. 

 

Since  (11) applies also to GEXIT0i: 

0 ( 0 ; 0 )i i i

i

d
GEXIT I x y

dw
= − . 

Now let us compare GEXITi to GEXIT0i. We shall use (11) 

and the fact that each couple (xi, yi) is distributed identically to 

(x0i, y0i): 

 

[ ]

0 ( ; ) ( ; , )

                                = ( ; , ) ( ; )

i i i i i i i

i i

i i i i i

i

d d
GEXIT GEXIT I x y I x z y

dw dw

d
I x z y I x y

dw

− = − +

−

  

 

 

 

By the chain rule of mutual information we have then: 
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[ ]

[ ]

0 ( ; | )

                               = ( ; , ) ( ; )

i i i i i

i

i i i i i

i

d
GEXIT GEXIT I x z y

dw

d
I z x y I z y

dw

− =

−
  

 

By the Markov chain (4) the first I( ) term is not dependent on 

yi and we have: 

 0 ( ; )i i i i

i

d
GEXIT GEXIT I z y

dw
− = −               (12) 

It is well known that, when the code rate R is at or above 

capacity, good codes mimic closely the channel output 

statistics of a capacity achieving identically and independently 

distributed ( i.i.d.) input [15, Theorem 15]. 

Specifically, it is proved in [1] and in [2] that for w>w0 the 

mutual information I (x;y) over the channel with the good 

code is similar to IIND(x0;y0). That is for any small 0ε ≥ and 

sufficiently large n: 

                

3

0 0

1 1
0 [ ; ( )] [ ; ( )] ( ) 'INDI w I w w

n n
γ ε ε≤ − = ≤ =x y x y

                                                                                                       

(13)       

 

where γ  is a non-increasing function of w. The substitution 

3'ε ε=  will be required below. 

It follows from (13) that for any pair of values w1 < w2 for 

which R>C we have: 

 

0 0 1 0 0 2 1 2

3

1 2

0

[ ; ( )] [ ; ( )] { [ ; ( )] [ ; ( )]}

( ) ( )   .

IND INDI w I w I w I w

n w n w nγ γ ε

≤

− − −

= − ≤

x y x y x y x y

 

Applying (8)  we get 

 

 

1

2

30 [ 0( ) ( )]  .

w

w

GEXIT w GEXIT w dw ε≤ − ≤∫     (14)              

 

So GEXIT is nearly equal to GEXIT0 at w>w0 similarly to 

the MMSEs with and without coding in Fig. 1. Also, like the 

MMSE, the GEXIT is zero when R<C, see (8).  

We denote the difference GEXIT0-GEXIT by DG. From 

(12), (9) and the Markov chain (4), DG is non-negative:  

 

 )15(      ( ) 0( ) ( ) 0DG w GEXIT w GEXIT w− ≥�    

 

Now lets place w1 at the threshold value w1=w0. The 

average of DG over the interval of 1 0 2 0w =w to w w= + ∆  

cannot exceed
3 /ε ∆ , otherwise its integral (14) would 

exceed 
3ε . We shall choose ε∆ =  to limit the average DG 

to
2ε . Since DG is non-negative, there is some w=wt in the 

above interval, ε within w0, for which DG is bounded by  

 

 
20 ( )tDG w ε≤ ≤                                               (16) 

 

 Due to (5), vanishing EI at wt implies vanishing EI at all 

larger values of w, so it is sufficient to prove vanishing EI at 

wt. 

It follows from (9), (12), )15(  and (16) that: 

 
21

0 ( ; )i i

i i

d
I z y

n dw
ε≥ ≥ −∑                           (17) 

By the Markov chain (4) each element of the above sum is 

negative and their average is lower bounded by
2ε− . This 

implies that each element is lower bounded by ε− , except at 

most nε  elements which may be more negative (with nε  

elements more negative than ε− , (17) will be violated). This 

vanishing proportion of elements can contribute only ε  bits 

to the average EI, eq. (2), because the EI for each bit is 

bounded by 1, so we can disregard them in our proof of 

vanishing average EI and use  

 0 ( ; )i i

i

d
I z y

dw
ε≥ ≥ −                                     (18) 

To simplify the proof relative to [2, part 2] we assume in 

the remaining derivation that 

  

 ( 0) ( 1) 0.5  .i iP x P x= = = =                          (19) 

In any case a good code cannot deviate too far from (19), 

see [14] and references therein. Then 

 

 

( ; ) [ ( ) ( | )]

                   ( | )

i i i i i

i i

i i

i

d d
I z y H y H y z

dw dw

d
H y z

dw

= −

−
=

 

We used ( ) 0i

i

d
H y

dw
= because  

 i iP(y =1)= P(y =0)=0.5                                (20) 

due to (19) and to the symmetry of the channel. 

 

Then by (18): 

 0 ( | )   .i i

i

d
H y z

dw
ε≤ ≤                                 (21) 

For the above derivative to vanish, H(yi|zi) must not change 

when wi, that is Pe of the BSC, increases. Since yi is binary 

and the channel is symmetric, this is clearly possible only if  

 

 ( 0 | ) ( 1| ) 0.5  .i iP y z P y z= = = =             (22) 
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The last equation, together with (20), implies that yi and zi 

are statistically independent. 

This, together with the Markov chain (4), yields 

independence between zi and xi because the only dependence 

possible between zi and xi would be of the form

 ( 0 | ) 0.5 i iP x z= ≠ which would be reflected into 

dependence between yi and zi over the BSC with any Pe 

different from 0.5. The independence between zi and xi proves 

the proposition. 

See [2, part 2] for an alternative and a more general proof 

starting from (18). 

 

Remarks: 
1) At decreasing channel noisiness which brings the 

channel capacity to a value above the code rate there is a sharp 

transition in the EI curve since I(x,y) is not determined by (13) 

any more but reaches a plateau at the code rate and the GEXIT 

(8), which is proportional to the derivative of I(x,y)  with 

respect to w, goes to zero abruptly. This transition takes place 

over a small region of w for which the term (13) is very small 

but, significantly, not zero. A similar transition of the average 

mutual information 

n

i

i=1

1
I(y ; ')

n
∑ y , which is upper bounded 

by the average EI because of the Markov chain (3), occurs in 

the same region. 

2) Clearly the area A under the EI versus I(xi;yi) curve, 
1

i i

0

A EId[I(x ;y )]= ∫ , equals (1-R), thus the step function 

EXIT chart derived here for good code over the BSC 

conforms to the "EXIT chart area property" of outer codes 

which was proved in [7] for any code over the binary erasure 

channel.  

 

IV  CONCLUSIONS: 

We proved that the EXIT chart of any good (capacity 

achieving) code operating over a BSC is a step function of the 

channel noisiness, zero when the code operates at code rate 

above capacity and 1 at C>R . This is an extension of previous 

results over the binary erasure channel and the binary input 

AWGN channel. Each proof relies on some area property. 

Thus codes good over memoryless channels are very 

inefficient when used in an iterative receiver of the type 

presented in figure 1 which includes turbo-equalization, 

iterative multi-user receivers and serially concatenated codes 

as special cases. Interestingly, the step function EXIT chart 

derived here conforms to the EXIT chart area property derived 

in [7] for the erasure channel. 

 Furthermore, vanishing EI, as defined in (2), implies that a 

good code operating at rate above channel capacity falls apart 

into its individual transmitted symbols in the sense that all the 

information about a coded bit xi is contained in the 

corresponding received symbol yi and no information about xi 

can be inferred from the other received symbols y'i. 
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